FRAX Price: $0.99 (+1.86%)

Contract

0x149E8D2f435f09b81F1d8e098b6570eA20cDB4e4

Overview

FRAX Balance | FXTL Balance

0 FRAX | 14 FXTL

FRAX Value

$0.00

Token Holdings

More Info

Private Name Tags

Multichain Info

No addresses found
Transaction Hash
Block
From
To
Withdraw304237272026-01-06 0:09:2518 days ago1767658165IN
0x149E8D2f...A20cDB4e4
0 FRAX0.00000370.00100025
Deposit304198742026-01-05 22:00:5918 days ago1767650459IN
0x149E8D2f...A20cDB4e4
0.05 FRAX0.00000330.00000025
Deposit304194242026-01-05 21:45:5918 days ago1767649559IN
0x149E8D2f...A20cDB4e4
0.02 FRAX0.000003250.00110027

Latest 2 internal transactions

Advanced mode:
Parent Transaction Hash Block From To
304198742026-01-05 22:00:5918 days ago1767650459
0x149E8D2f...A20cDB4e4
0.05 FRAX
304194242026-01-05 21:45:5918 days ago1767649559
0x149E8D2f...A20cDB4e4
0.02 FRAX

Cross-Chain Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
FraxPaymaster

Compiler Version
v0.8.28+commit.7893614a

Optimization Enabled:
Yes with 200 runs

Other Settings:
prague EvmVersion
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";
import {SignerECDSA} from "@openzeppelin/contracts/utils/cryptography/signers/SignerECDSA.sol";
import {PaymasterSigner, EIP712} from "@openzeppelin/community-contracts/account/paymaster/PaymasterSigner.sol";
import {IEntryPoint} from "@openzeppelin/contracts/interfaces/draft-IERC4337.sol";
import {ERC4337Utils} from "@openzeppelin/contracts/account/utils/draft-ERC4337Utils.sol";

/**
 * @title FraxPaymaster
 * @notice A paymaster that sponsors gas for user operations signed by a trusted verifier
 * @dev Uses OpenZeppelin's PaymasterSigner for ERC-4337 v0.7 compatibility
 *
 * The paymaster validates user operations by checking a signature from a trusted
 * verifying signer. The signature includes validity timestamps to prevent replay attacks.
 *
 * Flow:
 * 1. User prepares a UserOperation
 * 2. Backend signs the UserOperation with validUntil/validAfter timestamps using EIP-712
 * 3. User submits the UserOperation with paymasterAndData containing:
 *    - paymaster address (20 bytes)
 *    - paymasterVerificationGasLimit (16 bytes)
 *    - paymasterPostOpGasLimit (16 bytes)
 *    - validAfter (6 bytes)
 *    - validUntil (6 bytes)
 *    - signature (dynamic)
 *
 * NOTE: This paymaster uses EntryPoint v0.7 to be compatible with Safe4337Module v0.3.0
 */
contract FraxPaymaster is PaymasterSigner, SignerECDSA, Ownable {
    /// @notice Emitted when a user operation is sponsored
    event UserOperationSponsored(
        address indexed sender,
        uint256 actualGasCost
    );

    /**
     * @param signerAddr The address that will sign paymaster approvals (also initial owner)
     */
    constructor(address signerAddr) 
        EIP712("FraxPaymaster", "1") 
        Ownable(signerAddr) 
        SignerECDSA(signerAddr) 
    {}

    /**
     * @notice Authorize withdrawal - only owner can withdraw
     * @dev Required by PaymasterSigner
     */
    function _authorizeWithdraw() internal virtual override onlyOwner {}

    /**
     * @notice Override to use EntryPoint v0.7 instead of v0.9
     * @dev Safe4337Module v0.3.0 only supports EntryPoint v0.7
     */
    function entryPoint() public view virtual override returns (IEntryPoint) {
        return ERC4337Utils.ENTRYPOINT_V07;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/cryptography/signers/SignerECDSA.sol)

pragma solidity ^0.8.20;

import {AbstractSigner} from "./AbstractSigner.sol";
import {ECDSA} from "../ECDSA.sol";

/**
 * @dev Implementation of {AbstractSigner} using xref:api:utils/cryptography#ECDSA[ECDSA] signatures.
 *
 * For {Account} usage, a {_setSigner} function is provided to set the {signer} address.
 * Doing so is easier for a factory, who is likely to use initializable clones of this contract.
 *
 * Example of usage:
 *
 * ```solidity
 * contract MyAccountECDSA is Account, SignerECDSA, Initializable {
 *     function initialize(address signerAddr) public initializer {
 *       _setSigner(signerAddr);
 *     }
 * }
 * ```
 *
 * IMPORTANT: Failing to call {_setSigner} either during construction (if used standalone)
 * or during initialization (if used as a clone) may leave the signer either front-runnable or unusable.
 */
abstract contract SignerECDSA is AbstractSigner {
    address private _signer;

    constructor(address signerAddr) {
        _setSigner(signerAddr);
    }

    /**
     * @dev Sets the signer with the address of the native signer. This function should be called during construction
     * or through an initializer.
     */
    function _setSigner(address signerAddr) internal {
        _signer = signerAddr;
    }

    /// @dev Return the signer's address.
    function signer() public view virtual returns (address) {
        return _signer;
    }

    /// @inheritdoc AbstractSigner
    function _rawSignatureValidation(
        bytes32 hash,
        bytes calldata signature
    ) internal view virtual override returns (bool) {
        (address recovered, ECDSA.RecoverError err, ) = ECDSA.tryRecoverCalldata(hash, signature);
        return signer() == recovered && err == ECDSA.RecoverError.NoError;
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.24;

import {ERC4337Utils, PackedUserOperation} from "@openzeppelin/contracts/account/utils/draft-ERC4337Utils.sol";
import {AbstractSigner} from "@openzeppelin/contracts/utils/cryptography/signers/AbstractSigner.sol";
import {EIP712} from "@openzeppelin/contracts/utils/cryptography/EIP712.sol";
import {PaymasterCore} from "./PaymasterCore.sol";

/**
 * @dev Extension of {PaymasterCore} that adds signature validation. See {SignerECDSA}, {SignerP256} or {SignerRSA}.
 *
 * Example of usage:
 *
 * ```solidity
 * contract MyPaymasterECDSASigner is PaymasterSigner, SignerECDSA {
 *     constructor(address signerAddr) EIP712("MyPaymasterECDSASigner", "1") SignerECDSA(signerAddr) {}
 * }
 * ```
 */
abstract contract PaymasterSigner is AbstractSigner, EIP712, PaymasterCore {
    using ERC4337Utils for *;

    bytes32 private constant USER_OPERATION_REQUEST_TYPEHASH =
        keccak256(
            "UserOperationRequest(address sender,uint256 nonce,bytes initCode,bytes callData,bytes32 accountGasLimits,uint256 preVerificationGas,bytes32 gasFees,uint256 paymasterVerificationGasLimit,uint256 paymasterPostOpGasLimit,uint48 validAfter,uint48 validUntil)"
        );

    /**
     * @dev Virtual function that returns the signable hash for a user operations. Given the `userOpHash`
     * contains the `paymasterAndData` itself, it's not possible to sign that value directly. Instead,
     * this function must be used to provide a custom mechanism to authorize an user operation.
     */
    function _signableUserOpHash(
        PackedUserOperation calldata userOp,
        uint48 validAfter,
        uint48 validUntil
    ) internal view virtual returns (bytes32) {
        return
            _hashTypedDataV4(
                keccak256(
                    abi.encode(
                        USER_OPERATION_REQUEST_TYPEHASH,
                        userOp.sender,
                        userOp.nonce,
                        keccak256(userOp.initCode),
                        keccak256(userOp.callData),
                        userOp.accountGasLimits,
                        userOp.preVerificationGas,
                        userOp.gasFees,
                        userOp.paymasterVerificationGasLimit(),
                        userOp.paymasterPostOpGasLimit(),
                        validAfter,
                        validUntil
                    )
                )
            );
    }

    /**
     * @dev Internal validation of whether the paymaster is willing to pay for the user operation.
     * Returns the context to be passed to postOp and the validation data.
     *
     * NOTE: The `context` returned is `bytes(0)`. Developers overriding this function MUST
     * override {_postOp} to process the context passed along.
     */
    function _validatePaymasterUserOp(
        PackedUserOperation calldata userOp,
        bytes32 /* userOpHash */,
        uint256 /* maxCost */
    ) internal virtual override returns (bytes memory context, uint256 validationData) {
        (uint48 validAfter, uint48 validUntil, bytes calldata signature) = _decodePaymasterUserOp(userOp);
        return (
            bytes(""),
            _rawSignatureValidation(_signableUserOpHash(userOp, validAfter, validUntil), signature).packValidationData(
                validAfter,
                validUntil
            )
        );
    }

    /// @dev Decodes the user operation's data from `paymasterAndData`.
    function _decodePaymasterUserOp(
        PackedUserOperation calldata userOp
    ) internal pure virtual returns (uint48 validAfter, uint48 validUntil, bytes calldata signature) {
        bytes calldata paymasterData = userOp.paymasterData();
        return (uint48(bytes6(paymasterData[0:6])), uint48(bytes6(paymasterData[6:12])), paymasterData[12:]);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/draft-IERC4337.sol)

pragma solidity >=0.8.4;

/**
 * @dev A https://github.com/ethereum/ercs/blob/master/ERCS/erc-4337.md#useroperation[user operation] is composed of the following elements:
 * - `sender` (`address`): The account making the operation
 * - `nonce` (`uint256`): Anti-replay parameter (see “Semi-abstracted Nonce Support” )
 * - `factory` (`address`): account factory, only for new accounts
 * - `factoryData` (`bytes`): data for account factory (only if account factory exists)
 * - `callData` (`bytes`): The data to pass to the sender during the main execution call
 * - `callGasLimit` (`uint256`): The amount of gas to allocate the main execution call
 * - `verificationGasLimit` (`uint256`): The amount of gas to allocate for the verification step
 * - `preVerificationGas` (`uint256`): Extra gas to pay the bundler
 * - `maxFeePerGas` (`uint256`): Maximum fee per gas (similar to EIP-1559 max_fee_per_gas)
 * - `maxPriorityFeePerGas` (`uint256`): Maximum priority fee per gas (similar to EIP-1559 max_priority_fee_per_gas)
 * - `paymaster` (`address`): Address of paymaster contract, (or empty, if account pays for itself)
 * - `paymasterVerificationGasLimit` (`uint256`): The amount of gas to allocate for the paymaster validation code
 * - `paymasterPostOpGasLimit` (`uint256`): The amount of gas to allocate for the paymaster post-operation code
 * - `paymasterData` (`bytes`): Data for paymaster (only if paymaster exists)
 * - `signature` (`bytes`): Data passed into the account to verify authorization
 *
 * When passed to on-chain contracts, the following packed version is used.
 * - `sender` (`address`)
 * - `nonce` (`uint256`)
 * - `initCode` (`bytes`): concatenation of factory address and factoryData (or empty)
 * - `callData` (`bytes`)
 * - `accountGasLimits` (`bytes32`): concatenation of verificationGas (16 bytes) and callGas (16 bytes)
 * - `preVerificationGas` (`uint256`)
 * - `gasFees` (`bytes32`): concatenation of maxPriorityFeePerGas (16 bytes) and maxFeePerGas (16 bytes)
 * - `paymasterAndData` (`bytes`): concatenation of paymaster fields (or empty)
 * - `signature` (`bytes`)
 */
struct PackedUserOperation {
    address sender;
    uint256 nonce;
    bytes initCode; // `abi.encodePacked(factory, factoryData)`
    bytes callData;
    bytes32 accountGasLimits; // `abi.encodePacked(verificationGasLimit, callGasLimit)` 16 bytes each
    uint256 preVerificationGas;
    bytes32 gasFees; // `abi.encodePacked(maxPriorityFeePerGas, maxFeePerGas)` 16 bytes each
    bytes paymasterAndData; // `abi.encodePacked(paymaster, paymasterVerificationGasLimit, paymasterPostOpGasLimit, paymasterData)` (20 bytes, 16 bytes, 16 bytes, dynamic)
    bytes signature;
}

/**
 * @dev Aggregates and validates multiple signatures for a batch of user operations.
 *
 * A contract could implement this interface with custom validation schemes that allow signature aggregation,
 * enabling significant optimizations and gas savings for execution and transaction data cost.
 *
 * Bundlers and clients whitelist supported aggregators.
 *
 * See https://eips.ethereum.org/EIPS/eip-7766[ERC-7766]
 */
interface IAggregator {
    /**
     * @dev Validates the signature for a user operation.
     * Returns an alternative signature that should be used during bundling.
     */
    function validateUserOpSignature(
        PackedUserOperation calldata userOp
    ) external view returns (bytes memory sigForUserOp);

    /**
     * @dev Returns an aggregated signature for a batch of user operation's signatures.
     */
    function aggregateSignatures(
        PackedUserOperation[] calldata userOps
    ) external view returns (bytes memory aggregatesSignature);

    /**
     * @dev Validates that the aggregated signature is valid for the user operations.
     *
     * Requirements:
     *
     * - The aggregated signature MUST match the given list of operations.
     */
    function validateSignatures(PackedUserOperation[] calldata userOps, bytes calldata signature) external view;
}

/**
 * @dev Handle nonce management for accounts.
 *
 * Nonces are used in accounts as a replay protection mechanism and to ensure the order of user operations.
 * To avoid limiting the number of operations an account can perform, the interface allows using parallel
 * nonces by using a `key` parameter.
 *
 * See https://eips.ethereum.org/EIPS/eip-4337#semi-abstracted-nonce-support[ERC-4337 semi-abstracted nonce support].
 */
interface IEntryPointNonces {
    /**
     * @dev Returns the nonce for a `sender` account and a `key`.
     *
     * Nonces for a certain `key` are always increasing.
     */
    function getNonce(address sender, uint192 key) external view returns (uint256 nonce);
}

/**
 * @dev Handle stake management for entities (i.e. accounts, paymasters, factories).
 *
 * The EntryPoint must implement the following API to let entities like paymasters have a stake,
 * and thus have more flexibility in their storage access
 * (see https://eips.ethereum.org/EIPS/eip-4337#reputation-scoring-and-throttlingbanning-for-global-entities[reputation, throttling and banning.])
 */
interface IEntryPointStake {
    /**
     * @dev Returns the balance of the account.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Deposits `msg.value` to the account.
     */
    function depositTo(address account) external payable;

    /**
     * @dev Withdraws `withdrawAmount` from the account to `withdrawAddress`.
     */
    function withdrawTo(address payable withdrawAddress, uint256 withdrawAmount) external;

    /**
     * @dev Adds stake to the account with an unstake delay of `unstakeDelaySec`.
     */
    function addStake(uint32 unstakeDelaySec) external payable;

    /**
     * @dev Unlocks the stake of the account.
     */
    function unlockStake() external;

    /**
     * @dev Withdraws the stake of the account to `withdrawAddress`.
     */
    function withdrawStake(address payable withdrawAddress) external;
}

/**
 * @dev Entry point for user operations.
 *
 * User operations are validated and executed by this contract.
 */
interface IEntryPoint is IEntryPointNonces, IEntryPointStake {
    /**
     * @dev A user operation at `opIndex` failed with `reason`.
     */
    error FailedOp(uint256 opIndex, string reason);

    /**
     * @dev A user operation at `opIndex` failed with `reason` and `inner` returned data.
     */
    error FailedOpWithRevert(uint256 opIndex, string reason, bytes inner);

    /**
     * @dev Batch of aggregated user operations per aggregator.
     */
    struct UserOpsPerAggregator {
        PackedUserOperation[] userOps;
        IAggregator aggregator;
        bytes signature;
    }

    /**
     * @dev Executes a batch of user operations.
     * @param beneficiary Address to which gas is refunded upon completing the execution.
     */
    function handleOps(PackedUserOperation[] calldata ops, address payable beneficiary) external;

    /**
     * @dev Executes a batch of aggregated user operations per aggregator.
     * @param beneficiary Address to which gas is refunded upon completing the execution.
     */
    function handleAggregatedOps(
        UserOpsPerAggregator[] calldata opsPerAggregator,
        address payable beneficiary
    ) external;
}

/**
 * @dev Base interface for an ERC-4337 account.
 */
interface IAccount {
    /**
     * @dev Validates a user operation.
     *
     * * MUST validate the caller is a trusted EntryPoint
     * * MUST validate that the signature is a valid signature of the userOpHash, and SHOULD
     *   return SIG_VALIDATION_FAILED (and not revert) on signature mismatch. Any other error MUST revert.
     * * MUST pay the entryPoint (caller) at least the “missingAccountFunds” (which might
     *   be zero, in case the current account’s deposit is high enough)
     *
     * Returns an encoded packed validation data that is composed of the following elements:
     *
     * - `authorizer` (`address`): 0 for success, 1 for failure, otherwise the address of an authorizer contract
     * - `validUntil` (`uint48`): The UserOp is valid only up to this time. Zero for “infinite”.
     * - `validAfter` (`uint48`): The UserOp is valid only after this time.
     */
    function validateUserOp(
        PackedUserOperation calldata userOp,
        bytes32 userOpHash,
        uint256 missingAccountFunds
    ) external returns (uint256 validationData);
}

/**
 * @dev Support for executing user operations by prepending the {executeUserOp} function selector
 * to the UserOperation's `callData`.
 */
interface IAccountExecute {
    /**
     * @dev Executes a user operation.
     */
    function executeUserOp(PackedUserOperation calldata userOp, bytes32 userOpHash) external;
}

/**
 * @dev Interface for a paymaster contract that agrees to pay for the gas costs of a user operation.
 *
 * NOTE: A paymaster must hold a stake to cover the required entrypoint stake and also the gas for the transaction.
 */
interface IPaymaster {
    enum PostOpMode {
        opSucceeded,
        opReverted,
        postOpReverted
    }

    /**
     * @dev Validates whether the paymaster is willing to pay for the user operation. See
     * {IAccount-validateUserOp} for additional information on the return value.
     *
     * NOTE: Bundlers will reject this method if it modifies the state, unless it's whitelisted.
     */
    function validatePaymasterUserOp(
        PackedUserOperation calldata userOp,
        bytes32 userOpHash,
        uint256 maxCost
    ) external returns (bytes memory context, uint256 validationData);

    /**
     * @dev Verifies the sender is the entrypoint.
     * @param actualGasCost the actual amount paid (by account or paymaster) for this UserOperation
     * @param actualUserOpFeePerGas total gas used by this UserOperation (including preVerification, creation, validation and execution)
     */
    function postOp(
        PostOpMode mode,
        bytes calldata context,
        uint256 actualGasCost,
        uint256 actualUserOpFeePerGas
    ) external;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (account/utils/draft-ERC4337Utils.sol)

pragma solidity ^0.8.20;

import {IEntryPoint, PackedUserOperation} from "../../interfaces/draft-IERC4337.sol";
import {Math} from "../../utils/math/Math.sol";
import {Calldata} from "../../utils/Calldata.sol";
import {Packing} from "../../utils/Packing.sol";

/// @dev This is available on all entrypoint since v0.4.0, but is not formally part of the ERC.
interface IEntryPointExtra {
    function getUserOpHash(PackedUserOperation calldata userOp) external view returns (bytes32);
}

/**
 * @dev Library with common ERC-4337 utility functions.
 *
 * See https://eips.ethereum.org/EIPS/eip-4337[ERC-4337].
 */
library ERC4337Utils {
    using Packing for *;

    /// @dev Address of the entrypoint v0.7.0
    IEntryPoint internal constant ENTRYPOINT_V07 = IEntryPoint(0x0000000071727De22E5E9d8BAf0edAc6f37da032);

    /// @dev Address of the entrypoint v0.8.0
    IEntryPoint internal constant ENTRYPOINT_V08 = IEntryPoint(0x4337084D9E255Ff0702461CF8895CE9E3b5Ff108);

    /// @dev Address of the entrypoint v0.9.0
    IEntryPoint internal constant ENTRYPOINT_V09 = IEntryPoint(0x433709009B8330FDa32311DF1C2AFA402eD8D009);

    /// @dev For simulation purposes, validateUserOp (and validatePaymasterUserOp) return this value on success.
    uint256 internal constant SIG_VALIDATION_SUCCESS = 0;

    /// @dev For simulation purposes, validateUserOp (and validatePaymasterUserOp) must return this value in case of signature failure, instead of revert.
    uint256 internal constant SIG_VALIDATION_FAILED = 1;

    /// @dev Parses the validation data into its components. See {packValidationData}.
    function parseValidationData(
        uint256 validationData
    ) internal pure returns (address aggregator, uint48 validAfter, uint48 validUntil) {
        validAfter = uint48(bytes32(validationData).extract_32_6(0));
        validUntil = uint48(bytes32(validationData).extract_32_6(6));
        aggregator = address(bytes32(validationData).extract_32_20(12));
        if (validUntil == 0) validUntil = type(uint48).max;
    }

    /// @dev Packs the validation data into a single uint256. See {parseValidationData}.
    function packValidationData(
        address aggregator,
        uint48 validAfter,
        uint48 validUntil
    ) internal pure returns (uint256) {
        return uint256(bytes6(validAfter).pack_6_6(bytes6(validUntil)).pack_12_20(bytes20(aggregator)));
    }

    /// @dev Same as {packValidationData}, but with a boolean signature success flag.
    function packValidationData(bool sigSuccess, uint48 validAfter, uint48 validUntil) internal pure returns (uint256) {
        return
            packValidationData(
                address(uint160(Math.ternary(sigSuccess, SIG_VALIDATION_SUCCESS, SIG_VALIDATION_FAILED))),
                validAfter,
                validUntil
            );
    }

    /**
     * @dev Combines two validation data into a single one.
     *
     * The `aggregator` is set to {SIG_VALIDATION_SUCCESS} if both are successful, while
     * the `validAfter` is the maximum and the `validUntil` is the minimum of both.
     */
    function combineValidationData(uint256 validationData1, uint256 validationData2) internal pure returns (uint256) {
        (address aggregator1, uint48 validAfter1, uint48 validUntil1) = parseValidationData(validationData1);
        (address aggregator2, uint48 validAfter2, uint48 validUntil2) = parseValidationData(validationData2);

        bool success = aggregator1 == address(uint160(SIG_VALIDATION_SUCCESS)) &&
            aggregator2 == address(uint160(SIG_VALIDATION_SUCCESS));
        uint48 validAfter = uint48(Math.max(validAfter1, validAfter2));
        uint48 validUntil = uint48(Math.min(validUntil1, validUntil2));
        return packValidationData(success, validAfter, validUntil);
    }

    /// @dev Returns the aggregator of the `validationData` and whether it is out of time range.
    function getValidationData(uint256 validationData) internal view returns (address aggregator, bool outOfTimeRange) {
        (address aggregator_, uint48 validAfter, uint48 validUntil) = parseValidationData(validationData);
        return (aggregator_, block.timestamp < validAfter || validUntil < block.timestamp);
    }

    /// @dev Get the hash of a user operation for a given entrypoint
    function hash(PackedUserOperation calldata self, address entrypoint) internal view returns (bytes32) {
        // NOTE: getUserOpHash is available since v0.4.0
        //
        // Prior to v0.8.0, this was easy to replicate for any entrypoint and chainId. Since v0.8.0 of the
        // entrypoint, this depends on the Entrypoint's domain separator, which cannot be hardcoded and is complex
        // to recompute. Domain separator could be fetch using the `getDomainSeparatorV4` getter, or recomputed from
        // the ERC-5267 getter, but both operation would require doing a view call to the entrypoint. Overall it feels
        // simpler and less error prone to get that functionality from the entrypoint directly.
        return IEntryPointExtra(entrypoint).getUserOpHash(self);
    }

    /// @dev Returns `factory` from the {PackedUserOperation}, or address(0) if the initCode is empty or not properly formatted.
    function factory(PackedUserOperation calldata self) internal pure returns (address) {
        return self.initCode.length < 20 ? address(0) : address(bytes20(self.initCode[0:20]));
    }

    /// @dev Returns `factoryData` from the {PackedUserOperation}, or empty bytes if the initCode is empty or not properly formatted.
    function factoryData(PackedUserOperation calldata self) internal pure returns (bytes calldata) {
        return self.initCode.length < 20 ? Calldata.emptyBytes() : self.initCode[20:];
    }

    /// @dev Returns `verificationGasLimit` from the {PackedUserOperation}.
    function verificationGasLimit(PackedUserOperation calldata self) internal pure returns (uint256) {
        return uint128(self.accountGasLimits.extract_32_16(0));
    }

    /// @dev Returns `callGasLimit` from the {PackedUserOperation}.
    function callGasLimit(PackedUserOperation calldata self) internal pure returns (uint256) {
        return uint128(self.accountGasLimits.extract_32_16(16));
    }

    /// @dev Returns the first section of `gasFees` from the {PackedUserOperation}.
    function maxPriorityFeePerGas(PackedUserOperation calldata self) internal pure returns (uint256) {
        return uint128(self.gasFees.extract_32_16(0));
    }

    /// @dev Returns the second section of `gasFees` from the {PackedUserOperation}.
    function maxFeePerGas(PackedUserOperation calldata self) internal pure returns (uint256) {
        return uint128(self.gasFees.extract_32_16(16));
    }

    /// @dev Returns the total gas price for the {PackedUserOperation} (ie. `maxFeePerGas` or `maxPriorityFeePerGas + basefee`).
    function gasPrice(PackedUserOperation calldata self) internal view returns (uint256) {
        unchecked {
            // Following values are "per gas"
            uint256 maxPriorityFee = maxPriorityFeePerGas(self);
            uint256 maxFee = maxFeePerGas(self);
            return Math.min(maxFee, maxPriorityFee + block.basefee);
        }
    }

    /// @dev Returns the first section of `paymasterAndData` from the {PackedUserOperation}.
    function paymaster(PackedUserOperation calldata self) internal pure returns (address) {
        return self.paymasterAndData.length < 52 ? address(0) : address(bytes20(self.paymasterAndData[0:20]));
    }

    /// @dev Returns the second section of `paymasterAndData` from the {PackedUserOperation}.
    function paymasterVerificationGasLimit(PackedUserOperation calldata self) internal pure returns (uint256) {
        return self.paymasterAndData.length < 52 ? 0 : uint128(bytes16(self.paymasterAndData[20:36]));
    }

    /// @dev Returns the third section of `paymasterAndData` from the {PackedUserOperation}.
    function paymasterPostOpGasLimit(PackedUserOperation calldata self) internal pure returns (uint256) {
        return self.paymasterAndData.length < 52 ? 0 : uint128(bytes16(self.paymasterAndData[36:52]));
    }

    /// @dev Returns the fourth section of `paymasterAndData` from the {PackedUserOperation}.
    function paymasterData(PackedUserOperation calldata self) internal pure returns (bytes calldata) {
        return self.paymasterAndData.length < 52 ? Calldata.emptyBytes() : self.paymasterAndData[52:];
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

File 8 of 23 : AbstractSigner.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/cryptography/signers/AbstractSigner.sol)

pragma solidity ^0.8.20;

/**
 * @dev Abstract contract for signature validation.
 *
 * Developers must implement {_rawSignatureValidation} and use it as the lowest-level signature validation mechanism.
 *
 * @custom:stateless
 */
abstract contract AbstractSigner {
    /**
     * @dev Signature validation algorithm.
     *
     * WARNING: Implementing a signature validation algorithm is a security-sensitive operation as it involves
     * cryptographic verification. It is important to review and test thoroughly before deployment. Consider
     * using one of the signature verification libraries (xref:api:utils/cryptography#ECDSA[ECDSA],
     * xref:api:utils/cryptography#P256[P256] or xref:api:utils/cryptography#RSA[RSA]).
     */
    function _rawSignatureValidation(bytes32 hash, bytes calldata signature) internal view virtual returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature is invalid.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * NOTE: This function only supports 65-byte signatures. ERC-2098 short signatures are rejected. This restriction
     * is DEPRECATED and will be removed in v6.0. Developers SHOULD NOT use signatures as unique identifiers; use hash
     * invalidation or nonces for replay protection.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     *
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(
        bytes32 hash,
        bytes memory signature
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            assembly ("memory-safe") {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Variant of {tryRecover} that takes a signature in calldata
     */
    function tryRecoverCalldata(
        bytes32 hash,
        bytes calldata signature
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, calldata slices would work here, but are
            // significantly more expensive (length check) than using calldataload in assembly.
            assembly ("memory-safe") {
                r := calldataload(signature.offset)
                s := calldataload(add(signature.offset, 0x20))
                v := byte(0, calldataload(add(signature.offset, 0x40)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * NOTE: This function only supports 65-byte signatures. ERC-2098 short signatures are rejected. This restriction
     * is DEPRECATED and will be removed in v6.0. Developers SHOULD NOT use signatures as unique identifiers; use hash
     * invalidation or nonces for replay protection.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Variant of {recover} that takes a signature in calldata
     */
    function recoverCalldata(bytes32 hash, bytes calldata signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecoverCalldata(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r` and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Parse a signature into its `v`, `r` and `s` components. Supports 65-byte and 64-byte (ERC-2098)
     * formats. Returns (0,0,0) for invalid signatures.
     *
     * For 64-byte signatures, `v` is automatically normalized to 27 or 28.
     * For 65-byte signatures, `v` is returned as-is and MUST already be 27 or 28 for use with ecrecover.
     *
     * Consider validating the result before use, or use {tryRecover}/{recover} which perform full validation.
     */
    function parse(bytes memory signature) internal pure returns (uint8 v, bytes32 r, bytes32 s) {
        assembly ("memory-safe") {
            // Check the signature length
            switch mload(signature)
            // - case 65: r,s,v signature (standard)
            case 65 {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            // - case 64: r,vs signature (cf https://eips.ethereum.org/EIPS/eip-2098)
            case 64 {
                let vs := mload(add(signature, 0x40))
                r := mload(add(signature, 0x20))
                s := and(vs, shr(1, not(0)))
                v := add(shr(255, vs), 27)
            }
            default {
                r := 0
                s := 0
                v := 0
            }
        }
    }

    /**
     * @dev Variant of {parse} that takes a signature in calldata
     */
    function parseCalldata(bytes calldata signature) internal pure returns (uint8 v, bytes32 r, bytes32 s) {
        assembly ("memory-safe") {
            // Check the signature length
            switch signature.length
            // - case 65: r,s,v signature (standard)
            case 65 {
                r := calldataload(signature.offset)
                s := calldataload(add(signature.offset, 0x20))
                v := byte(0, calldataload(add(signature.offset, 0x40)))
            }
            // - case 64: r,vs signature (cf https://eips.ethereum.org/EIPS/eip-2098)
            case 64 {
                let vs := calldataload(add(signature.offset, 0x20))
                r := calldataload(signature.offset)
                s := and(vs, shr(1, not(0)))
                v := add(shr(255, vs), 27)
            }
            default {
                r := 0
                s := 0
                v := 0
            }
        }
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.24;

import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
 * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
 * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
 * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable
 */
abstract contract EIP712 is IERC5267 {
    using ShortStrings for *;

    bytes32 private constant TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;
    // slither-disable-next-line constable-states
    string private _nameFallback;
    // slither-disable-next-line constable-states
    string private _versionFallback;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _name = name.toShortStringWithFallback(_nameFallback);
        _version = version.toShortStringWithFallback(_versionFallback);
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedThis = address(this);
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /// @inheritdoc IERC5267
    function eip712Domain()
        public
        view
        virtual
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        return (
            hex"0f", // 01111
            _EIP712Name(),
            _EIP712Version(),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }

    /**
     * @dev The name parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _name which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Name() internal view returns (string memory) {
        return _name.toStringWithFallback(_nameFallback);
    }

    /**
     * @dev The version parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _version which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Version() internal view returns (string memory) {
        return _version.toStringWithFallback(_versionFallback);
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

import {ERC4337Utils} from "@openzeppelin/contracts/account/utils/draft-ERC4337Utils.sol";
import {IEntryPoint, IPaymaster, PackedUserOperation} from "@openzeppelin/contracts/interfaces/draft-IERC4337.sol";

/**
 * @dev A simple ERC4337 paymaster implementation. This base implementation only includes the minimal logic to validate
 * and pay for user operations.
 *
 * Developers must implement the {PaymasterCore-_validatePaymasterUserOp} function to define the paymaster's validation
 * and payment logic. The `context` parameter is used to pass data between the validation and execution phases.
 *
 * The paymaster includes support to call the {IEntryPointStake} interface to manage the paymaster's deposits and stakes
 * through the internal functions {deposit}, {withdraw}, {addStake}, {unlockStake} and {withdrawStake}.
 *
 * * Deposits are used to pay for user operations.
 * * Stakes are used to guarantee the paymaster's reputation and obtain more flexibility in accessing storage.
 *
 * NOTE: See [Paymaster's unstaked reputation rules](https://eips.ethereum.org/EIPS/eip-7562#unstaked-paymasters-reputation-rules)
 * for more details on the paymaster's storage access limitations.
 */
abstract contract PaymasterCore is IPaymaster {
    /// @dev Unauthorized call to the paymaster.
    error PaymasterUnauthorized(address sender);

    /// @dev Revert if the caller is not the entry point.
    modifier onlyEntryPoint() {
        _checkEntryPoint();
        _;
    }

    modifier onlyWithdrawer() {
        _authorizeWithdraw();
        _;
    }

    /// @dev Canonical entry point for the account that forwards and validates user operations.
    function entryPoint() public view virtual returns (IEntryPoint) {
        return ERC4337Utils.ENTRYPOINT_V09;
    }

    /// @inheritdoc IPaymaster
    function validatePaymasterUserOp(
        PackedUserOperation calldata userOp,
        bytes32 userOpHash,
        uint256 maxCost
    ) public virtual onlyEntryPoint returns (bytes memory context, uint256 validationData) {
        return _validatePaymasterUserOp(userOp, userOpHash, maxCost);
    }

    /// @inheritdoc IPaymaster
    function postOp(
        PostOpMode mode,
        bytes calldata context,
        uint256 actualGasCost,
        uint256 actualUserOpFeePerGas
    ) public virtual onlyEntryPoint {
        _postOp(mode, context, actualGasCost, actualUserOpFeePerGas);
    }

    /**
     * @dev Internal validation of whether the paymaster is willing to pay for the user operation.
     * Returns the context to be passed to postOp and the validation data.
     *
     * The `requiredPreFund` is the amount the paymaster has to pay (in native tokens). It's calculated
     * as `requiredGas * userOp.maxFeePerGas`, where `required` gas can be calculated from the user operation
     * as `verificationGasLimit + callGasLimit + paymasterVerificationGasLimit + paymasterPostOpGasLimit + preVerificationGas`
     */
    function _validatePaymasterUserOp(
        PackedUserOperation calldata userOp,
        bytes32 userOpHash,
        uint256 requiredPreFund
    ) internal virtual returns (bytes memory context, uint256 validationData);

    /**
     * @dev Handles post user operation execution logic. The caller must be the entry point.
     *
     * It receives the `context` returned by `_validatePaymasterUserOp`. Function is not called if no context
     * is returned by {validatePaymasterUserOp}.
     *
     * NOTE: The `actualUserOpFeePerGas` is not `tx.gasprice`. A user operation can be bundled with other transactions
     * making the gas price of the user operation to differ.
     */
    function _postOp(
        PostOpMode /* mode */,
        bytes calldata /* context */,
        uint256 /* actualGasCost */,
        uint256 /* actualUserOpFeePerGas */
    ) internal virtual {}

    /// @dev Calls {IEntryPointStake-depositTo}.
    function deposit() public payable virtual {
        entryPoint().depositTo{value: msg.value}(address(this));
    }

    /// @dev Calls {IEntryPointStake-withdrawTo}.
    function withdraw(address payable to, uint256 value) public virtual onlyWithdrawer {
        entryPoint().withdrawTo(to, value);
    }

    /// @dev Calls {IEntryPointStake-addStake}.
    function addStake(uint32 unstakeDelaySec) public payable virtual {
        entryPoint().addStake{value: msg.value}(unstakeDelaySec);
    }

    /// @dev Calls {IEntryPointStake-unlockStake}.
    function unlockStake() public virtual onlyWithdrawer {
        entryPoint().unlockStake();
    }

    /// @dev Calls {IEntryPointStake-withdrawStake}.
    function withdrawStake(address payable to) public virtual onlyWithdrawer {
        entryPoint().withdrawStake(to);
    }

    /// @dev Ensures the caller is the {entrypoint}.
    function _checkEntryPoint() internal view virtual {
        address sender = msg.sender;
        if (sender != address(entryPoint())) {
            revert PaymasterUnauthorized(sender);
        }
    }

    /**
     * @dev Checks whether `msg.sender` withdraw funds stake or deposit from the entrypoint on paymaster's behalf.
     *
     * Use of an https://docs.openzeppelin.com/contracts/5.x/access-control[access control]
     * modifier such as {Ownable-onlyOwner} is recommended.
     *
     * ```solidity
     * function _authorizeUpgrade() internal onlyOwner {}
     * ```
     */
    function _authorizeWithdraw() internal virtual;
}

File 12 of 23 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Return the 512-bit addition of two uint256.
     *
     * The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
     */
    function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        assembly ("memory-safe") {
            low := add(a, b)
            high := lt(low, a)
        }
    }

    /**
     * @dev Return the 512-bit multiplication of two uint256.
     *
     * The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
     */
    function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        // 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
        // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = high * 2²⁵⁶ + low.
        assembly ("memory-safe") {
            let mm := mulmod(a, b, not(0))
            low := mul(a, b)
            high := sub(sub(mm, low), lt(mm, low))
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            success = c >= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a - b;
            success = c <= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a * b;
            assembly ("memory-safe") {
                // Only true when the multiplication doesn't overflow
                // (c / a == b) || (a == 0)
                success := or(eq(div(c, a), b), iszero(a))
            }
            // equivalent to: success ? c : 0
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `DIV` opcode returns zero when the denominator is 0.
                result := div(a, b)
            }
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `MOD` opcode returns zero when the denominator is 0.
                result := mod(a, b)
            }
        }
    }

    /**
     * @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryAdd(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
     */
    function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
        (, uint256 result) = trySub(a, b);
        return result;
    }

    /**
     * @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryMul(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Branchless ternary evaluation for `condition ? a : b`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `condition ? a : b`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // (a + b) / 2 can overflow.
            return (a & b) + (a ^ b) / 2;
        }
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);

            // Handle non-overflow cases, 256 by 256 division.
            if (high == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return low / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= high) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [high low].
            uint256 remainder;
            assembly ("memory-safe") {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                high := sub(high, gt(remainder, low))
                low := sub(low, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly ("memory-safe") {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [high low] by twos.
                low := div(low, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from high into low.
            low |= high * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
            // is no longer required.
            result = low * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
     */
    function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);
            if (high >= 1 << n) {
                Panic.panic(Panic.UNDER_OVERFLOW);
            }
            return (high << (256 - n)) | (low >> n);
        }
    }

    /**
     * @dev Calculates x * y >> n with full precision, following the selected rounding direction.
     */
    function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
        return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory buffer) private pure returns (bool) {
        uint256 chunk;
        for (uint256 i = 0; i < buffer.length; i += 0x20) {
            // See _unsafeReadBytesOffset from utils/Bytes.sol
            assembly ("memory-safe") {
                chunk := mload(add(add(buffer, 0x20), i))
            }
            if (chunk >> (8 * saturatingSub(i + 0x20, buffer.length)) != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // If upper 8 bits of 16-bit half set, add 8 to result
        r |= SafeCast.toUint((x >> r) > 0xff) << 3;
        // If upper 4 bits of 8-bit half set, add 4 to result
        r |= SafeCast.toUint((x >> r) > 0xf) << 2;

        // Shifts value right by the current result and use it as an index into this lookup table:
        //
        // | x (4 bits) |  index  | table[index] = MSB position |
        // |------------|---------|-----------------------------|
        // |    0000    |    0    |        table[0] = 0         |
        // |    0001    |    1    |        table[1] = 0         |
        // |    0010    |    2    |        table[2] = 1         |
        // |    0011    |    3    |        table[3] = 1         |
        // |    0100    |    4    |        table[4] = 2         |
        // |    0101    |    5    |        table[5] = 2         |
        // |    0110    |    6    |        table[6] = 2         |
        // |    0111    |    7    |        table[7] = 2         |
        // |    1000    |    8    |        table[8] = 3         |
        // |    1001    |    9    |        table[9] = 3         |
        // |    1010    |   10    |        table[10] = 3        |
        // |    1011    |   11    |        table[11] = 3        |
        // |    1100    |   12    |        table[12] = 3        |
        // |    1101    |   13    |        table[13] = 3        |
        // |    1110    |   14    |        table[14] = 3        |
        // |    1111    |   15    |        table[15] = 3        |
        //
        // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the first 16 bytes (most significant half).
        assembly ("memory-safe") {
            r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
        }
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
        return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }

    /**
     * @dev Counts the number of leading zero bits in a uint256.
     */
    function clz(uint256 x) internal pure returns (uint256) {
        return ternary(x == 0, 256, 255 - log2(x));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/Calldata.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for manipulating objects in calldata.
 */
library Calldata {
    // slither-disable-next-line write-after-write
    function emptyBytes() internal pure returns (bytes calldata result) {
        assembly ("memory-safe") {
            result.offset := 0
            result.length := 0
        }
    }

    // slither-disable-next-line write-after-write
    function emptyString() internal pure returns (string calldata result) {
        assembly ("memory-safe") {
            result.offset := 0
            result.length := 0
        }
    }
}

File 14 of 23 : Packing.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (utils/Packing.sol)
// This file was procedurally generated from scripts/generate/templates/Packing.js.

pragma solidity ^0.8.20;

/**
 * @dev Helper library packing and unpacking multiple values into bytesXX.
 *
 * Example usage:
 *
 * ```solidity
 * library MyPacker {
 *     type MyType is bytes32;
 *
 *     function _pack(address account, bytes4 selector, uint64 period) external pure returns (MyType) {
 *         bytes12 subpack = Packing.pack_4_8(selector, bytes8(period));
 *         bytes32 pack = Packing.pack_20_12(bytes20(account), subpack);
 *         return MyType.wrap(pack);
 *     }
 *
 *     function _unpack(MyType self) external pure returns (address, bytes4, uint64) {
 *         bytes32 pack = MyType.unwrap(self);
 *         return (
 *             address(Packing.extract_32_20(pack, 0)),
 *             Packing.extract_32_4(pack, 20),
 *             uint64(Packing.extract_32_8(pack, 24))
 *         );
 *     }
 * }
 * ```
 *
 * _Available since v5.1._
 */
// solhint-disable func-name-mixedcase
library Packing {
    error OutOfRangeAccess();

    function pack_1_1(bytes1 left, bytes1 right) internal pure returns (bytes2 result) {
        assembly ("memory-safe") {
            left := and(left, shl(248, not(0)))
            right := and(right, shl(248, not(0)))
            result := or(left, shr(8, right))
        }
    }

    function pack_2_2(bytes2 left, bytes2 right) internal pure returns (bytes4 result) {
        assembly ("memory-safe") {
            left := and(left, shl(240, not(0)))
            right := and(right, shl(240, not(0)))
            result := or(left, shr(16, right))
        }
    }

    function pack_2_4(bytes2 left, bytes4 right) internal pure returns (bytes6 result) {
        assembly ("memory-safe") {
            left := and(left, shl(240, not(0)))
            right := and(right, shl(224, not(0)))
            result := or(left, shr(16, right))
        }
    }

    function pack_2_6(bytes2 left, bytes6 right) internal pure returns (bytes8 result) {
        assembly ("memory-safe") {
            left := and(left, shl(240, not(0)))
            right := and(right, shl(208, not(0)))
            result := or(left, shr(16, right))
        }
    }

    function pack_2_8(bytes2 left, bytes8 right) internal pure returns (bytes10 result) {
        assembly ("memory-safe") {
            left := and(left, shl(240, not(0)))
            right := and(right, shl(192, not(0)))
            result := or(left, shr(16, right))
        }
    }

    function pack_2_10(bytes2 left, bytes10 right) internal pure returns (bytes12 result) {
        assembly ("memory-safe") {
            left := and(left, shl(240, not(0)))
            right := and(right, shl(176, not(0)))
            result := or(left, shr(16, right))
        }
    }

    function pack_2_20(bytes2 left, bytes20 right) internal pure returns (bytes22 result) {
        assembly ("memory-safe") {
            left := and(left, shl(240, not(0)))
            right := and(right, shl(96, not(0)))
            result := or(left, shr(16, right))
        }
    }

    function pack_2_22(bytes2 left, bytes22 right) internal pure returns (bytes24 result) {
        assembly ("memory-safe") {
            left := and(left, shl(240, not(0)))
            right := and(right, shl(80, not(0)))
            result := or(left, shr(16, right))
        }
    }

    function pack_4_2(bytes4 left, bytes2 right) internal pure returns (bytes6 result) {
        assembly ("memory-safe") {
            left := and(left, shl(224, not(0)))
            right := and(right, shl(240, not(0)))
            result := or(left, shr(32, right))
        }
    }

    function pack_4_4(bytes4 left, bytes4 right) internal pure returns (bytes8 result) {
        assembly ("memory-safe") {
            left := and(left, shl(224, not(0)))
            right := and(right, shl(224, not(0)))
            result := or(left, shr(32, right))
        }
    }

    function pack_4_6(bytes4 left, bytes6 right) internal pure returns (bytes10 result) {
        assembly ("memory-safe") {
            left := and(left, shl(224, not(0)))
            right := and(right, shl(208, not(0)))
            result := or(left, shr(32, right))
        }
    }

    function pack_4_8(bytes4 left, bytes8 right) internal pure returns (bytes12 result) {
        assembly ("memory-safe") {
            left := and(left, shl(224, not(0)))
            right := and(right, shl(192, not(0)))
            result := or(left, shr(32, right))
        }
    }

    function pack_4_12(bytes4 left, bytes12 right) internal pure returns (bytes16 result) {
        assembly ("memory-safe") {
            left := and(left, shl(224, not(0)))
            right := and(right, shl(160, not(0)))
            result := or(left, shr(32, right))
        }
    }

    function pack_4_16(bytes4 left, bytes16 right) internal pure returns (bytes20 result) {
        assembly ("memory-safe") {
            left := and(left, shl(224, not(0)))
            right := and(right, shl(128, not(0)))
            result := or(left, shr(32, right))
        }
    }

    function pack_4_20(bytes4 left, bytes20 right) internal pure returns (bytes24 result) {
        assembly ("memory-safe") {
            left := and(left, shl(224, not(0)))
            right := and(right, shl(96, not(0)))
            result := or(left, shr(32, right))
        }
    }

    function pack_4_24(bytes4 left, bytes24 right) internal pure returns (bytes28 result) {
        assembly ("memory-safe") {
            left := and(left, shl(224, not(0)))
            right := and(right, shl(64, not(0)))
            result := or(left, shr(32, right))
        }
    }

    function pack_4_28(bytes4 left, bytes28 right) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            left := and(left, shl(224, not(0)))
            right := and(right, shl(32, not(0)))
            result := or(left, shr(32, right))
        }
    }

    function pack_6_2(bytes6 left, bytes2 right) internal pure returns (bytes8 result) {
        assembly ("memory-safe") {
            left := and(left, shl(208, not(0)))
            right := and(right, shl(240, not(0)))
            result := or(left, shr(48, right))
        }
    }

    function pack_6_4(bytes6 left, bytes4 right) internal pure returns (bytes10 result) {
        assembly ("memory-safe") {
            left := and(left, shl(208, not(0)))
            right := and(right, shl(224, not(0)))
            result := or(left, shr(48, right))
        }
    }

    function pack_6_6(bytes6 left, bytes6 right) internal pure returns (bytes12 result) {
        assembly ("memory-safe") {
            left := and(left, shl(208, not(0)))
            right := and(right, shl(208, not(0)))
            result := or(left, shr(48, right))
        }
    }

    function pack_6_10(bytes6 left, bytes10 right) internal pure returns (bytes16 result) {
        assembly ("memory-safe") {
            left := and(left, shl(208, not(0)))
            right := and(right, shl(176, not(0)))
            result := or(left, shr(48, right))
        }
    }

    function pack_6_16(bytes6 left, bytes16 right) internal pure returns (bytes22 result) {
        assembly ("memory-safe") {
            left := and(left, shl(208, not(0)))
            right := and(right, shl(128, not(0)))
            result := or(left, shr(48, right))
        }
    }

    function pack_6_22(bytes6 left, bytes22 right) internal pure returns (bytes28 result) {
        assembly ("memory-safe") {
            left := and(left, shl(208, not(0)))
            right := and(right, shl(80, not(0)))
            result := or(left, shr(48, right))
        }
    }

    function pack_8_2(bytes8 left, bytes2 right) internal pure returns (bytes10 result) {
        assembly ("memory-safe") {
            left := and(left, shl(192, not(0)))
            right := and(right, shl(240, not(0)))
            result := or(left, shr(64, right))
        }
    }

    function pack_8_4(bytes8 left, bytes4 right) internal pure returns (bytes12 result) {
        assembly ("memory-safe") {
            left := and(left, shl(192, not(0)))
            right := and(right, shl(224, not(0)))
            result := or(left, shr(64, right))
        }
    }

    function pack_8_8(bytes8 left, bytes8 right) internal pure returns (bytes16 result) {
        assembly ("memory-safe") {
            left := and(left, shl(192, not(0)))
            right := and(right, shl(192, not(0)))
            result := or(left, shr(64, right))
        }
    }

    function pack_8_12(bytes8 left, bytes12 right) internal pure returns (bytes20 result) {
        assembly ("memory-safe") {
            left := and(left, shl(192, not(0)))
            right := and(right, shl(160, not(0)))
            result := or(left, shr(64, right))
        }
    }

    function pack_8_16(bytes8 left, bytes16 right) internal pure returns (bytes24 result) {
        assembly ("memory-safe") {
            left := and(left, shl(192, not(0)))
            right := and(right, shl(128, not(0)))
            result := or(left, shr(64, right))
        }
    }

    function pack_8_20(bytes8 left, bytes20 right) internal pure returns (bytes28 result) {
        assembly ("memory-safe") {
            left := and(left, shl(192, not(0)))
            right := and(right, shl(96, not(0)))
            result := or(left, shr(64, right))
        }
    }

    function pack_8_24(bytes8 left, bytes24 right) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            left := and(left, shl(192, not(0)))
            right := and(right, shl(64, not(0)))
            result := or(left, shr(64, right))
        }
    }

    function pack_10_2(bytes10 left, bytes2 right) internal pure returns (bytes12 result) {
        assembly ("memory-safe") {
            left := and(left, shl(176, not(0)))
            right := and(right, shl(240, not(0)))
            result := or(left, shr(80, right))
        }
    }

    function pack_10_6(bytes10 left, bytes6 right) internal pure returns (bytes16 result) {
        assembly ("memory-safe") {
            left := and(left, shl(176, not(0)))
            right := and(right, shl(208, not(0)))
            result := or(left, shr(80, right))
        }
    }

    function pack_10_10(bytes10 left, bytes10 right) internal pure returns (bytes20 result) {
        assembly ("memory-safe") {
            left := and(left, shl(176, not(0)))
            right := and(right, shl(176, not(0)))
            result := or(left, shr(80, right))
        }
    }

    function pack_10_12(bytes10 left, bytes12 right) internal pure returns (bytes22 result) {
        assembly ("memory-safe") {
            left := and(left, shl(176, not(0)))
            right := and(right, shl(160, not(0)))
            result := or(left, shr(80, right))
        }
    }

    function pack_10_22(bytes10 left, bytes22 right) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            left := and(left, shl(176, not(0)))
            right := and(right, shl(80, not(0)))
            result := or(left, shr(80, right))
        }
    }

    function pack_12_4(bytes12 left, bytes4 right) internal pure returns (bytes16 result) {
        assembly ("memory-safe") {
            left := and(left, shl(160, not(0)))
            right := and(right, shl(224, not(0)))
            result := or(left, shr(96, right))
        }
    }

    function pack_12_8(bytes12 left, bytes8 right) internal pure returns (bytes20 result) {
        assembly ("memory-safe") {
            left := and(left, shl(160, not(0)))
            right := and(right, shl(192, not(0)))
            result := or(left, shr(96, right))
        }
    }

    function pack_12_10(bytes12 left, bytes10 right) internal pure returns (bytes22 result) {
        assembly ("memory-safe") {
            left := and(left, shl(160, not(0)))
            right := and(right, shl(176, not(0)))
            result := or(left, shr(96, right))
        }
    }

    function pack_12_12(bytes12 left, bytes12 right) internal pure returns (bytes24 result) {
        assembly ("memory-safe") {
            left := and(left, shl(160, not(0)))
            right := and(right, shl(160, not(0)))
            result := or(left, shr(96, right))
        }
    }

    function pack_12_16(bytes12 left, bytes16 right) internal pure returns (bytes28 result) {
        assembly ("memory-safe") {
            left := and(left, shl(160, not(0)))
            right := and(right, shl(128, not(0)))
            result := or(left, shr(96, right))
        }
    }

    function pack_12_20(bytes12 left, bytes20 right) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            left := and(left, shl(160, not(0)))
            right := and(right, shl(96, not(0)))
            result := or(left, shr(96, right))
        }
    }

    function pack_16_4(bytes16 left, bytes4 right) internal pure returns (bytes20 result) {
        assembly ("memory-safe") {
            left := and(left, shl(128, not(0)))
            right := and(right, shl(224, not(0)))
            result := or(left, shr(128, right))
        }
    }

    function pack_16_6(bytes16 left, bytes6 right) internal pure returns (bytes22 result) {
        assembly ("memory-safe") {
            left := and(left, shl(128, not(0)))
            right := and(right, shl(208, not(0)))
            result := or(left, shr(128, right))
        }
    }

    function pack_16_8(bytes16 left, bytes8 right) internal pure returns (bytes24 result) {
        assembly ("memory-safe") {
            left := and(left, shl(128, not(0)))
            right := and(right, shl(192, not(0)))
            result := or(left, shr(128, right))
        }
    }

    function pack_16_12(bytes16 left, bytes12 right) internal pure returns (bytes28 result) {
        assembly ("memory-safe") {
            left := and(left, shl(128, not(0)))
            right := and(right, shl(160, not(0)))
            result := or(left, shr(128, right))
        }
    }

    function pack_16_16(bytes16 left, bytes16 right) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            left := and(left, shl(128, not(0)))
            right := and(right, shl(128, not(0)))
            result := or(left, shr(128, right))
        }
    }

    function pack_20_2(bytes20 left, bytes2 right) internal pure returns (bytes22 result) {
        assembly ("memory-safe") {
            left := and(left, shl(96, not(0)))
            right := and(right, shl(240, not(0)))
            result := or(left, shr(160, right))
        }
    }

    function pack_20_4(bytes20 left, bytes4 right) internal pure returns (bytes24 result) {
        assembly ("memory-safe") {
            left := and(left, shl(96, not(0)))
            right := and(right, shl(224, not(0)))
            result := or(left, shr(160, right))
        }
    }

    function pack_20_8(bytes20 left, bytes8 right) internal pure returns (bytes28 result) {
        assembly ("memory-safe") {
            left := and(left, shl(96, not(0)))
            right := and(right, shl(192, not(0)))
            result := or(left, shr(160, right))
        }
    }

    function pack_20_12(bytes20 left, bytes12 right) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            left := and(left, shl(96, not(0)))
            right := and(right, shl(160, not(0)))
            result := or(left, shr(160, right))
        }
    }

    function pack_22_2(bytes22 left, bytes2 right) internal pure returns (bytes24 result) {
        assembly ("memory-safe") {
            left := and(left, shl(80, not(0)))
            right := and(right, shl(240, not(0)))
            result := or(left, shr(176, right))
        }
    }

    function pack_22_6(bytes22 left, bytes6 right) internal pure returns (bytes28 result) {
        assembly ("memory-safe") {
            left := and(left, shl(80, not(0)))
            right := and(right, shl(208, not(0)))
            result := or(left, shr(176, right))
        }
    }

    function pack_22_10(bytes22 left, bytes10 right) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            left := and(left, shl(80, not(0)))
            right := and(right, shl(176, not(0)))
            result := or(left, shr(176, right))
        }
    }

    function pack_24_4(bytes24 left, bytes4 right) internal pure returns (bytes28 result) {
        assembly ("memory-safe") {
            left := and(left, shl(64, not(0)))
            right := and(right, shl(224, not(0)))
            result := or(left, shr(192, right))
        }
    }

    function pack_24_8(bytes24 left, bytes8 right) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            left := and(left, shl(64, not(0)))
            right := and(right, shl(192, not(0)))
            result := or(left, shr(192, right))
        }
    }

    function pack_28_4(bytes28 left, bytes4 right) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            left := and(left, shl(32, not(0)))
            right := and(right, shl(224, not(0)))
            result := or(left, shr(224, right))
        }
    }

    function extract_2_1(bytes2 self, uint8 offset) internal pure returns (bytes1 result) {
        if (offset > 1) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(248, not(0)))
        }
    }

    function replace_2_1(bytes2 self, bytes1 value, uint8 offset) internal pure returns (bytes2 result) {
        bytes1 oldValue = extract_2_1(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(248, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_4_1(bytes4 self, uint8 offset) internal pure returns (bytes1 result) {
        if (offset > 3) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(248, not(0)))
        }
    }

    function replace_4_1(bytes4 self, bytes1 value, uint8 offset) internal pure returns (bytes4 result) {
        bytes1 oldValue = extract_4_1(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(248, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_4_2(bytes4 self, uint8 offset) internal pure returns (bytes2 result) {
        if (offset > 2) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(240, not(0)))
        }
    }

    function replace_4_2(bytes4 self, bytes2 value, uint8 offset) internal pure returns (bytes4 result) {
        bytes2 oldValue = extract_4_2(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(240, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_6_1(bytes6 self, uint8 offset) internal pure returns (bytes1 result) {
        if (offset > 5) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(248, not(0)))
        }
    }

    function replace_6_1(bytes6 self, bytes1 value, uint8 offset) internal pure returns (bytes6 result) {
        bytes1 oldValue = extract_6_1(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(248, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_6_2(bytes6 self, uint8 offset) internal pure returns (bytes2 result) {
        if (offset > 4) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(240, not(0)))
        }
    }

    function replace_6_2(bytes6 self, bytes2 value, uint8 offset) internal pure returns (bytes6 result) {
        bytes2 oldValue = extract_6_2(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(240, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_6_4(bytes6 self, uint8 offset) internal pure returns (bytes4 result) {
        if (offset > 2) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(224, not(0)))
        }
    }

    function replace_6_4(bytes6 self, bytes4 value, uint8 offset) internal pure returns (bytes6 result) {
        bytes4 oldValue = extract_6_4(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(224, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_8_1(bytes8 self, uint8 offset) internal pure returns (bytes1 result) {
        if (offset > 7) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(248, not(0)))
        }
    }

    function replace_8_1(bytes8 self, bytes1 value, uint8 offset) internal pure returns (bytes8 result) {
        bytes1 oldValue = extract_8_1(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(248, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_8_2(bytes8 self, uint8 offset) internal pure returns (bytes2 result) {
        if (offset > 6) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(240, not(0)))
        }
    }

    function replace_8_2(bytes8 self, bytes2 value, uint8 offset) internal pure returns (bytes8 result) {
        bytes2 oldValue = extract_8_2(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(240, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_8_4(bytes8 self, uint8 offset) internal pure returns (bytes4 result) {
        if (offset > 4) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(224, not(0)))
        }
    }

    function replace_8_4(bytes8 self, bytes4 value, uint8 offset) internal pure returns (bytes8 result) {
        bytes4 oldValue = extract_8_4(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(224, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_8_6(bytes8 self, uint8 offset) internal pure returns (bytes6 result) {
        if (offset > 2) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(208, not(0)))
        }
    }

    function replace_8_6(bytes8 self, bytes6 value, uint8 offset) internal pure returns (bytes8 result) {
        bytes6 oldValue = extract_8_6(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(208, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_10_1(bytes10 self, uint8 offset) internal pure returns (bytes1 result) {
        if (offset > 9) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(248, not(0)))
        }
    }

    function replace_10_1(bytes10 self, bytes1 value, uint8 offset) internal pure returns (bytes10 result) {
        bytes1 oldValue = extract_10_1(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(248, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_10_2(bytes10 self, uint8 offset) internal pure returns (bytes2 result) {
        if (offset > 8) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(240, not(0)))
        }
    }

    function replace_10_2(bytes10 self, bytes2 value, uint8 offset) internal pure returns (bytes10 result) {
        bytes2 oldValue = extract_10_2(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(240, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_10_4(bytes10 self, uint8 offset) internal pure returns (bytes4 result) {
        if (offset > 6) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(224, not(0)))
        }
    }

    function replace_10_4(bytes10 self, bytes4 value, uint8 offset) internal pure returns (bytes10 result) {
        bytes4 oldValue = extract_10_4(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(224, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_10_6(bytes10 self, uint8 offset) internal pure returns (bytes6 result) {
        if (offset > 4) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(208, not(0)))
        }
    }

    function replace_10_6(bytes10 self, bytes6 value, uint8 offset) internal pure returns (bytes10 result) {
        bytes6 oldValue = extract_10_6(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(208, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_10_8(bytes10 self, uint8 offset) internal pure returns (bytes8 result) {
        if (offset > 2) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(192, not(0)))
        }
    }

    function replace_10_8(bytes10 self, bytes8 value, uint8 offset) internal pure returns (bytes10 result) {
        bytes8 oldValue = extract_10_8(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(192, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_12_1(bytes12 self, uint8 offset) internal pure returns (bytes1 result) {
        if (offset > 11) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(248, not(0)))
        }
    }

    function replace_12_1(bytes12 self, bytes1 value, uint8 offset) internal pure returns (bytes12 result) {
        bytes1 oldValue = extract_12_1(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(248, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_12_2(bytes12 self, uint8 offset) internal pure returns (bytes2 result) {
        if (offset > 10) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(240, not(0)))
        }
    }

    function replace_12_2(bytes12 self, bytes2 value, uint8 offset) internal pure returns (bytes12 result) {
        bytes2 oldValue = extract_12_2(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(240, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_12_4(bytes12 self, uint8 offset) internal pure returns (bytes4 result) {
        if (offset > 8) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(224, not(0)))
        }
    }

    function replace_12_4(bytes12 self, bytes4 value, uint8 offset) internal pure returns (bytes12 result) {
        bytes4 oldValue = extract_12_4(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(224, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_12_6(bytes12 self, uint8 offset) internal pure returns (bytes6 result) {
        if (offset > 6) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(208, not(0)))
        }
    }

    function replace_12_6(bytes12 self, bytes6 value, uint8 offset) internal pure returns (bytes12 result) {
        bytes6 oldValue = extract_12_6(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(208, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_12_8(bytes12 self, uint8 offset) internal pure returns (bytes8 result) {
        if (offset > 4) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(192, not(0)))
        }
    }

    function replace_12_8(bytes12 self, bytes8 value, uint8 offset) internal pure returns (bytes12 result) {
        bytes8 oldValue = extract_12_8(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(192, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_12_10(bytes12 self, uint8 offset) internal pure returns (bytes10 result) {
        if (offset > 2) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(176, not(0)))
        }
    }

    function replace_12_10(bytes12 self, bytes10 value, uint8 offset) internal pure returns (bytes12 result) {
        bytes10 oldValue = extract_12_10(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(176, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_16_1(bytes16 self, uint8 offset) internal pure returns (bytes1 result) {
        if (offset > 15) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(248, not(0)))
        }
    }

    function replace_16_1(bytes16 self, bytes1 value, uint8 offset) internal pure returns (bytes16 result) {
        bytes1 oldValue = extract_16_1(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(248, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_16_2(bytes16 self, uint8 offset) internal pure returns (bytes2 result) {
        if (offset > 14) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(240, not(0)))
        }
    }

    function replace_16_2(bytes16 self, bytes2 value, uint8 offset) internal pure returns (bytes16 result) {
        bytes2 oldValue = extract_16_2(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(240, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_16_4(bytes16 self, uint8 offset) internal pure returns (bytes4 result) {
        if (offset > 12) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(224, not(0)))
        }
    }

    function replace_16_4(bytes16 self, bytes4 value, uint8 offset) internal pure returns (bytes16 result) {
        bytes4 oldValue = extract_16_4(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(224, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_16_6(bytes16 self, uint8 offset) internal pure returns (bytes6 result) {
        if (offset > 10) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(208, not(0)))
        }
    }

    function replace_16_6(bytes16 self, bytes6 value, uint8 offset) internal pure returns (bytes16 result) {
        bytes6 oldValue = extract_16_6(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(208, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_16_8(bytes16 self, uint8 offset) internal pure returns (bytes8 result) {
        if (offset > 8) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(192, not(0)))
        }
    }

    function replace_16_8(bytes16 self, bytes8 value, uint8 offset) internal pure returns (bytes16 result) {
        bytes8 oldValue = extract_16_8(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(192, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_16_10(bytes16 self, uint8 offset) internal pure returns (bytes10 result) {
        if (offset > 6) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(176, not(0)))
        }
    }

    function replace_16_10(bytes16 self, bytes10 value, uint8 offset) internal pure returns (bytes16 result) {
        bytes10 oldValue = extract_16_10(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(176, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_16_12(bytes16 self, uint8 offset) internal pure returns (bytes12 result) {
        if (offset > 4) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(160, not(0)))
        }
    }

    function replace_16_12(bytes16 self, bytes12 value, uint8 offset) internal pure returns (bytes16 result) {
        bytes12 oldValue = extract_16_12(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(160, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_20_1(bytes20 self, uint8 offset) internal pure returns (bytes1 result) {
        if (offset > 19) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(248, not(0)))
        }
    }

    function replace_20_1(bytes20 self, bytes1 value, uint8 offset) internal pure returns (bytes20 result) {
        bytes1 oldValue = extract_20_1(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(248, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_20_2(bytes20 self, uint8 offset) internal pure returns (bytes2 result) {
        if (offset > 18) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(240, not(0)))
        }
    }

    function replace_20_2(bytes20 self, bytes2 value, uint8 offset) internal pure returns (bytes20 result) {
        bytes2 oldValue = extract_20_2(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(240, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_20_4(bytes20 self, uint8 offset) internal pure returns (bytes4 result) {
        if (offset > 16) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(224, not(0)))
        }
    }

    function replace_20_4(bytes20 self, bytes4 value, uint8 offset) internal pure returns (bytes20 result) {
        bytes4 oldValue = extract_20_4(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(224, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_20_6(bytes20 self, uint8 offset) internal pure returns (bytes6 result) {
        if (offset > 14) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(208, not(0)))
        }
    }

    function replace_20_6(bytes20 self, bytes6 value, uint8 offset) internal pure returns (bytes20 result) {
        bytes6 oldValue = extract_20_6(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(208, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_20_8(bytes20 self, uint8 offset) internal pure returns (bytes8 result) {
        if (offset > 12) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(192, not(0)))
        }
    }

    function replace_20_8(bytes20 self, bytes8 value, uint8 offset) internal pure returns (bytes20 result) {
        bytes8 oldValue = extract_20_8(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(192, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_20_10(bytes20 self, uint8 offset) internal pure returns (bytes10 result) {
        if (offset > 10) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(176, not(0)))
        }
    }

    function replace_20_10(bytes20 self, bytes10 value, uint8 offset) internal pure returns (bytes20 result) {
        bytes10 oldValue = extract_20_10(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(176, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_20_12(bytes20 self, uint8 offset) internal pure returns (bytes12 result) {
        if (offset > 8) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(160, not(0)))
        }
    }

    function replace_20_12(bytes20 self, bytes12 value, uint8 offset) internal pure returns (bytes20 result) {
        bytes12 oldValue = extract_20_12(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(160, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_20_16(bytes20 self, uint8 offset) internal pure returns (bytes16 result) {
        if (offset > 4) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(128, not(0)))
        }
    }

    function replace_20_16(bytes20 self, bytes16 value, uint8 offset) internal pure returns (bytes20 result) {
        bytes16 oldValue = extract_20_16(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(128, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_22_1(bytes22 self, uint8 offset) internal pure returns (bytes1 result) {
        if (offset > 21) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(248, not(0)))
        }
    }

    function replace_22_1(bytes22 self, bytes1 value, uint8 offset) internal pure returns (bytes22 result) {
        bytes1 oldValue = extract_22_1(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(248, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_22_2(bytes22 self, uint8 offset) internal pure returns (bytes2 result) {
        if (offset > 20) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(240, not(0)))
        }
    }

    function replace_22_2(bytes22 self, bytes2 value, uint8 offset) internal pure returns (bytes22 result) {
        bytes2 oldValue = extract_22_2(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(240, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_22_4(bytes22 self, uint8 offset) internal pure returns (bytes4 result) {
        if (offset > 18) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(224, not(0)))
        }
    }

    function replace_22_4(bytes22 self, bytes4 value, uint8 offset) internal pure returns (bytes22 result) {
        bytes4 oldValue = extract_22_4(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(224, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_22_6(bytes22 self, uint8 offset) internal pure returns (bytes6 result) {
        if (offset > 16) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(208, not(0)))
        }
    }

    function replace_22_6(bytes22 self, bytes6 value, uint8 offset) internal pure returns (bytes22 result) {
        bytes6 oldValue = extract_22_6(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(208, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_22_8(bytes22 self, uint8 offset) internal pure returns (bytes8 result) {
        if (offset > 14) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(192, not(0)))
        }
    }

    function replace_22_8(bytes22 self, bytes8 value, uint8 offset) internal pure returns (bytes22 result) {
        bytes8 oldValue = extract_22_8(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(192, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_22_10(bytes22 self, uint8 offset) internal pure returns (bytes10 result) {
        if (offset > 12) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(176, not(0)))
        }
    }

    function replace_22_10(bytes22 self, bytes10 value, uint8 offset) internal pure returns (bytes22 result) {
        bytes10 oldValue = extract_22_10(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(176, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_22_12(bytes22 self, uint8 offset) internal pure returns (bytes12 result) {
        if (offset > 10) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(160, not(0)))
        }
    }

    function replace_22_12(bytes22 self, bytes12 value, uint8 offset) internal pure returns (bytes22 result) {
        bytes12 oldValue = extract_22_12(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(160, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_22_16(bytes22 self, uint8 offset) internal pure returns (bytes16 result) {
        if (offset > 6) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(128, not(0)))
        }
    }

    function replace_22_16(bytes22 self, bytes16 value, uint8 offset) internal pure returns (bytes22 result) {
        bytes16 oldValue = extract_22_16(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(128, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_22_20(bytes22 self, uint8 offset) internal pure returns (bytes20 result) {
        if (offset > 2) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(96, not(0)))
        }
    }

    function replace_22_20(bytes22 self, bytes20 value, uint8 offset) internal pure returns (bytes22 result) {
        bytes20 oldValue = extract_22_20(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(96, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_24_1(bytes24 self, uint8 offset) internal pure returns (bytes1 result) {
        if (offset > 23) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(248, not(0)))
        }
    }

    function replace_24_1(bytes24 self, bytes1 value, uint8 offset) internal pure returns (bytes24 result) {
        bytes1 oldValue = extract_24_1(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(248, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_24_2(bytes24 self, uint8 offset) internal pure returns (bytes2 result) {
        if (offset > 22) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(240, not(0)))
        }
    }

    function replace_24_2(bytes24 self, bytes2 value, uint8 offset) internal pure returns (bytes24 result) {
        bytes2 oldValue = extract_24_2(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(240, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_24_4(bytes24 self, uint8 offset) internal pure returns (bytes4 result) {
        if (offset > 20) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(224, not(0)))
        }
    }

    function replace_24_4(bytes24 self, bytes4 value, uint8 offset) internal pure returns (bytes24 result) {
        bytes4 oldValue = extract_24_4(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(224, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_24_6(bytes24 self, uint8 offset) internal pure returns (bytes6 result) {
        if (offset > 18) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(208, not(0)))
        }
    }

    function replace_24_6(bytes24 self, bytes6 value, uint8 offset) internal pure returns (bytes24 result) {
        bytes6 oldValue = extract_24_6(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(208, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_24_8(bytes24 self, uint8 offset) internal pure returns (bytes8 result) {
        if (offset > 16) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(192, not(0)))
        }
    }

    function replace_24_8(bytes24 self, bytes8 value, uint8 offset) internal pure returns (bytes24 result) {
        bytes8 oldValue = extract_24_8(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(192, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_24_10(bytes24 self, uint8 offset) internal pure returns (bytes10 result) {
        if (offset > 14) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(176, not(0)))
        }
    }

    function replace_24_10(bytes24 self, bytes10 value, uint8 offset) internal pure returns (bytes24 result) {
        bytes10 oldValue = extract_24_10(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(176, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_24_12(bytes24 self, uint8 offset) internal pure returns (bytes12 result) {
        if (offset > 12) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(160, not(0)))
        }
    }

    function replace_24_12(bytes24 self, bytes12 value, uint8 offset) internal pure returns (bytes24 result) {
        bytes12 oldValue = extract_24_12(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(160, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_24_16(bytes24 self, uint8 offset) internal pure returns (bytes16 result) {
        if (offset > 8) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(128, not(0)))
        }
    }

    function replace_24_16(bytes24 self, bytes16 value, uint8 offset) internal pure returns (bytes24 result) {
        bytes16 oldValue = extract_24_16(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(128, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_24_20(bytes24 self, uint8 offset) internal pure returns (bytes20 result) {
        if (offset > 4) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(96, not(0)))
        }
    }

    function replace_24_20(bytes24 self, bytes20 value, uint8 offset) internal pure returns (bytes24 result) {
        bytes20 oldValue = extract_24_20(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(96, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_24_22(bytes24 self, uint8 offset) internal pure returns (bytes22 result) {
        if (offset > 2) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(80, not(0)))
        }
    }

    function replace_24_22(bytes24 self, bytes22 value, uint8 offset) internal pure returns (bytes24 result) {
        bytes22 oldValue = extract_24_22(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(80, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_28_1(bytes28 self, uint8 offset) internal pure returns (bytes1 result) {
        if (offset > 27) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(248, not(0)))
        }
    }

    function replace_28_1(bytes28 self, bytes1 value, uint8 offset) internal pure returns (bytes28 result) {
        bytes1 oldValue = extract_28_1(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(248, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_28_2(bytes28 self, uint8 offset) internal pure returns (bytes2 result) {
        if (offset > 26) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(240, not(0)))
        }
    }

    function replace_28_2(bytes28 self, bytes2 value, uint8 offset) internal pure returns (bytes28 result) {
        bytes2 oldValue = extract_28_2(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(240, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_28_4(bytes28 self, uint8 offset) internal pure returns (bytes4 result) {
        if (offset > 24) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(224, not(0)))
        }
    }

    function replace_28_4(bytes28 self, bytes4 value, uint8 offset) internal pure returns (bytes28 result) {
        bytes4 oldValue = extract_28_4(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(224, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_28_6(bytes28 self, uint8 offset) internal pure returns (bytes6 result) {
        if (offset > 22) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(208, not(0)))
        }
    }

    function replace_28_6(bytes28 self, bytes6 value, uint8 offset) internal pure returns (bytes28 result) {
        bytes6 oldValue = extract_28_6(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(208, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_28_8(bytes28 self, uint8 offset) internal pure returns (bytes8 result) {
        if (offset > 20) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(192, not(0)))
        }
    }

    function replace_28_8(bytes28 self, bytes8 value, uint8 offset) internal pure returns (bytes28 result) {
        bytes8 oldValue = extract_28_8(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(192, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_28_10(bytes28 self, uint8 offset) internal pure returns (bytes10 result) {
        if (offset > 18) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(176, not(0)))
        }
    }

    function replace_28_10(bytes28 self, bytes10 value, uint8 offset) internal pure returns (bytes28 result) {
        bytes10 oldValue = extract_28_10(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(176, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_28_12(bytes28 self, uint8 offset) internal pure returns (bytes12 result) {
        if (offset > 16) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(160, not(0)))
        }
    }

    function replace_28_12(bytes28 self, bytes12 value, uint8 offset) internal pure returns (bytes28 result) {
        bytes12 oldValue = extract_28_12(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(160, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_28_16(bytes28 self, uint8 offset) internal pure returns (bytes16 result) {
        if (offset > 12) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(128, not(0)))
        }
    }

    function replace_28_16(bytes28 self, bytes16 value, uint8 offset) internal pure returns (bytes28 result) {
        bytes16 oldValue = extract_28_16(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(128, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_28_20(bytes28 self, uint8 offset) internal pure returns (bytes20 result) {
        if (offset > 8) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(96, not(0)))
        }
    }

    function replace_28_20(bytes28 self, bytes20 value, uint8 offset) internal pure returns (bytes28 result) {
        bytes20 oldValue = extract_28_20(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(96, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_28_22(bytes28 self, uint8 offset) internal pure returns (bytes22 result) {
        if (offset > 6) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(80, not(0)))
        }
    }

    function replace_28_22(bytes28 self, bytes22 value, uint8 offset) internal pure returns (bytes28 result) {
        bytes22 oldValue = extract_28_22(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(80, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_28_24(bytes28 self, uint8 offset) internal pure returns (bytes24 result) {
        if (offset > 4) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(64, not(0)))
        }
    }

    function replace_28_24(bytes28 self, bytes24 value, uint8 offset) internal pure returns (bytes28 result) {
        bytes24 oldValue = extract_28_24(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(64, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_32_1(bytes32 self, uint8 offset) internal pure returns (bytes1 result) {
        if (offset > 31) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(248, not(0)))
        }
    }

    function replace_32_1(bytes32 self, bytes1 value, uint8 offset) internal pure returns (bytes32 result) {
        bytes1 oldValue = extract_32_1(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(248, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_32_2(bytes32 self, uint8 offset) internal pure returns (bytes2 result) {
        if (offset > 30) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(240, not(0)))
        }
    }

    function replace_32_2(bytes32 self, bytes2 value, uint8 offset) internal pure returns (bytes32 result) {
        bytes2 oldValue = extract_32_2(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(240, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_32_4(bytes32 self, uint8 offset) internal pure returns (bytes4 result) {
        if (offset > 28) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(224, not(0)))
        }
    }

    function replace_32_4(bytes32 self, bytes4 value, uint8 offset) internal pure returns (bytes32 result) {
        bytes4 oldValue = extract_32_4(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(224, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_32_6(bytes32 self, uint8 offset) internal pure returns (bytes6 result) {
        if (offset > 26) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(208, not(0)))
        }
    }

    function replace_32_6(bytes32 self, bytes6 value, uint8 offset) internal pure returns (bytes32 result) {
        bytes6 oldValue = extract_32_6(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(208, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_32_8(bytes32 self, uint8 offset) internal pure returns (bytes8 result) {
        if (offset > 24) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(192, not(0)))
        }
    }

    function replace_32_8(bytes32 self, bytes8 value, uint8 offset) internal pure returns (bytes32 result) {
        bytes8 oldValue = extract_32_8(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(192, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_32_10(bytes32 self, uint8 offset) internal pure returns (bytes10 result) {
        if (offset > 22) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(176, not(0)))
        }
    }

    function replace_32_10(bytes32 self, bytes10 value, uint8 offset) internal pure returns (bytes32 result) {
        bytes10 oldValue = extract_32_10(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(176, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_32_12(bytes32 self, uint8 offset) internal pure returns (bytes12 result) {
        if (offset > 20) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(160, not(0)))
        }
    }

    function replace_32_12(bytes32 self, bytes12 value, uint8 offset) internal pure returns (bytes32 result) {
        bytes12 oldValue = extract_32_12(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(160, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_32_16(bytes32 self, uint8 offset) internal pure returns (bytes16 result) {
        if (offset > 16) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(128, not(0)))
        }
    }

    function replace_32_16(bytes32 self, bytes16 value, uint8 offset) internal pure returns (bytes32 result) {
        bytes16 oldValue = extract_32_16(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(128, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_32_20(bytes32 self, uint8 offset) internal pure returns (bytes20 result) {
        if (offset > 12) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(96, not(0)))
        }
    }

    function replace_32_20(bytes32 self, bytes20 value, uint8 offset) internal pure returns (bytes32 result) {
        bytes20 oldValue = extract_32_20(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(96, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_32_22(bytes32 self, uint8 offset) internal pure returns (bytes22 result) {
        if (offset > 10) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(80, not(0)))
        }
    }

    function replace_32_22(bytes32 self, bytes22 value, uint8 offset) internal pure returns (bytes32 result) {
        bytes22 oldValue = extract_32_22(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(80, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_32_24(bytes32 self, uint8 offset) internal pure returns (bytes24 result) {
        if (offset > 8) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(64, not(0)))
        }
    }

    function replace_32_24(bytes32 self, bytes24 value, uint8 offset) internal pure returns (bytes32 result) {
        bytes24 oldValue = extract_32_24(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(64, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }

    function extract_32_28(bytes32 self, uint8 offset) internal pure returns (bytes28 result) {
        if (offset > 4) revert OutOfRangeAccess();
        assembly ("memory-safe") {
            result := and(shl(mul(8, offset), self), shl(32, not(0)))
        }
    }

    function replace_32_28(bytes32 self, bytes28 value, uint8 offset) internal pure returns (bytes32 result) {
        bytes28 oldValue = extract_32_28(self, offset);
        assembly ("memory-safe") {
            value := and(value, shl(32, not(0)))
            result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.24;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    error ERC5267ExtensionsNotSupported();

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Variant of {toDataWithIntendedValidatorHash-address-bytes} optimized for cases where `data` is a bytes32.
     */
    function toDataWithIntendedValidatorHash(
        address validator,
        bytes32 messageHash
    ) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, hex"19_00")
            mstore(0x02, shl(96, validator))
            mstore(0x16, messageHash)
            digest := keccak256(0x00, 0x36)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }

    /**
     * @dev Returns the EIP-712 domain separator constructed from an `eip712Domain`. See {IERC5267-eip712Domain}
     *
     * This function dynamically constructs the domain separator based on which fields are present in the
     * `fields` parameter. It contains flags that indicate which domain fields are present:
     *
     * * Bit 0 (0x01): name
     * * Bit 1 (0x02): version
     * * Bit 2 (0x04): chainId
     * * Bit 3 (0x08): verifyingContract
     * * Bit 4 (0x10): salt
     *
     * Arguments that correspond to fields which are not present in `fields` are ignored. For example, if `fields` is
     * `0x0f` (`0b01111`), then the `salt` parameter is ignored.
     */
    function toDomainSeparator(
        bytes1 fields,
        string memory name,
        string memory version,
        uint256 chainId,
        address verifyingContract,
        bytes32 salt
    ) internal pure returns (bytes32 hash) {
        return
            toDomainSeparator(
                fields,
                keccak256(bytes(name)),
                keccak256(bytes(version)),
                chainId,
                verifyingContract,
                salt
            );
    }

    /// @dev Variant of {toDomainSeparator-bytes1-string-string-uint256-address-bytes32} that uses hashed name and version.
    function toDomainSeparator(
        bytes1 fields,
        bytes32 nameHash,
        bytes32 versionHash,
        uint256 chainId,
        address verifyingContract,
        bytes32 salt
    ) internal pure returns (bytes32 hash) {
        bytes32 domainTypeHash = toDomainTypeHash(fields);

        assembly ("memory-safe") {
            // align fields to the right for easy processing
            fields := shr(248, fields)

            // FMP used as scratch space
            let fmp := mload(0x40)
            mstore(fmp, domainTypeHash)

            let ptr := add(fmp, 0x20)
            if and(fields, 0x01) {
                mstore(ptr, nameHash)
                ptr := add(ptr, 0x20)
            }
            if and(fields, 0x02) {
                mstore(ptr, versionHash)
                ptr := add(ptr, 0x20)
            }
            if and(fields, 0x04) {
                mstore(ptr, chainId)
                ptr := add(ptr, 0x20)
            }
            if and(fields, 0x08) {
                mstore(ptr, verifyingContract)
                ptr := add(ptr, 0x20)
            }
            if and(fields, 0x10) {
                mstore(ptr, salt)
                ptr := add(ptr, 0x20)
            }

            hash := keccak256(fmp, sub(ptr, fmp))
        }
    }

    /// @dev Builds an EIP-712 domain type hash depending on the `fields` provided, following https://eips.ethereum.org/EIPS/eip-5267[ERC-5267]
    function toDomainTypeHash(bytes1 fields) internal pure returns (bytes32 hash) {
        if (fields & 0x20 == 0x20) revert ERC5267ExtensionsNotSupported();

        assembly ("memory-safe") {
            // align fields to the right for easy processing
            fields := shr(248, fields)

            // FMP used as scratch space
            let fmp := mload(0x40)
            mstore(fmp, "EIP712Domain(")

            let ptr := add(fmp, 0x0d)
            // name field
            if and(fields, 0x01) {
                mstore(ptr, "string name,")
                ptr := add(ptr, 0x0c)
            }
            // version field
            if and(fields, 0x02) {
                mstore(ptr, "string version,")
                ptr := add(ptr, 0x0f)
            }
            // chainId field
            if and(fields, 0x04) {
                mstore(ptr, "uint256 chainId,")
                ptr := add(ptr, 0x10)
            }
            // verifyingContract field
            if and(fields, 0x08) {
                mstore(ptr, "address verifyingContract,")
                ptr := add(ptr, 0x1a)
            }
            // salt field
            if and(fields, 0x10) {
                mstore(ptr, "bytes32 salt,")
                ptr := add(ptr, 0x0d)
            }
            // if any field is enabled, remove the trailing comma
            ptr := sub(ptr, iszero(iszero(and(fields, 0x1f))))
            // add the closing brace
            mstore8(ptr, 0x29) // add closing brace
            ptr := add(ptr, 1)

            hash := keccak256(fmp, sub(ptr, fmp))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/ShortStrings.sol)

pragma solidity ^0.8.20;

import {StorageSlot} from "./StorageSlot.sol";

// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
    // Used as an identifier for strings longer than 31 bytes.
    bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;

    error StringTooLong(string str);
    error InvalidShortString();

    /**
     * @dev Encode a string of at most 31 chars into a `ShortString`.
     *
     * This will trigger a `StringTooLong` error is the input string is too long.
     */
    function toShortString(string memory str) internal pure returns (ShortString) {
        bytes memory bstr = bytes(str);
        if (bstr.length > 0x1f) {
            revert StringTooLong(str);
        }
        return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
    }

    /**
     * @dev Decode a `ShortString` back to a "normal" string.
     */
    function toString(ShortString sstr) internal pure returns (string memory) {
        uint256 len = byteLength(sstr);
        // using `new string(len)` would work locally but is not memory safe.
        string memory str = new string(0x20);
        assembly ("memory-safe") {
            mstore(str, len)
            mstore(add(str, 0x20), sstr)
        }
        return str;
    }

    /**
     * @dev Return the length of a `ShortString`.
     */
    function byteLength(ShortString sstr) internal pure returns (uint256) {
        uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
        if (result > 0x1f) {
            revert InvalidShortString();
        }
        return result;
    }

    /**
     * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
     */
    function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
        if (bytes(value).length < 0x20) {
            return toShortString(value);
        } else {
            StorageSlot.getStringSlot(store).value = value;
            return ShortString.wrap(FALLBACK_SENTINEL);
        }
    }

    /**
     * @dev Decode a string that was encoded to `ShortString` or written to storage using {toShortStringWithFallback}.
     */
    function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return toString(value);
        } else {
            return store;
        }
    }

    /**
     * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
     * {toShortStringWithFallback}.
     *
     * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
     * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
     */
    function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return byteLength(value);
        } else {
            return bytes(store).length;
        }
    }
}

File 17 of 23 : IERC5267.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC5267.sol)

pragma solidity >=0.4.16;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

File 19 of 23 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in a uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in a uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev A uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/Strings.sol)

pragma solidity ^0.8.24;

import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";
import {Bytes} from "./Bytes.sol";

/**
 * @dev String operations.
 */
library Strings {
    using SafeCast for *;

    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;
    uint256 private constant SPECIAL_CHARS_LOOKUP =
        (1 << 0x08) | // backspace
            (1 << 0x09) | // tab
            (1 << 0x0a) | // newline
            (1 << 0x0c) | // form feed
            (1 << 0x0d) | // carriage return
            (1 << 0x22) | // double quote
            (1 << 0x5c); // backslash

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev The string being parsed contains characters that are not in scope of the given base.
     */
    error StringsInvalidChar();

    /**
     * @dev The string being parsed is not a properly formatted address.
     */
    error StringsInvalidAddressFormat();

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            assembly ("memory-safe") {
                ptr := add(add(buffer, 0x20), length)
            }
            while (true) {
                ptr--;
                assembly ("memory-safe") {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
     * representation, according to EIP-55.
     */
    function toChecksumHexString(address addr) internal pure returns (string memory) {
        bytes memory buffer = bytes(toHexString(addr));

        // hash the hex part of buffer (skip length + 2 bytes, length 40)
        uint256 hashValue;
        assembly ("memory-safe") {
            hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
        }

        for (uint256 i = 41; i > 1; --i) {
            // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
            if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                // case shift by xoring with 0x20
                buffer[i] ^= 0x20;
            }
            hashValue >>= 4;
        }
        return string(buffer);
    }

    /**
     * @dev Converts a `bytes` buffer to its ASCII `string` hexadecimal representation.
     */
    function toHexString(bytes memory input) internal pure returns (string memory) {
        unchecked {
            bytes memory buffer = new bytes(2 * input.length + 2);
            buffer[0] = "0";
            buffer[1] = "x";
            for (uint256 i = 0; i < input.length; ++i) {
                uint8 v = uint8(input[i]);
                buffer[2 * i + 2] = HEX_DIGITS[v >> 4];
                buffer[2 * i + 3] = HEX_DIGITS[v & 0xf];
            }
            return string(buffer);
        }
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return Bytes.equal(bytes(a), bytes(b));
    }

    /**
     * @dev Parse a decimal string and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input) internal pure returns (uint256) {
        return parseUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        uint256 result = 0;
        for (uint256 i = begin; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 9) return (false, 0);
            result *= 10;
            result += chr;
        }
        return (true, result);
    }

    /**
     * @dev Parse a decimal string and returns the value as a `int256`.
     *
     * Requirements:
     * - The string must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input) internal pure returns (int256) {
        return parseInt(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
        (bool success, int256 value) = tryParseInt(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
     * the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
        return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
    }

    uint256 private constant ABS_MIN_INT256 = 2 ** 255;

    /**
     * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character or if the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, int256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseIntUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseIntUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, int256 value) {
        bytes memory buffer = bytes(input);

        // Check presence of a negative sign.
        bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        bool positiveSign = sign == bytes1("+");
        bool negativeSign = sign == bytes1("-");
        uint256 offset = (positiveSign || negativeSign).toUint();

        (bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);

        if (absSuccess && absValue < ABS_MIN_INT256) {
            return (true, negativeSign ? -int256(absValue) : int256(absValue));
        } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
            return (true, type(int256).min);
        } else return (false, 0);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input) internal pure returns (uint256) {
        return parseHexUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseHexUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
     * invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseHexUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseHexUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        // skip 0x prefix if present
        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 offset = hasPrefix.toUint() * 2;

        uint256 result = 0;
        for (uint256 i = begin + offset; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 15) return (false, 0);
            result *= 16;
            unchecked {
                // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
                // This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked.
                result += chr;
            }
        }
        return (true, result);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input) internal pure returns (address) {
        return parseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
        (bool success, address value) = tryParseAddress(input, begin, end);
        if (!success) revert StringsInvalidAddressFormat();
        return value;
    }

    /**
     * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
     * formatted address. See {parseAddress-string} requirements.
     */
    function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
        return tryParseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
     * formatted address. See {parseAddress-string-uint256-uint256} requirements.
     */
    function tryParseAddress(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, address value) {
        if (end > bytes(input).length || begin > end) return (false, address(0));

        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 expectedLength = 40 + hasPrefix.toUint() * 2;

        // check that input is the correct length
        if (end - begin == expectedLength) {
            // length guarantees that this does not overflow, and value is at most type(uint160).max
            (bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
            return (s, address(uint160(v)));
        } else {
            return (false, address(0));
        }
    }

    function _tryParseChr(bytes1 chr) private pure returns (uint8) {
        uint8 value = uint8(chr);

        // Try to parse `chr`:
        // - Case 1: [0-9]
        // - Case 2: [a-f]
        // - Case 3: [A-F]
        // - otherwise not supported
        unchecked {
            if (value > 47 && value < 58) value -= 48;
            else if (value > 96 && value < 103) value -= 87;
            else if (value > 64 && value < 71) value -= 55;
            else return type(uint8).max;
        }

        return value;
    }

    /**
     * @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata.
     *
     * WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped.
     *
     * NOTE: This function escapes all unicode characters, and not just the ones in ranges defined in section 2.5 of
     * RFC-4627 (U+0000 to U+001F, U+0022 and U+005C). ECMAScript's `JSON.parse` does recover escaped unicode
     * characters that are not in this range, but other tooling may provide different results.
     */
    function escapeJSON(string memory input) internal pure returns (string memory) {
        bytes memory buffer = bytes(input);
        bytes memory output = new bytes(2 * buffer.length); // worst case scenario
        uint256 outputLength = 0;

        for (uint256 i = 0; i < buffer.length; ++i) {
            bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i));
            if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) {
                output[outputLength++] = "\\";
                if (char == 0x08) output[outputLength++] = "b";
                else if (char == 0x09) output[outputLength++] = "t";
                else if (char == 0x0a) output[outputLength++] = "n";
                else if (char == 0x0c) output[outputLength++] = "f";
                else if (char == 0x0d) output[outputLength++] = "r";
                else if (char == 0x5c) output[outputLength++] = "\\";
                else if (char == 0x22) {
                    // solhint-disable-next-line quotes
                    output[outputLength++] = '"';
                }
            } else {
                output[outputLength++] = char;
            }
        }
        // write the actual length and deallocate unused memory
        assembly ("memory-safe") {
            mstore(output, outputLength)
            mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63)))))
        }

        return string(output);
    }

    /**
     * @dev Reads a bytes32 from a bytes array without bounds checking.
     *
     * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
     * assembly block as such would prevent some optimizations.
     */
    function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
        // This is not memory safe in the general case, but all calls to this private function are within bounds.
        assembly ("memory-safe") {
            value := mload(add(add(buffer, 0x20), offset))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct Int256Slot {
        int256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Int256Slot` with member `value` located at `slot`.
     */
    function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns a `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
        }
    }

    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
            // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
            // taking advantage of the most significant (or "sign" bit) in two's complement representation.
            // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
            // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
            int256 mask = n >> 255;

            // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
            return uint256((n + mask) ^ mask);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/Bytes.sol)

pragma solidity ^0.8.24;

import {Math} from "./math/Math.sol";

/**
 * @dev Bytes operations.
 */
library Bytes {
    /**
     * @dev Forward search for `s` in `buffer`
     * * If `s` is present in the buffer, returns the index of the first instance
     * * If `s` is not present in the buffer, returns type(uint256).max
     *
     * NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/indexOf[Javascript's `Array.indexOf`]
     */
    function indexOf(bytes memory buffer, bytes1 s) internal pure returns (uint256) {
        return indexOf(buffer, s, 0);
    }

    /**
     * @dev Forward search for `s` in `buffer` starting at position `pos`
     * * If `s` is present in the buffer (at or after `pos`), returns the index of the next instance
     * * If `s` is not present in the buffer (at or after `pos`), returns type(uint256).max
     *
     * NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/indexOf[Javascript's `Array.indexOf`]
     */
    function indexOf(bytes memory buffer, bytes1 s, uint256 pos) internal pure returns (uint256) {
        uint256 length = buffer.length;
        for (uint256 i = pos; i < length; ++i) {
            if (bytes1(_unsafeReadBytesOffset(buffer, i)) == s) {
                return i;
            }
        }
        return type(uint256).max;
    }

    /**
     * @dev Backward search for `s` in `buffer`
     * * If `s` is present in the buffer, returns the index of the last instance
     * * If `s` is not present in the buffer, returns type(uint256).max
     *
     * NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/lastIndexOf[Javascript's `Array.lastIndexOf`]
     */
    function lastIndexOf(bytes memory buffer, bytes1 s) internal pure returns (uint256) {
        return lastIndexOf(buffer, s, type(uint256).max);
    }

    /**
     * @dev Backward search for `s` in `buffer` starting at position `pos`
     * * If `s` is present in the buffer (at or before `pos`), returns the index of the previous instance
     * * If `s` is not present in the buffer (at or before `pos`), returns type(uint256).max
     *
     * NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/lastIndexOf[Javascript's `Array.lastIndexOf`]
     */
    function lastIndexOf(bytes memory buffer, bytes1 s, uint256 pos) internal pure returns (uint256) {
        unchecked {
            uint256 length = buffer.length;
            for (uint256 i = Math.min(Math.saturatingAdd(pos, 1), length); i > 0; --i) {
                if (bytes1(_unsafeReadBytesOffset(buffer, i - 1)) == s) {
                    return i - 1;
                }
            }
            return type(uint256).max;
        }
    }

    /**
     * @dev Copies the content of `buffer`, from `start` (included) to the end of `buffer` into a new bytes object in
     * memory.
     *
     * NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/slice[Javascript's `Array.slice`]
     */
    function slice(bytes memory buffer, uint256 start) internal pure returns (bytes memory) {
        return slice(buffer, start, buffer.length);
    }

    /**
     * @dev Copies the content of `buffer`, from `start` (included) to `end` (excluded) into a new bytes object in
     * memory. The `end` argument is truncated to the length of the `buffer`.
     *
     * NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/slice[Javascript's `Array.slice`]
     */
    function slice(bytes memory buffer, uint256 start, uint256 end) internal pure returns (bytes memory) {
        // sanitize
        end = Math.min(end, buffer.length);
        start = Math.min(start, end);

        // allocate and copy
        bytes memory result = new bytes(end - start);
        assembly ("memory-safe") {
            mcopy(add(result, 0x20), add(add(buffer, 0x20), start), sub(end, start))
        }

        return result;
    }

    /**
     * @dev Moves the content of `buffer`, from `start` (included) to the end of `buffer` to the start of that buffer.
     *
     * NOTE: This function modifies the provided buffer in place. If you need to preserve the original buffer, use {slice} instead
     * NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/splice[Javascript's `Array.splice`]
     */
    function splice(bytes memory buffer, uint256 start) internal pure returns (bytes memory) {
        return splice(buffer, start, buffer.length);
    }

    /**
     * @dev Moves the content of `buffer`, from `start` (included) to end (excluded) to the start of that buffer. The
     * `end` argument is truncated to the length of the `buffer`.
     *
     * NOTE: This function modifies the provided buffer in place. If you need to preserve the original buffer, use {slice} instead
     * NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/splice[Javascript's `Array.splice`]
     */
    function splice(bytes memory buffer, uint256 start, uint256 end) internal pure returns (bytes memory) {
        // sanitize
        end = Math.min(end, buffer.length);
        start = Math.min(start, end);

        // allocate and copy
        assembly ("memory-safe") {
            mcopy(add(buffer, 0x20), add(add(buffer, 0x20), start), sub(end, start))
            mstore(buffer, sub(end, start))
        }

        return buffer;
    }

    /**
     * @dev Replaces bytes in `buffer` starting at `pos` with all bytes from `replacement`.
     *
     * Parameters are clamped to valid ranges (i.e. `pos` is clamped to `[0, buffer.length]`).
     * If `pos >= buffer.length`, no replacement occurs and the buffer is returned unchanged.
     *
     * NOTE: This function modifies the provided buffer in place.
     */
    function replace(bytes memory buffer, uint256 pos, bytes memory replacement) internal pure returns (bytes memory) {
        return replace(buffer, pos, replacement, 0, replacement.length);
    }

    /**
     * @dev Replaces bytes in `buffer` starting at `pos` with bytes from `replacement` starting at `offset`.
     * Copies at most `length` bytes from `replacement` to `buffer`.
     *
     * Parameters are clamped to valid ranges (i.e. `pos` is clamped to `[0, buffer.length]`, `offset` is
     * clamped to `[0, replacement.length]`, and `length` is clamped to `min(length, replacement.length - offset,
     * buffer.length - pos))`. If `pos >= buffer.length` or `offset >= replacement.length`, no replacement occurs
     * and the buffer is returned unchanged.
     *
     * NOTE: This function modifies the provided buffer in place.
     */
    function replace(
        bytes memory buffer,
        uint256 pos,
        bytes memory replacement,
        uint256 offset,
        uint256 length
    ) internal pure returns (bytes memory) {
        // sanitize
        pos = Math.min(pos, buffer.length);
        offset = Math.min(offset, replacement.length);
        length = Math.min(length, Math.min(replacement.length - offset, buffer.length - pos));

        // allocate and copy
        assembly ("memory-safe") {
            mcopy(add(add(buffer, 0x20), pos), add(add(replacement, 0x20), offset), length)
        }

        return buffer;
    }

    /**
     * @dev Concatenate an array of bytes into a single bytes object.
     *
     * For fixed bytes types, we recommend using the solidity built-in `bytes.concat` or (equivalent)
     * `abi.encodePacked`.
     *
     * NOTE: this could be done in assembly with a single loop that expands starting at the FMP, but that would be
     * significantly less readable. It might be worth benchmarking the savings of the full-assembly approach.
     */
    function concat(bytes[] memory buffers) internal pure returns (bytes memory) {
        uint256 length = 0;
        for (uint256 i = 0; i < buffers.length; ++i) {
            length += buffers[i].length;
        }

        bytes memory result = new bytes(length);

        uint256 offset = 0x20;
        for (uint256 i = 0; i < buffers.length; ++i) {
            bytes memory input = buffers[i];
            assembly ("memory-safe") {
                mcopy(add(result, offset), add(input, 0x20), mload(input))
            }
            unchecked {
                offset += input.length;
            }
        }

        return result;
    }

    /**
     * @dev Split each byte in `input` into two nibbles (4 bits each)
     *
     * Example: hex"01234567" → hex"0001020304050607"
     */
    function toNibbles(bytes memory input) internal pure returns (bytes memory output) {
        assembly ("memory-safe") {
            let length := mload(input)
            output := mload(0x40)
            mstore(0x40, add(add(output, 0x20), mul(length, 2)))
            mstore(output, mul(length, 2))
            for {
                let i := 0
            } lt(i, length) {
                i := add(i, 0x10)
            } {
                let chunk := shr(128, mload(add(add(input, 0x20), i)))
                chunk := and(
                    0x0000000000000000ffffffffffffffff0000000000000000ffffffffffffffff,
                    or(shl(64, chunk), chunk)
                )
                chunk := and(
                    0x00000000ffffffff00000000ffffffff00000000ffffffff00000000ffffffff,
                    or(shl(32, chunk), chunk)
                )
                chunk := and(
                    0x0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff,
                    or(shl(16, chunk), chunk)
                )
                chunk := and(
                    0x00ff00ff00ff00ff00ff00ff00ff00ff00ff00ff00ff00ff00ff00ff00ff00ff,
                    or(shl(8, chunk), chunk)
                )
                chunk := and(
                    0x0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f,
                    or(shl(4, chunk), chunk)
                )
                mstore(add(add(output, 0x20), mul(i, 2)), chunk)
            }
        }
    }

    /**
     * @dev Returns true if the two byte buffers are equal.
     */
    function equal(bytes memory a, bytes memory b) internal pure returns (bool) {
        return a.length == b.length && keccak256(a) == keccak256(b);
    }

    /**
     * @dev Reverses the byte order of a bytes32 value, converting between little-endian and big-endian.
     * Inspired by https://graphics.stanford.edu/~seander/bithacks.html#ReverseParallel[Reverse Parallel]
     */
    function reverseBytes32(bytes32 value) internal pure returns (bytes32) {
        value = // swap bytes
            ((value >> 8) & 0x00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF) |
            ((value & 0x00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF) << 8);
        value = // swap 2-byte long pairs
            ((value >> 16) & 0x0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF) |
            ((value & 0x0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF) << 16);
        value = // swap 4-byte long pairs
            ((value >> 32) & 0x00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF) |
            ((value & 0x00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF) << 32);
        value = // swap 8-byte long pairs
            ((value >> 64) & 0x0000000000000000FFFFFFFFFFFFFFFF0000000000000000FFFFFFFFFFFFFFFF) |
            ((value & 0x0000000000000000FFFFFFFFFFFFFFFF0000000000000000FFFFFFFFFFFFFFFF) << 64);
        return (value >> 128) | (value << 128); // swap 16-byte long pairs
    }

    /// @dev Same as {reverseBytes32} but optimized for 128-bit values.
    function reverseBytes16(bytes16 value) internal pure returns (bytes16) {
        value = // swap bytes
            ((value & 0xFF00FF00FF00FF00FF00FF00FF00FF00) >> 8) |
            ((value & 0x00FF00FF00FF00FF00FF00FF00FF00FF) << 8);
        value = // swap 2-byte long pairs
            ((value & 0xFFFF0000FFFF0000FFFF0000FFFF0000) >> 16) |
            ((value & 0x0000FFFF0000FFFF0000FFFF0000FFFF) << 16);
        value = // swap 4-byte long pairs
            ((value & 0xFFFFFFFF00000000FFFFFFFF00000000) >> 32) |
            ((value & 0x00000000FFFFFFFF00000000FFFFFFFF) << 32);
        return (value >> 64) | (value << 64); // swap 8-byte long pairs
    }

    /// @dev Same as {reverseBytes32} but optimized for 64-bit values.
    function reverseBytes8(bytes8 value) internal pure returns (bytes8) {
        value = ((value & 0xFF00FF00FF00FF00) >> 8) | ((value & 0x00FF00FF00FF00FF) << 8); // swap bytes
        value = ((value & 0xFFFF0000FFFF0000) >> 16) | ((value & 0x0000FFFF0000FFFF) << 16); // swap 2-byte long pairs
        return (value >> 32) | (value << 32); // swap 4-byte long pairs
    }

    /// @dev Same as {reverseBytes32} but optimized for 32-bit values.
    function reverseBytes4(bytes4 value) internal pure returns (bytes4) {
        value = ((value & 0xFF00FF00) >> 8) | ((value & 0x00FF00FF) << 8); // swap bytes
        return (value >> 16) | (value << 16); // swap 2-byte long pairs
    }

    /// @dev Same as {reverseBytes32} but optimized for 16-bit values.
    function reverseBytes2(bytes2 value) internal pure returns (bytes2) {
        return (value >> 8) | (value << 8);
    }

    /**
     * @dev Counts the number of leading zero bits a bytes array. Returns `8 * buffer.length`
     * if the buffer is all zeros.
     */
    function clz(bytes memory buffer) internal pure returns (uint256) {
        for (uint256 i = 0; i < buffer.length; i += 0x20) {
            bytes32 chunk = _unsafeReadBytesOffset(buffer, i);
            if (chunk != bytes32(0)) {
                return Math.min(8 * i + Math.clz(uint256(chunk)), 8 * buffer.length);
            }
        }
        return 8 * buffer.length;
    }

    /**
     * @dev Reads a bytes32 from a bytes array without bounds checking.
     *
     * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
     * assembly block as such would prevent some optimizations.
     */
    function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
        // This is not memory safe in the general case, but all calls to this private function are within bounds.
        assembly ("memory-safe") {
            value := mload(add(add(buffer, 0x20), offset))
        }
    }
}

Settings
{
  "remappings": [
    "forge-std/=lib/forge-std/src/",
    "@openzeppelin/contracts/=lib/openzeppelin-community-contracts/lib/@openzeppelin-contracts/contracts/",
    "@openzeppelin/community-contracts/=lib/openzeppelin-community-contracts/contracts/",
    "@axelar-network/axelar-gmp-sdk-solidity/=lib/openzeppelin-community-contracts/lib/axelar-gmp-sdk-solidity/",
    "@openzeppelin-contracts-upgradeable/=lib/openzeppelin-community-contracts/lib/@openzeppelin-contracts-upgradeable/",
    "@openzeppelin-contracts/=lib/openzeppelin-community-contracts/lib/@openzeppelin-contracts/",
    "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-community-contracts/lib/@openzeppelin-contracts-upgradeable/contracts/",
    "@zk-email/contracts/=lib/openzeppelin-community-contracts/lib/zk-email-verify/packages/contracts/",
    "@zk-email/email-tx-builder/=lib/openzeppelin-community-contracts/lib/email-tx-builder/packages/contracts/",
    "IERC20/=lib/openzeppelin-community-contracts/lib/wormhole-solidity-sdk/src/interfaces/token/",
    "SafeERC20/=lib/openzeppelin-community-contracts/lib/wormhole-solidity-sdk/src/libraries/",
    "axelar-gmp-sdk-solidity/=lib/openzeppelin-community-contracts/lib/axelar-gmp-sdk-solidity/contracts/",
    "ds-test/=lib/openzeppelin-community-contracts/lib/wormhole-solidity-sdk/lib/forge-std/lib/ds-test/src/",
    "email-tx-builder/=lib/openzeppelin-community-contracts/lib/email-tx-builder/",
    "erc4626-tests/=lib/openzeppelin-community-contracts/lib/@openzeppelin-contracts/lib/erc4626-tests/",
    "halmos-cheatcodes/=lib/openzeppelin-community-contracts/lib/@openzeppelin-contracts/lib/halmos-cheatcodes/src/",
    "openzeppelin-community-contracts/=lib/openzeppelin-community-contracts/contracts/",
    "openzeppelin-contracts/=lib/openzeppelin-community-contracts/lib/@openzeppelin-contracts-upgradeable/lib/openzeppelin-contracts/",
    "wormhole-sdk/=lib/openzeppelin-community-contracts/lib/wormhole-solidity-sdk/src/",
    "wormhole-solidity-sdk/=lib/openzeppelin-community-contracts/lib/wormhole-solidity-sdk/src/",
    "zk-email-verify/=lib/openzeppelin-community-contracts/lib/zk-email-verify/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "prague",
  "viaIR": false
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"address","name":"signerAddr","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"PaymasterUnauthorized","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"actualGasCost","type":"uint256"}],"name":"UserOperationSponsored","type":"event"},{"inputs":[{"internalType":"uint32","name":"unstakeDelaySec","type":"uint32"}],"name":"addStake","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"deposit","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"entryPoint","outputs":[{"internalType":"contract IEntryPoint","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"enum IPaymaster.PostOpMode","name":"mode","type":"uint8"},{"internalType":"bytes","name":"context","type":"bytes"},{"internalType":"uint256","name":"actualGasCost","type":"uint256"},{"internalType":"uint256","name":"actualUserOpFeePerGas","type":"uint256"}],"name":"postOp","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"signer","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unlockStake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes","name":"initCode","type":"bytes"},{"internalType":"bytes","name":"callData","type":"bytes"},{"internalType":"bytes32","name":"accountGasLimits","type":"bytes32"},{"internalType":"uint256","name":"preVerificationGas","type":"uint256"},{"internalType":"bytes32","name":"gasFees","type":"bytes32"},{"internalType":"bytes","name":"paymasterAndData","type":"bytes"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct PackedUserOperation","name":"userOp","type":"tuple"},{"internalType":"bytes32","name":"userOpHash","type":"bytes32"},{"internalType":"uint256","name":"maxCost","type":"uint256"}],"name":"validatePaymasterUserOp","outputs":[{"internalType":"bytes","name":"context","type":"bytes"},{"internalType":"uint256","name":"validationData","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address payable","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address payable","name":"to","type":"address"}],"name":"withdrawStake","outputs":[],"stateMutability":"nonpayable","type":"function"}]

610160604052348015610010575f5ffd5b5060405161156938038061156983398101604081905261002f91610242565b80816040518060400160405280600d81526020016c233930bc2830bcb6b0b9ba32b960991b815250604051806040016040528060018152602001603160f81b8152506100845f8361018260201b90919060201c565b61012052610093816001610182565b61014052815160208084019190912060e052815190820120610100524660a05261011f60e05161010051604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201529081019290925260608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b60805250503060c052600280546001600160a01b0319166001600160a01b038316179055506001600160a01b03811661017257604051631e4fbdf760e01b81525f60048201526024015b60405180910390fd5b61017b816101b4565b5050610419565b5f60208351101561019d5761019683610205565b90506101ae565b816101a88482610307565b5060ff90505b92915050565b600380546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b5f5f829050601f8151111561022f578260405163305a27a960e01b815260040161016991906103c1565b805161023a826103f6565b179392505050565b5f60208284031215610252575f5ffd5b81516001600160a01b0381168114610268575f5ffd5b9392505050565b634e487b7160e01b5f52604160045260245ffd5b600181811c9082168061029757607f821691505b6020821081036102b557634e487b7160e01b5f52602260045260245ffd5b50919050565b601f82111561030257805f5260205f20601f840160051c810160208510156102e05750805b601f840160051c820191505b818110156102ff575f81556001016102ec565b50505b505050565b81516001600160401b038111156103205761032061026f565b6103348161032e8454610283565b846102bb565b6020601f821160018114610366575f831561034f5750848201515b5f19600385901b1c1916600184901b1784556102ff565b5f84815260208120601f198516915b828110156103955787850151825560209485019460019092019101610375565b50848210156103b257868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b602081525f82518060208401528060208501604085015e5f604082850101526040601f19601f83011684010191505092915050565b805160208083015191908110156102b5575f1960209190910360031b1b16919050565b60805160a05160c05160e0516101005161012051610140516110ff61046a5f395f61065d01525f61062c01525f610be301525f610bbb01525f610b1601525f610b4001525f610b6a01526110ff5ff3fe6080604052600436106100bf575f3560e01c80638da5cb5b1161007c578063c23a5cea11610057578063c23a5cea146101e8578063d0e30db014610207578063f2fde38b1461020f578063f3fef3a31461022e575f5ffd5b80638da5cb5b14610195578063b0d691fe146101b2578063bb9fe6bf146101d4575f5ffd5b80630396cb60146100c3578063238ac933146100d857806352b7512c1461010e578063715018a61461013b5780637c627b211461014f57806384b0196e1461016e575b5f5ffd5b6100d66100d1366004610d44565b61024d565b005b3480156100e3575f5ffd5b506002546001600160a01b03165b6040516001600160a01b0390911681526020015b60405180910390f35b348015610119575f5ffd5b5061012d610128366004610d6e565b6102bf565b604051610105929190610deb565b348015610146575f5ffd5b506100d66102e1565b34801561015a575f5ffd5b506100d6610169366004610e0c565b6102f4565b348015610179575f5ffd5b50610182610303565b6040516101059796959493929190610ea0565b3480156101a0575f5ffd5b506003546001600160a01b03166100f1565b3480156101bd575f5ffd5b506f71727de22e5e9d8baf0edac6f37da0326100f1565b3480156101df575f5ffd5b506100d6610345565b3480156101f3575f5ffd5b506100d6610202366004610f4a565b6103ad565b6100d661041a565b34801561021a575f5ffd5b506100d6610229366004610f4a565b61046d565b348015610239575f5ffd5b506100d6610248366004610f65565b6104af565b6f71727de22e5e9d8baf0edac6f37da032604051621cb65b60e51b815263ffffffff831660048201526001600160a01b039190911690630396cb609034906024015f604051808303818588803b1580156102a5575f5ffd5b505af11580156102b7573d5f5f3e3d5ffd5b505050505050565b60605f6102ca610511565b6102d585858561054d565b91509150935093915050565b6102e96105a7565b6102f25f6105d4565b565b6102fc610511565b5050505050565b5f6060805f5f5f6060610314610625565b61031c610656565b604080515f80825260208201909252600f60f81b9b939a50919850469750309650945092509050565b61034d610683565b6f71727de22e5e9d8baf0edac6f37da0326001600160a01b031663bb9fe6bf6040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610395575f5ffd5b505af11580156103a7573d5f5f3e3d5ffd5b50505050565b6103b5610683565b6f71727de22e5e9d8baf0edac6f37da03260405163611d2e7560e11b81526001600160a01b038381166004830152919091169063c23a5cea906024015f604051808303815f87803b158015610408575f5ffd5b505af11580156102fc573d5f5f3e3d5ffd5b6f71727de22e5e9d8baf0edac6f37da03260405163b760faf960e01b81523060048201526001600160a01b03919091169063b760faf99034906024015f604051808303818588803b158015610408575f5ffd5b6104756105a7565b6001600160a01b0381166104a357604051631e4fbdf760e01b81525f60048201526024015b60405180910390fd5b6104ac816105d4565b50565b6104b7610683565b6f71727de22e5e9d8baf0edac6f37da03260405163040b850f60e31b81526001600160a01b03848116600483015260248201849052919091169063205c2878906044015f604051808303815f87803b1580156102a5575f5ffd5b336f71727de22e5e9d8baf0edac6f37da03281146104ac5760405163327499a760e01b81526001600160a01b038216600482015260240161049a565b60605f5f5f365f61055d8961068b565b935093509350935060405180602001604052805f815250610597858561058e6105878e8a8a6106f0565b8787610820565b1515919061087f565b9550955050505050935093915050565b6003546001600160a01b031633146102f25760405163118cdaa760e01b815233600482015260240161049a565b600380546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b60606106517f00000000000000000000000000000000000000000000000000000000000000005f610890565b905090565b60606106517f00000000000000000000000000000000000000000000000000000000000000006001610890565b6102f26105a7565b5f5f365f365f61069a8761093b565b90925090506106ac60065f8385610f8f565b6106b591610fb6565b60d01c6106c6600c60068486610f8f565b6106cf91610fb6565b60d01c6106df83600c8187610f8f565b955095509550955050509193509193565b5f6108187f0c330b34f0aad8cab1ae5a4241b0d75388786a99fffb1a39c5ce8dec5a5700676107226020870187610f4a565b60208701356107346040890189610fee565b604051610742929190611038565b60405190819003902061075860608a018a610fee565b604051610766929190611038565b604051809103902089608001358a60a001358b60c001356107868d61097f565b61078f8e6109dd565b60408051602081019b909b526001600160a01b03909916988a01989098526060890196909652608088019490945260a087019290925260c086015260e085015261010084015261012083015261014082015265ffffffffffff80861661016083015284166101808201526101a00160405160208183030381529060405280519060200120610a10565b949350505050565b5f5f5f61082e868686610a3c565b5091509150816001600160a01b031661084f6002546001600160a01b031690565b6001600160a01b031614801561087557505f81600381111561087357610873611047565b145b9695505050505050565b5f6108188415156001188484610a83565b606060ff83146108aa576108a383610acd565b9050610935565b8180546108b69061105b565b80601f01602080910402602001604051908101604052809291908181526020018280546108e29061105b565b801561092d5780601f106109045761010080835404028352916020019161092d565b820191905f5260205f20905b81548152906001019060200180831161091057829003601f168201915b505050505090505b92915050565b365f603461094c60e0850185610fee565b9050106109735761096060e0840184610fee565b61096e916034908290610f8f565b610976565b5f805b91509150915091565b5f603461098f60e0840184610fee565b9050106109c3576109a360e0830183610fee565b6109b291602491601491610f8f565b6109bb91611093565b60801c6109c5565b5f5b6fffffffffffffffffffffffffffffffff1692915050565b5f60346109ed60e0840184610fee565b9050106109c357610a0160e0830183610fee565b6109b291603491602491610f8f565b5f610935610a1c610b0a565b8360405161190160f01b8152600281019290925260228201526042902090565b5f80806041849003610a70578435602086013560408701355f1a610a6289828585610c33565b955095509550505050610a7a565b505f915060029050825b93509350939050565b5f6108188460601b610aae8460d01b8660d01b6001600160d01b031916610cfb90919063ffffffff16565b6001600160a01b0319169060601c6001600160a01b0319919091161790565b60605f610ad983610d1d565b6040805160208082528183019092529192505f91906020820181803683375050509182525060208101929092525090565b5f306001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016148015610b6257507f000000000000000000000000000000000000000000000000000000000000000046145b15610b8c57507f000000000000000000000000000000000000000000000000000000000000000090565b610651604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527f0000000000000000000000000000000000000000000000000000000000000000918101919091527f000000000000000000000000000000000000000000000000000000000000000060608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b5f80807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0841115610c6c57505f91506003905082610cf1565b604080515f808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa158015610cbd573d5f5f3e3d5ffd5b5050604051601f1901519150506001600160a01b038116610ce857505f925060019150829050610cf1565b92505f91508190505b9450945094915050565b65ffffffffffff60a01b60309190911c166001600160d01b0319919091161790565b5f60ff8216601f81111561093557604051632cd44ac360e21b815260040160405180910390fd5b5f60208284031215610d54575f5ffd5b813563ffffffff81168114610d67575f5ffd5b9392505050565b5f5f5f60608486031215610d80575f5ffd5b833567ffffffffffffffff811115610d96575f5ffd5b84016101208187031215610da8575f5ffd5b95602085013595506040909401359392505050565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b604081525f610dfd6040830185610dbd565b90508260208301529392505050565b5f5f5f5f5f60808688031215610e20575f5ffd5b853560038110610e2e575f5ffd5b9450602086013567ffffffffffffffff811115610e49575f5ffd5b8601601f81018813610e59575f5ffd5b803567ffffffffffffffff811115610e6f575f5ffd5b886020828401011115610e80575f5ffd5b959860209190910197509495604081013595606090910135945092505050565b60ff60f81b8816815260e060208201525f610ebe60e0830189610dbd565b8281036040840152610ed08189610dbd565b606084018890526001600160a01b038716608085015260a0840186905283810360c0850152845180825260208087019350909101905f5b81811015610f25578351835260209384019390920191600101610f07565b50909b9a5050505050505050505050565b6001600160a01b03811681146104ac575f5ffd5b5f60208284031215610f5a575f5ffd5b8135610d6781610f36565b5f5f60408385031215610f76575f5ffd5b8235610f8181610f36565b946020939093013593505050565b5f5f85851115610f9d575f5ffd5b83861115610fa9575f5ffd5b5050820193919092039150565b80356001600160d01b03198116906006841015610fe7576001600160d01b0319600685900360031b81901b82161691505b5092915050565b5f5f8335601e19843603018112611003575f5ffd5b83018035915067ffffffffffffffff82111561101d575f5ffd5b602001915036819003821315611031575f5ffd5b9250929050565b818382375f9101908152919050565b634e487b7160e01b5f52602160045260245ffd5b600181811c9082168061106f57607f821691505b60208210810361108d57634e487b7160e01b5f52602260045260245ffd5b50919050565b80356001600160801b03198116906010841015610fe7576001600160801b031960109490940360031b84901b169092169291505056fea2646970667358221220b249500fe40cb4adb8ffa27445eccc0976534b4ac66b537d2b65b3c4e751630464736f6c634300081c0033000000000000000000000000aa5f55001e50c6c13684884278fac0d9539837f2

Deployed Bytecode

0x6080604052600436106100bf575f3560e01c80638da5cb5b1161007c578063c23a5cea11610057578063c23a5cea146101e8578063d0e30db014610207578063f2fde38b1461020f578063f3fef3a31461022e575f5ffd5b80638da5cb5b14610195578063b0d691fe146101b2578063bb9fe6bf146101d4575f5ffd5b80630396cb60146100c3578063238ac933146100d857806352b7512c1461010e578063715018a61461013b5780637c627b211461014f57806384b0196e1461016e575b5f5ffd5b6100d66100d1366004610d44565b61024d565b005b3480156100e3575f5ffd5b506002546001600160a01b03165b6040516001600160a01b0390911681526020015b60405180910390f35b348015610119575f5ffd5b5061012d610128366004610d6e565b6102bf565b604051610105929190610deb565b348015610146575f5ffd5b506100d66102e1565b34801561015a575f5ffd5b506100d6610169366004610e0c565b6102f4565b348015610179575f5ffd5b50610182610303565b6040516101059796959493929190610ea0565b3480156101a0575f5ffd5b506003546001600160a01b03166100f1565b3480156101bd575f5ffd5b506f71727de22e5e9d8baf0edac6f37da0326100f1565b3480156101df575f5ffd5b506100d6610345565b3480156101f3575f5ffd5b506100d6610202366004610f4a565b6103ad565b6100d661041a565b34801561021a575f5ffd5b506100d6610229366004610f4a565b61046d565b348015610239575f5ffd5b506100d6610248366004610f65565b6104af565b6f71727de22e5e9d8baf0edac6f37da032604051621cb65b60e51b815263ffffffff831660048201526001600160a01b039190911690630396cb609034906024015f604051808303818588803b1580156102a5575f5ffd5b505af11580156102b7573d5f5f3e3d5ffd5b505050505050565b60605f6102ca610511565b6102d585858561054d565b91509150935093915050565b6102e96105a7565b6102f25f6105d4565b565b6102fc610511565b5050505050565b5f6060805f5f5f6060610314610625565b61031c610656565b604080515f80825260208201909252600f60f81b9b939a50919850469750309650945092509050565b61034d610683565b6f71727de22e5e9d8baf0edac6f37da0326001600160a01b031663bb9fe6bf6040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610395575f5ffd5b505af11580156103a7573d5f5f3e3d5ffd5b50505050565b6103b5610683565b6f71727de22e5e9d8baf0edac6f37da03260405163611d2e7560e11b81526001600160a01b038381166004830152919091169063c23a5cea906024015f604051808303815f87803b158015610408575f5ffd5b505af11580156102fc573d5f5f3e3d5ffd5b6f71727de22e5e9d8baf0edac6f37da03260405163b760faf960e01b81523060048201526001600160a01b03919091169063b760faf99034906024015f604051808303818588803b158015610408575f5ffd5b6104756105a7565b6001600160a01b0381166104a357604051631e4fbdf760e01b81525f60048201526024015b60405180910390fd5b6104ac816105d4565b50565b6104b7610683565b6f71727de22e5e9d8baf0edac6f37da03260405163040b850f60e31b81526001600160a01b03848116600483015260248201849052919091169063205c2878906044015f604051808303815f87803b1580156102a5575f5ffd5b336f71727de22e5e9d8baf0edac6f37da03281146104ac5760405163327499a760e01b81526001600160a01b038216600482015260240161049a565b60605f5f5f365f61055d8961068b565b935093509350935060405180602001604052805f815250610597858561058e6105878e8a8a6106f0565b8787610820565b1515919061087f565b9550955050505050935093915050565b6003546001600160a01b031633146102f25760405163118cdaa760e01b815233600482015260240161049a565b600380546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b60606106517f467261785061796d61737465720000000000000000000000000000000000000d5f610890565b905090565b60606106517f31000000000000000000000000000000000000000000000000000000000000016001610890565b6102f26105a7565b5f5f365f365f61069a8761093b565b90925090506106ac60065f8385610f8f565b6106b591610fb6565b60d01c6106c6600c60068486610f8f565b6106cf91610fb6565b60d01c6106df83600c8187610f8f565b955095509550955050509193509193565b5f6108187f0c330b34f0aad8cab1ae5a4241b0d75388786a99fffb1a39c5ce8dec5a5700676107226020870187610f4a565b60208701356107346040890189610fee565b604051610742929190611038565b60405190819003902061075860608a018a610fee565b604051610766929190611038565b604051809103902089608001358a60a001358b60c001356107868d61097f565b61078f8e6109dd565b60408051602081019b909b526001600160a01b03909916988a01989098526060890196909652608088019490945260a087019290925260c086015260e085015261010084015261012083015261014082015265ffffffffffff80861661016083015284166101808201526101a00160405160208183030381529060405280519060200120610a10565b949350505050565b5f5f5f61082e868686610a3c565b5091509150816001600160a01b031661084f6002546001600160a01b031690565b6001600160a01b031614801561087557505f81600381111561087357610873611047565b145b9695505050505050565b5f6108188415156001188484610a83565b606060ff83146108aa576108a383610acd565b9050610935565b8180546108b69061105b565b80601f01602080910402602001604051908101604052809291908181526020018280546108e29061105b565b801561092d5780601f106109045761010080835404028352916020019161092d565b820191905f5260205f20905b81548152906001019060200180831161091057829003601f168201915b505050505090505b92915050565b365f603461094c60e0850185610fee565b9050106109735761096060e0840184610fee565b61096e916034908290610f8f565b610976565b5f805b91509150915091565b5f603461098f60e0840184610fee565b9050106109c3576109a360e0830183610fee565b6109b291602491601491610f8f565b6109bb91611093565b60801c6109c5565b5f5b6fffffffffffffffffffffffffffffffff1692915050565b5f60346109ed60e0840184610fee565b9050106109c357610a0160e0830183610fee565b6109b291603491602491610f8f565b5f610935610a1c610b0a565b8360405161190160f01b8152600281019290925260228201526042902090565b5f80806041849003610a70578435602086013560408701355f1a610a6289828585610c33565b955095509550505050610a7a565b505f915060029050825b93509350939050565b5f6108188460601b610aae8460d01b8660d01b6001600160d01b031916610cfb90919063ffffffff16565b6001600160a01b0319169060601c6001600160a01b0319919091161790565b60605f610ad983610d1d565b6040805160208082528183019092529192505f91906020820181803683375050509182525060208101929092525090565b5f306001600160a01b037f000000000000000000000000149e8d2f435f09b81f1d8e098b6570ea20cdb4e416148015610b6257507f00000000000000000000000000000000000000000000000000000000000000fc46145b15610b8c57507fc89fdd7d072c4070b676ba54965e9af7bf71f00ef4a4e5b574ed69ec8535c4ab90565b610651604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527fa417199dc12b4b792caa891973ea1e900379f569d1b3e6ba85ee8c8df2b48c79918101919091527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc660608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b5f80807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0841115610c6c57505f91506003905082610cf1565b604080515f808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa158015610cbd573d5f5f3e3d5ffd5b5050604051601f1901519150506001600160a01b038116610ce857505f925060019150829050610cf1565b92505f91508190505b9450945094915050565b65ffffffffffff60a01b60309190911c166001600160d01b0319919091161790565b5f60ff8216601f81111561093557604051632cd44ac360e21b815260040160405180910390fd5b5f60208284031215610d54575f5ffd5b813563ffffffff81168114610d67575f5ffd5b9392505050565b5f5f5f60608486031215610d80575f5ffd5b833567ffffffffffffffff811115610d96575f5ffd5b84016101208187031215610da8575f5ffd5b95602085013595506040909401359392505050565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b604081525f610dfd6040830185610dbd565b90508260208301529392505050565b5f5f5f5f5f60808688031215610e20575f5ffd5b853560038110610e2e575f5ffd5b9450602086013567ffffffffffffffff811115610e49575f5ffd5b8601601f81018813610e59575f5ffd5b803567ffffffffffffffff811115610e6f575f5ffd5b886020828401011115610e80575f5ffd5b959860209190910197509495604081013595606090910135945092505050565b60ff60f81b8816815260e060208201525f610ebe60e0830189610dbd565b8281036040840152610ed08189610dbd565b606084018890526001600160a01b038716608085015260a0840186905283810360c0850152845180825260208087019350909101905f5b81811015610f25578351835260209384019390920191600101610f07565b50909b9a5050505050505050505050565b6001600160a01b03811681146104ac575f5ffd5b5f60208284031215610f5a575f5ffd5b8135610d6781610f36565b5f5f60408385031215610f76575f5ffd5b8235610f8181610f36565b946020939093013593505050565b5f5f85851115610f9d575f5ffd5b83861115610fa9575f5ffd5b5050820193919092039150565b80356001600160d01b03198116906006841015610fe7576001600160d01b0319600685900360031b81901b82161691505b5092915050565b5f5f8335601e19843603018112611003575f5ffd5b83018035915067ffffffffffffffff82111561101d575f5ffd5b602001915036819003821315611031575f5ffd5b9250929050565b818382375f9101908152919050565b634e487b7160e01b5f52602160045260245ffd5b600181811c9082168061106f57607f821691505b60208210810361108d57634e487b7160e01b5f52602260045260245ffd5b50919050565b80356001600160801b03198116906010841015610fe7576001600160801b031960109490940360031b84901b169092169291505056fea2646970667358221220b249500fe40cb4adb8ffa27445eccc0976534b4ac66b537d2b65b3c4e751630464736f6c634300081c0033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

000000000000000000000000aa5f55001e50c6c13684884278fac0d9539837f2

-----Decoded View---------------
Arg [0] : signerAddr (address): 0xaA5f55001E50c6C13684884278FaC0D9539837F2

-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 000000000000000000000000aa5f55001e50c6c13684884278fac0d9539837f2


Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.