Source Code
Cross-Chain Transactions
Loading...
Loading
Contract Name:
FraxPaymaster
Compiler Version
v0.8.28+commit.7893614a
Optimization Enabled:
Yes with 200 runs
Other Settings:
prague EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";
import {SignerECDSA} from "@openzeppelin/contracts/utils/cryptography/signers/SignerECDSA.sol";
import {PaymasterSigner, EIP712} from "@openzeppelin/community-contracts/account/paymaster/PaymasterSigner.sol";
import {IEntryPoint} from "@openzeppelin/contracts/interfaces/draft-IERC4337.sol";
import {ERC4337Utils} from "@openzeppelin/contracts/account/utils/draft-ERC4337Utils.sol";
/**
* @title FraxPaymaster
* @notice A paymaster that sponsors gas for user operations signed by a trusted verifier
* @dev Uses OpenZeppelin's PaymasterSigner for ERC-4337 v0.7 compatibility
*
* The paymaster validates user operations by checking a signature from a trusted
* verifying signer. The signature includes validity timestamps to prevent replay attacks.
*
* Flow:
* 1. User prepares a UserOperation
* 2. Backend signs the UserOperation with validUntil/validAfter timestamps using EIP-712
* 3. User submits the UserOperation with paymasterAndData containing:
* - paymaster address (20 bytes)
* - paymasterVerificationGasLimit (16 bytes)
* - paymasterPostOpGasLimit (16 bytes)
* - validAfter (6 bytes)
* - validUntil (6 bytes)
* - signature (dynamic)
*
* NOTE: This paymaster uses EntryPoint v0.7 to be compatible with Safe4337Module v0.3.0
*/
contract FraxPaymaster is PaymasterSigner, SignerECDSA, Ownable {
/// @notice Emitted when a user operation is sponsored
event UserOperationSponsored(
address indexed sender,
uint256 actualGasCost
);
/**
* @param signerAddr The address that will sign paymaster approvals (also initial owner)
*/
constructor(address signerAddr)
EIP712("FraxPaymaster", "1")
Ownable(signerAddr)
SignerECDSA(signerAddr)
{}
/**
* @notice Authorize withdrawal - only owner can withdraw
* @dev Required by PaymasterSigner
*/
function _authorizeWithdraw() internal virtual override onlyOwner {}
/**
* @notice Override to use EntryPoint v0.7 instead of v0.9
* @dev Safe4337Module v0.3.0 only supports EntryPoint v0.7
*/
function entryPoint() public view virtual override returns (IEntryPoint) {
return ERC4337Utils.ENTRYPOINT_V07;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/cryptography/signers/SignerECDSA.sol)
pragma solidity ^0.8.20;
import {AbstractSigner} from "./AbstractSigner.sol";
import {ECDSA} from "../ECDSA.sol";
/**
* @dev Implementation of {AbstractSigner} using xref:api:utils/cryptography#ECDSA[ECDSA] signatures.
*
* For {Account} usage, a {_setSigner} function is provided to set the {signer} address.
* Doing so is easier for a factory, who is likely to use initializable clones of this contract.
*
* Example of usage:
*
* ```solidity
* contract MyAccountECDSA is Account, SignerECDSA, Initializable {
* function initialize(address signerAddr) public initializer {
* _setSigner(signerAddr);
* }
* }
* ```
*
* IMPORTANT: Failing to call {_setSigner} either during construction (if used standalone)
* or during initialization (if used as a clone) may leave the signer either front-runnable or unusable.
*/
abstract contract SignerECDSA is AbstractSigner {
address private _signer;
constructor(address signerAddr) {
_setSigner(signerAddr);
}
/**
* @dev Sets the signer with the address of the native signer. This function should be called during construction
* or through an initializer.
*/
function _setSigner(address signerAddr) internal {
_signer = signerAddr;
}
/// @dev Return the signer's address.
function signer() public view virtual returns (address) {
return _signer;
}
/// @inheritdoc AbstractSigner
function _rawSignatureValidation(
bytes32 hash,
bytes calldata signature
) internal view virtual override returns (bool) {
(address recovered, ECDSA.RecoverError err, ) = ECDSA.tryRecoverCalldata(hash, signature);
return signer() == recovered && err == ECDSA.RecoverError.NoError;
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;
import {ERC4337Utils, PackedUserOperation} from "@openzeppelin/contracts/account/utils/draft-ERC4337Utils.sol";
import {AbstractSigner} from "@openzeppelin/contracts/utils/cryptography/signers/AbstractSigner.sol";
import {EIP712} from "@openzeppelin/contracts/utils/cryptography/EIP712.sol";
import {PaymasterCore} from "./PaymasterCore.sol";
/**
* @dev Extension of {PaymasterCore} that adds signature validation. See {SignerECDSA}, {SignerP256} or {SignerRSA}.
*
* Example of usage:
*
* ```solidity
* contract MyPaymasterECDSASigner is PaymasterSigner, SignerECDSA {
* constructor(address signerAddr) EIP712("MyPaymasterECDSASigner", "1") SignerECDSA(signerAddr) {}
* }
* ```
*/
abstract contract PaymasterSigner is AbstractSigner, EIP712, PaymasterCore {
using ERC4337Utils for *;
bytes32 private constant USER_OPERATION_REQUEST_TYPEHASH =
keccak256(
"UserOperationRequest(address sender,uint256 nonce,bytes initCode,bytes callData,bytes32 accountGasLimits,uint256 preVerificationGas,bytes32 gasFees,uint256 paymasterVerificationGasLimit,uint256 paymasterPostOpGasLimit,uint48 validAfter,uint48 validUntil)"
);
/**
* @dev Virtual function that returns the signable hash for a user operations. Given the `userOpHash`
* contains the `paymasterAndData` itself, it's not possible to sign that value directly. Instead,
* this function must be used to provide a custom mechanism to authorize an user operation.
*/
function _signableUserOpHash(
PackedUserOperation calldata userOp,
uint48 validAfter,
uint48 validUntil
) internal view virtual returns (bytes32) {
return
_hashTypedDataV4(
keccak256(
abi.encode(
USER_OPERATION_REQUEST_TYPEHASH,
userOp.sender,
userOp.nonce,
keccak256(userOp.initCode),
keccak256(userOp.callData),
userOp.accountGasLimits,
userOp.preVerificationGas,
userOp.gasFees,
userOp.paymasterVerificationGasLimit(),
userOp.paymasterPostOpGasLimit(),
validAfter,
validUntil
)
)
);
}
/**
* @dev Internal validation of whether the paymaster is willing to pay for the user operation.
* Returns the context to be passed to postOp and the validation data.
*
* NOTE: The `context` returned is `bytes(0)`. Developers overriding this function MUST
* override {_postOp} to process the context passed along.
*/
function _validatePaymasterUserOp(
PackedUserOperation calldata userOp,
bytes32 /* userOpHash */,
uint256 /* maxCost */
) internal virtual override returns (bytes memory context, uint256 validationData) {
(uint48 validAfter, uint48 validUntil, bytes calldata signature) = _decodePaymasterUserOp(userOp);
return (
bytes(""),
_rawSignatureValidation(_signableUserOpHash(userOp, validAfter, validUntil), signature).packValidationData(
validAfter,
validUntil
)
);
}
/// @dev Decodes the user operation's data from `paymasterAndData`.
function _decodePaymasterUserOp(
PackedUserOperation calldata userOp
) internal pure virtual returns (uint48 validAfter, uint48 validUntil, bytes calldata signature) {
bytes calldata paymasterData = userOp.paymasterData();
return (uint48(bytes6(paymasterData[0:6])), uint48(bytes6(paymasterData[6:12])), paymasterData[12:]);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/draft-IERC4337.sol)
pragma solidity >=0.8.4;
/**
* @dev A https://github.com/ethereum/ercs/blob/master/ERCS/erc-4337.md#useroperation[user operation] is composed of the following elements:
* - `sender` (`address`): The account making the operation
* - `nonce` (`uint256`): Anti-replay parameter (see “Semi-abstracted Nonce Support” )
* - `factory` (`address`): account factory, only for new accounts
* - `factoryData` (`bytes`): data for account factory (only if account factory exists)
* - `callData` (`bytes`): The data to pass to the sender during the main execution call
* - `callGasLimit` (`uint256`): The amount of gas to allocate the main execution call
* - `verificationGasLimit` (`uint256`): The amount of gas to allocate for the verification step
* - `preVerificationGas` (`uint256`): Extra gas to pay the bundler
* - `maxFeePerGas` (`uint256`): Maximum fee per gas (similar to EIP-1559 max_fee_per_gas)
* - `maxPriorityFeePerGas` (`uint256`): Maximum priority fee per gas (similar to EIP-1559 max_priority_fee_per_gas)
* - `paymaster` (`address`): Address of paymaster contract, (or empty, if account pays for itself)
* - `paymasterVerificationGasLimit` (`uint256`): The amount of gas to allocate for the paymaster validation code
* - `paymasterPostOpGasLimit` (`uint256`): The amount of gas to allocate for the paymaster post-operation code
* - `paymasterData` (`bytes`): Data for paymaster (only if paymaster exists)
* - `signature` (`bytes`): Data passed into the account to verify authorization
*
* When passed to on-chain contracts, the following packed version is used.
* - `sender` (`address`)
* - `nonce` (`uint256`)
* - `initCode` (`bytes`): concatenation of factory address and factoryData (or empty)
* - `callData` (`bytes`)
* - `accountGasLimits` (`bytes32`): concatenation of verificationGas (16 bytes) and callGas (16 bytes)
* - `preVerificationGas` (`uint256`)
* - `gasFees` (`bytes32`): concatenation of maxPriorityFeePerGas (16 bytes) and maxFeePerGas (16 bytes)
* - `paymasterAndData` (`bytes`): concatenation of paymaster fields (or empty)
* - `signature` (`bytes`)
*/
struct PackedUserOperation {
address sender;
uint256 nonce;
bytes initCode; // `abi.encodePacked(factory, factoryData)`
bytes callData;
bytes32 accountGasLimits; // `abi.encodePacked(verificationGasLimit, callGasLimit)` 16 bytes each
uint256 preVerificationGas;
bytes32 gasFees; // `abi.encodePacked(maxPriorityFeePerGas, maxFeePerGas)` 16 bytes each
bytes paymasterAndData; // `abi.encodePacked(paymaster, paymasterVerificationGasLimit, paymasterPostOpGasLimit, paymasterData)` (20 bytes, 16 bytes, 16 bytes, dynamic)
bytes signature;
}
/**
* @dev Aggregates and validates multiple signatures for a batch of user operations.
*
* A contract could implement this interface with custom validation schemes that allow signature aggregation,
* enabling significant optimizations and gas savings for execution and transaction data cost.
*
* Bundlers and clients whitelist supported aggregators.
*
* See https://eips.ethereum.org/EIPS/eip-7766[ERC-7766]
*/
interface IAggregator {
/**
* @dev Validates the signature for a user operation.
* Returns an alternative signature that should be used during bundling.
*/
function validateUserOpSignature(
PackedUserOperation calldata userOp
) external view returns (bytes memory sigForUserOp);
/**
* @dev Returns an aggregated signature for a batch of user operation's signatures.
*/
function aggregateSignatures(
PackedUserOperation[] calldata userOps
) external view returns (bytes memory aggregatesSignature);
/**
* @dev Validates that the aggregated signature is valid for the user operations.
*
* Requirements:
*
* - The aggregated signature MUST match the given list of operations.
*/
function validateSignatures(PackedUserOperation[] calldata userOps, bytes calldata signature) external view;
}
/**
* @dev Handle nonce management for accounts.
*
* Nonces are used in accounts as a replay protection mechanism and to ensure the order of user operations.
* To avoid limiting the number of operations an account can perform, the interface allows using parallel
* nonces by using a `key` parameter.
*
* See https://eips.ethereum.org/EIPS/eip-4337#semi-abstracted-nonce-support[ERC-4337 semi-abstracted nonce support].
*/
interface IEntryPointNonces {
/**
* @dev Returns the nonce for a `sender` account and a `key`.
*
* Nonces for a certain `key` are always increasing.
*/
function getNonce(address sender, uint192 key) external view returns (uint256 nonce);
}
/**
* @dev Handle stake management for entities (i.e. accounts, paymasters, factories).
*
* The EntryPoint must implement the following API to let entities like paymasters have a stake,
* and thus have more flexibility in their storage access
* (see https://eips.ethereum.org/EIPS/eip-4337#reputation-scoring-and-throttlingbanning-for-global-entities[reputation, throttling and banning.])
*/
interface IEntryPointStake {
/**
* @dev Returns the balance of the account.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Deposits `msg.value` to the account.
*/
function depositTo(address account) external payable;
/**
* @dev Withdraws `withdrawAmount` from the account to `withdrawAddress`.
*/
function withdrawTo(address payable withdrawAddress, uint256 withdrawAmount) external;
/**
* @dev Adds stake to the account with an unstake delay of `unstakeDelaySec`.
*/
function addStake(uint32 unstakeDelaySec) external payable;
/**
* @dev Unlocks the stake of the account.
*/
function unlockStake() external;
/**
* @dev Withdraws the stake of the account to `withdrawAddress`.
*/
function withdrawStake(address payable withdrawAddress) external;
}
/**
* @dev Entry point for user operations.
*
* User operations are validated and executed by this contract.
*/
interface IEntryPoint is IEntryPointNonces, IEntryPointStake {
/**
* @dev A user operation at `opIndex` failed with `reason`.
*/
error FailedOp(uint256 opIndex, string reason);
/**
* @dev A user operation at `opIndex` failed with `reason` and `inner` returned data.
*/
error FailedOpWithRevert(uint256 opIndex, string reason, bytes inner);
/**
* @dev Batch of aggregated user operations per aggregator.
*/
struct UserOpsPerAggregator {
PackedUserOperation[] userOps;
IAggregator aggregator;
bytes signature;
}
/**
* @dev Executes a batch of user operations.
* @param beneficiary Address to which gas is refunded upon completing the execution.
*/
function handleOps(PackedUserOperation[] calldata ops, address payable beneficiary) external;
/**
* @dev Executes a batch of aggregated user operations per aggregator.
* @param beneficiary Address to which gas is refunded upon completing the execution.
*/
function handleAggregatedOps(
UserOpsPerAggregator[] calldata opsPerAggregator,
address payable beneficiary
) external;
}
/**
* @dev Base interface for an ERC-4337 account.
*/
interface IAccount {
/**
* @dev Validates a user operation.
*
* * MUST validate the caller is a trusted EntryPoint
* * MUST validate that the signature is a valid signature of the userOpHash, and SHOULD
* return SIG_VALIDATION_FAILED (and not revert) on signature mismatch. Any other error MUST revert.
* * MUST pay the entryPoint (caller) at least the “missingAccountFunds” (which might
* be zero, in case the current account’s deposit is high enough)
*
* Returns an encoded packed validation data that is composed of the following elements:
*
* - `authorizer` (`address`): 0 for success, 1 for failure, otherwise the address of an authorizer contract
* - `validUntil` (`uint48`): The UserOp is valid only up to this time. Zero for “infinite”.
* - `validAfter` (`uint48`): The UserOp is valid only after this time.
*/
function validateUserOp(
PackedUserOperation calldata userOp,
bytes32 userOpHash,
uint256 missingAccountFunds
) external returns (uint256 validationData);
}
/**
* @dev Support for executing user operations by prepending the {executeUserOp} function selector
* to the UserOperation's `callData`.
*/
interface IAccountExecute {
/**
* @dev Executes a user operation.
*/
function executeUserOp(PackedUserOperation calldata userOp, bytes32 userOpHash) external;
}
/**
* @dev Interface for a paymaster contract that agrees to pay for the gas costs of a user operation.
*
* NOTE: A paymaster must hold a stake to cover the required entrypoint stake and also the gas for the transaction.
*/
interface IPaymaster {
enum PostOpMode {
opSucceeded,
opReverted,
postOpReverted
}
/**
* @dev Validates whether the paymaster is willing to pay for the user operation. See
* {IAccount-validateUserOp} for additional information on the return value.
*
* NOTE: Bundlers will reject this method if it modifies the state, unless it's whitelisted.
*/
function validatePaymasterUserOp(
PackedUserOperation calldata userOp,
bytes32 userOpHash,
uint256 maxCost
) external returns (bytes memory context, uint256 validationData);
/**
* @dev Verifies the sender is the entrypoint.
* @param actualGasCost the actual amount paid (by account or paymaster) for this UserOperation
* @param actualUserOpFeePerGas total gas used by this UserOperation (including preVerification, creation, validation and execution)
*/
function postOp(
PostOpMode mode,
bytes calldata context,
uint256 actualGasCost,
uint256 actualUserOpFeePerGas
) external;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (account/utils/draft-ERC4337Utils.sol)
pragma solidity ^0.8.20;
import {IEntryPoint, PackedUserOperation} from "../../interfaces/draft-IERC4337.sol";
import {Math} from "../../utils/math/Math.sol";
import {Calldata} from "../../utils/Calldata.sol";
import {Packing} from "../../utils/Packing.sol";
/// @dev This is available on all entrypoint since v0.4.0, but is not formally part of the ERC.
interface IEntryPointExtra {
function getUserOpHash(PackedUserOperation calldata userOp) external view returns (bytes32);
}
/**
* @dev Library with common ERC-4337 utility functions.
*
* See https://eips.ethereum.org/EIPS/eip-4337[ERC-4337].
*/
library ERC4337Utils {
using Packing for *;
/// @dev Address of the entrypoint v0.7.0
IEntryPoint internal constant ENTRYPOINT_V07 = IEntryPoint(0x0000000071727De22E5E9d8BAf0edAc6f37da032);
/// @dev Address of the entrypoint v0.8.0
IEntryPoint internal constant ENTRYPOINT_V08 = IEntryPoint(0x4337084D9E255Ff0702461CF8895CE9E3b5Ff108);
/// @dev Address of the entrypoint v0.9.0
IEntryPoint internal constant ENTRYPOINT_V09 = IEntryPoint(0x433709009B8330FDa32311DF1C2AFA402eD8D009);
/// @dev For simulation purposes, validateUserOp (and validatePaymasterUserOp) return this value on success.
uint256 internal constant SIG_VALIDATION_SUCCESS = 0;
/// @dev For simulation purposes, validateUserOp (and validatePaymasterUserOp) must return this value in case of signature failure, instead of revert.
uint256 internal constant SIG_VALIDATION_FAILED = 1;
/// @dev Parses the validation data into its components. See {packValidationData}.
function parseValidationData(
uint256 validationData
) internal pure returns (address aggregator, uint48 validAfter, uint48 validUntil) {
validAfter = uint48(bytes32(validationData).extract_32_6(0));
validUntil = uint48(bytes32(validationData).extract_32_6(6));
aggregator = address(bytes32(validationData).extract_32_20(12));
if (validUntil == 0) validUntil = type(uint48).max;
}
/// @dev Packs the validation data into a single uint256. See {parseValidationData}.
function packValidationData(
address aggregator,
uint48 validAfter,
uint48 validUntil
) internal pure returns (uint256) {
return uint256(bytes6(validAfter).pack_6_6(bytes6(validUntil)).pack_12_20(bytes20(aggregator)));
}
/// @dev Same as {packValidationData}, but with a boolean signature success flag.
function packValidationData(bool sigSuccess, uint48 validAfter, uint48 validUntil) internal pure returns (uint256) {
return
packValidationData(
address(uint160(Math.ternary(sigSuccess, SIG_VALIDATION_SUCCESS, SIG_VALIDATION_FAILED))),
validAfter,
validUntil
);
}
/**
* @dev Combines two validation data into a single one.
*
* The `aggregator` is set to {SIG_VALIDATION_SUCCESS} if both are successful, while
* the `validAfter` is the maximum and the `validUntil` is the minimum of both.
*/
function combineValidationData(uint256 validationData1, uint256 validationData2) internal pure returns (uint256) {
(address aggregator1, uint48 validAfter1, uint48 validUntil1) = parseValidationData(validationData1);
(address aggregator2, uint48 validAfter2, uint48 validUntil2) = parseValidationData(validationData2);
bool success = aggregator1 == address(uint160(SIG_VALIDATION_SUCCESS)) &&
aggregator2 == address(uint160(SIG_VALIDATION_SUCCESS));
uint48 validAfter = uint48(Math.max(validAfter1, validAfter2));
uint48 validUntil = uint48(Math.min(validUntil1, validUntil2));
return packValidationData(success, validAfter, validUntil);
}
/// @dev Returns the aggregator of the `validationData` and whether it is out of time range.
function getValidationData(uint256 validationData) internal view returns (address aggregator, bool outOfTimeRange) {
(address aggregator_, uint48 validAfter, uint48 validUntil) = parseValidationData(validationData);
return (aggregator_, block.timestamp < validAfter || validUntil < block.timestamp);
}
/// @dev Get the hash of a user operation for a given entrypoint
function hash(PackedUserOperation calldata self, address entrypoint) internal view returns (bytes32) {
// NOTE: getUserOpHash is available since v0.4.0
//
// Prior to v0.8.0, this was easy to replicate for any entrypoint and chainId. Since v0.8.0 of the
// entrypoint, this depends on the Entrypoint's domain separator, which cannot be hardcoded and is complex
// to recompute. Domain separator could be fetch using the `getDomainSeparatorV4` getter, or recomputed from
// the ERC-5267 getter, but both operation would require doing a view call to the entrypoint. Overall it feels
// simpler and less error prone to get that functionality from the entrypoint directly.
return IEntryPointExtra(entrypoint).getUserOpHash(self);
}
/// @dev Returns `factory` from the {PackedUserOperation}, or address(0) if the initCode is empty or not properly formatted.
function factory(PackedUserOperation calldata self) internal pure returns (address) {
return self.initCode.length < 20 ? address(0) : address(bytes20(self.initCode[0:20]));
}
/// @dev Returns `factoryData` from the {PackedUserOperation}, or empty bytes if the initCode is empty or not properly formatted.
function factoryData(PackedUserOperation calldata self) internal pure returns (bytes calldata) {
return self.initCode.length < 20 ? Calldata.emptyBytes() : self.initCode[20:];
}
/// @dev Returns `verificationGasLimit` from the {PackedUserOperation}.
function verificationGasLimit(PackedUserOperation calldata self) internal pure returns (uint256) {
return uint128(self.accountGasLimits.extract_32_16(0));
}
/// @dev Returns `callGasLimit` from the {PackedUserOperation}.
function callGasLimit(PackedUserOperation calldata self) internal pure returns (uint256) {
return uint128(self.accountGasLimits.extract_32_16(16));
}
/// @dev Returns the first section of `gasFees` from the {PackedUserOperation}.
function maxPriorityFeePerGas(PackedUserOperation calldata self) internal pure returns (uint256) {
return uint128(self.gasFees.extract_32_16(0));
}
/// @dev Returns the second section of `gasFees` from the {PackedUserOperation}.
function maxFeePerGas(PackedUserOperation calldata self) internal pure returns (uint256) {
return uint128(self.gasFees.extract_32_16(16));
}
/// @dev Returns the total gas price for the {PackedUserOperation} (ie. `maxFeePerGas` or `maxPriorityFeePerGas + basefee`).
function gasPrice(PackedUserOperation calldata self) internal view returns (uint256) {
unchecked {
// Following values are "per gas"
uint256 maxPriorityFee = maxPriorityFeePerGas(self);
uint256 maxFee = maxFeePerGas(self);
return Math.min(maxFee, maxPriorityFee + block.basefee);
}
}
/// @dev Returns the first section of `paymasterAndData` from the {PackedUserOperation}.
function paymaster(PackedUserOperation calldata self) internal pure returns (address) {
return self.paymasterAndData.length < 52 ? address(0) : address(bytes20(self.paymasterAndData[0:20]));
}
/// @dev Returns the second section of `paymasterAndData` from the {PackedUserOperation}.
function paymasterVerificationGasLimit(PackedUserOperation calldata self) internal pure returns (uint256) {
return self.paymasterAndData.length < 52 ? 0 : uint128(bytes16(self.paymasterAndData[20:36]));
}
/// @dev Returns the third section of `paymasterAndData` from the {PackedUserOperation}.
function paymasterPostOpGasLimit(PackedUserOperation calldata self) internal pure returns (uint256) {
return self.paymasterAndData.length < 52 ? 0 : uint128(bytes16(self.paymasterAndData[36:52]));
}
/// @dev Returns the fourth section of `paymasterAndData` from the {PackedUserOperation}.
function paymasterData(PackedUserOperation calldata self) internal pure returns (bytes calldata) {
return self.paymasterAndData.length < 52 ? Calldata.emptyBytes() : self.paymasterAndData[52:];
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/cryptography/signers/AbstractSigner.sol)
pragma solidity ^0.8.20;
/**
* @dev Abstract contract for signature validation.
*
* Developers must implement {_rawSignatureValidation} and use it as the lowest-level signature validation mechanism.
*
* @custom:stateless
*/
abstract contract AbstractSigner {
/**
* @dev Signature validation algorithm.
*
* WARNING: Implementing a signature validation algorithm is a security-sensitive operation as it involves
* cryptographic verification. It is important to review and test thoroughly before deployment. Consider
* using one of the signature verification libraries (xref:api:utils/cryptography#ECDSA[ECDSA],
* xref:api:utils/cryptography#P256[P256] or xref:api:utils/cryptography#RSA[RSA]).
*/
function _rawSignatureValidation(bytes32 hash, bytes calldata signature) internal view virtual returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.20;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature is invalid.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* NOTE: This function only supports 65-byte signatures. ERC-2098 short signatures are rejected. This restriction
* is DEPRECATED and will be removed in v6.0. Developers SHOULD NOT use signatures as unique identifiers; use hash
* invalidation or nonces for replay protection.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
*
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(
bytes32 hash,
bytes memory signature
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
assembly ("memory-safe") {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Variant of {tryRecover} that takes a signature in calldata
*/
function tryRecoverCalldata(
bytes32 hash,
bytes calldata signature
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, calldata slices would work here, but are
// significantly more expensive (length check) than using calldataload in assembly.
assembly ("memory-safe") {
r := calldataload(signature.offset)
s := calldataload(add(signature.offset, 0x20))
v := byte(0, calldataload(add(signature.offset, 0x40)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* NOTE: This function only supports 65-byte signatures. ERC-2098 short signatures are rejected. This restriction
* is DEPRECATED and will be removed in v6.0. Developers SHOULD NOT use signatures as unique identifiers; use hash
* invalidation or nonces for replay protection.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Variant of {recover} that takes a signature in calldata
*/
function recoverCalldata(bytes32 hash, bytes calldata signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecoverCalldata(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r` and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Parse a signature into its `v`, `r` and `s` components. Supports 65-byte and 64-byte (ERC-2098)
* formats. Returns (0,0,0) for invalid signatures.
*
* For 64-byte signatures, `v` is automatically normalized to 27 or 28.
* For 65-byte signatures, `v` is returned as-is and MUST already be 27 or 28 for use with ecrecover.
*
* Consider validating the result before use, or use {tryRecover}/{recover} which perform full validation.
*/
function parse(bytes memory signature) internal pure returns (uint8 v, bytes32 r, bytes32 s) {
assembly ("memory-safe") {
// Check the signature length
switch mload(signature)
// - case 65: r,s,v signature (standard)
case 65 {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
// - case 64: r,vs signature (cf https://eips.ethereum.org/EIPS/eip-2098)
case 64 {
let vs := mload(add(signature, 0x40))
r := mload(add(signature, 0x20))
s := and(vs, shr(1, not(0)))
v := add(shr(255, vs), 27)
}
default {
r := 0
s := 0
v := 0
}
}
}
/**
* @dev Variant of {parse} that takes a signature in calldata
*/
function parseCalldata(bytes calldata signature) internal pure returns (uint8 v, bytes32 r, bytes32 s) {
assembly ("memory-safe") {
// Check the signature length
switch signature.length
// - case 65: r,s,v signature (standard)
case 65 {
r := calldataload(signature.offset)
s := calldataload(add(signature.offset, 0x20))
v := byte(0, calldataload(add(signature.offset, 0x40)))
}
// - case 64: r,vs signature (cf https://eips.ethereum.org/EIPS/eip-2098)
case 64 {
let vs := calldataload(add(signature.offset, 0x20))
r := calldataload(signature.offset)
s := and(vs, shr(1, not(0)))
v := add(shr(255, vs), 27)
}
default {
r := 0
s := 0
v := 0
}
}
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/cryptography/EIP712.sol)
pragma solidity ^0.8.24;
import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
*
* The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
* encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
* does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
* produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
* separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
* separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
*
* @custom:oz-upgrades-unsafe-allow state-variable-immutable
*/
abstract contract EIP712 is IERC5267 {
using ShortStrings for *;
bytes32 private constant TYPE_HASH =
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
// Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
// invalidate the cached domain separator if the chain id changes.
bytes32 private immutable _cachedDomainSeparator;
uint256 private immutable _cachedChainId;
address private immutable _cachedThis;
bytes32 private immutable _hashedName;
bytes32 private immutable _hashedVersion;
ShortString private immutable _name;
ShortString private immutable _version;
// slither-disable-next-line constable-states
string private _nameFallback;
// slither-disable-next-line constable-states
string private _versionFallback;
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
constructor(string memory name, string memory version) {
_name = name.toShortStringWithFallback(_nameFallback);
_version = version.toShortStringWithFallback(_versionFallback);
_hashedName = keccak256(bytes(name));
_hashedVersion = keccak256(bytes(version));
_cachedChainId = block.chainid;
_cachedDomainSeparator = _buildDomainSeparator();
_cachedThis = address(this);
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view returns (bytes32) {
if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
return _cachedDomainSeparator;
} else {
return _buildDomainSeparator();
}
}
function _buildDomainSeparator() private view returns (bytes32) {
return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
}
/// @inheritdoc IERC5267
function eip712Domain()
public
view
virtual
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
)
{
return (
hex"0f", // 01111
_EIP712Name(),
_EIP712Version(),
block.chainid,
address(this),
bytes32(0),
new uint256[](0)
);
}
/**
* @dev The name parameter for the EIP712 domain.
*
* NOTE: By default this function reads _name which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Name() internal view returns (string memory) {
return _name.toStringWithFallback(_nameFallback);
}
/**
* @dev The version parameter for the EIP712 domain.
*
* NOTE: By default this function reads _version which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Version() internal view returns (string memory) {
return _version.toStringWithFallback(_versionFallback);
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
import {ERC4337Utils} from "@openzeppelin/contracts/account/utils/draft-ERC4337Utils.sol";
import {IEntryPoint, IPaymaster, PackedUserOperation} from "@openzeppelin/contracts/interfaces/draft-IERC4337.sol";
/**
* @dev A simple ERC4337 paymaster implementation. This base implementation only includes the minimal logic to validate
* and pay for user operations.
*
* Developers must implement the {PaymasterCore-_validatePaymasterUserOp} function to define the paymaster's validation
* and payment logic. The `context` parameter is used to pass data between the validation and execution phases.
*
* The paymaster includes support to call the {IEntryPointStake} interface to manage the paymaster's deposits and stakes
* through the internal functions {deposit}, {withdraw}, {addStake}, {unlockStake} and {withdrawStake}.
*
* * Deposits are used to pay for user operations.
* * Stakes are used to guarantee the paymaster's reputation and obtain more flexibility in accessing storage.
*
* NOTE: See [Paymaster's unstaked reputation rules](https://eips.ethereum.org/EIPS/eip-7562#unstaked-paymasters-reputation-rules)
* for more details on the paymaster's storage access limitations.
*/
abstract contract PaymasterCore is IPaymaster {
/// @dev Unauthorized call to the paymaster.
error PaymasterUnauthorized(address sender);
/// @dev Revert if the caller is not the entry point.
modifier onlyEntryPoint() {
_checkEntryPoint();
_;
}
modifier onlyWithdrawer() {
_authorizeWithdraw();
_;
}
/// @dev Canonical entry point for the account that forwards and validates user operations.
function entryPoint() public view virtual returns (IEntryPoint) {
return ERC4337Utils.ENTRYPOINT_V09;
}
/// @inheritdoc IPaymaster
function validatePaymasterUserOp(
PackedUserOperation calldata userOp,
bytes32 userOpHash,
uint256 maxCost
) public virtual onlyEntryPoint returns (bytes memory context, uint256 validationData) {
return _validatePaymasterUserOp(userOp, userOpHash, maxCost);
}
/// @inheritdoc IPaymaster
function postOp(
PostOpMode mode,
bytes calldata context,
uint256 actualGasCost,
uint256 actualUserOpFeePerGas
) public virtual onlyEntryPoint {
_postOp(mode, context, actualGasCost, actualUserOpFeePerGas);
}
/**
* @dev Internal validation of whether the paymaster is willing to pay for the user operation.
* Returns the context to be passed to postOp and the validation data.
*
* The `requiredPreFund` is the amount the paymaster has to pay (in native tokens). It's calculated
* as `requiredGas * userOp.maxFeePerGas`, where `required` gas can be calculated from the user operation
* as `verificationGasLimit + callGasLimit + paymasterVerificationGasLimit + paymasterPostOpGasLimit + preVerificationGas`
*/
function _validatePaymasterUserOp(
PackedUserOperation calldata userOp,
bytes32 userOpHash,
uint256 requiredPreFund
) internal virtual returns (bytes memory context, uint256 validationData);
/**
* @dev Handles post user operation execution logic. The caller must be the entry point.
*
* It receives the `context` returned by `_validatePaymasterUserOp`. Function is not called if no context
* is returned by {validatePaymasterUserOp}.
*
* NOTE: The `actualUserOpFeePerGas` is not `tx.gasprice`. A user operation can be bundled with other transactions
* making the gas price of the user operation to differ.
*/
function _postOp(
PostOpMode /* mode */,
bytes calldata /* context */,
uint256 /* actualGasCost */,
uint256 /* actualUserOpFeePerGas */
) internal virtual {}
/// @dev Calls {IEntryPointStake-depositTo}.
function deposit() public payable virtual {
entryPoint().depositTo{value: msg.value}(address(this));
}
/// @dev Calls {IEntryPointStake-withdrawTo}.
function withdraw(address payable to, uint256 value) public virtual onlyWithdrawer {
entryPoint().withdrawTo(to, value);
}
/// @dev Calls {IEntryPointStake-addStake}.
function addStake(uint32 unstakeDelaySec) public payable virtual {
entryPoint().addStake{value: msg.value}(unstakeDelaySec);
}
/// @dev Calls {IEntryPointStake-unlockStake}.
function unlockStake() public virtual onlyWithdrawer {
entryPoint().unlockStake();
}
/// @dev Calls {IEntryPointStake-withdrawStake}.
function withdrawStake(address payable to) public virtual onlyWithdrawer {
entryPoint().withdrawStake(to);
}
/// @dev Ensures the caller is the {entrypoint}.
function _checkEntryPoint() internal view virtual {
address sender = msg.sender;
if (sender != address(entryPoint())) {
revert PaymasterUnauthorized(sender);
}
}
/**
* @dev Checks whether `msg.sender` withdraw funds stake or deposit from the entrypoint on paymaster's behalf.
*
* Use of an https://docs.openzeppelin.com/contracts/5.x/access-control[access control]
* modifier such as {Ownable-onlyOwner} is recommended.
*
* ```solidity
* function _authorizeUpgrade() internal onlyOwner {}
* ```
*/
function _authorizeWithdraw() internal virtual;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Return the 512-bit addition of two uint256.
*
* The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
*/
function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
assembly ("memory-safe") {
low := add(a, b)
high := lt(low, a)
}
}
/**
* @dev Return the 512-bit multiplication of two uint256.
*
* The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
*/
function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
// 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = high * 2²⁵⁶ + low.
assembly ("memory-safe") {
let mm := mulmod(a, b, not(0))
low := mul(a, b)
high := sub(sub(mm, low), lt(mm, low))
}
}
/**
* @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
success = c >= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a - b;
success = c <= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a * b;
assembly ("memory-safe") {
// Only true when the multiplication doesn't overflow
// (c / a == b) || (a == 0)
success := or(eq(div(c, a), b), iszero(a))
}
// equivalent to: success ? c : 0
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `DIV` opcode returns zero when the denominator is 0.
result := div(a, b)
}
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `MOD` opcode returns zero when the denominator is 0.
result := mod(a, b)
}
}
}
/**
* @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryAdd(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
*/
function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
(, uint256 result) = trySub(a, b);
return result;
}
/**
* @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryMul(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Branchless ternary evaluation for `condition ? a : b`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `condition ? a : b`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
// Handle non-overflow cases, 256 by 256 division.
if (high == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return low / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= high) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [high low].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
high := sub(high, gt(remainder, low))
low := sub(low, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly ("memory-safe") {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [high low] by twos.
low := div(low, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from high into low.
low |= high * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
// is no longer required.
result = low * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
*/
function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
if (high >= 1 << n) {
Panic.panic(Panic.UNDER_OVERFLOW);
}
return (high << (256 - n)) | (low >> n);
}
}
/**
* @dev Calculates x * y >> n with full precision, following the selected rounding direction.
*/
function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory buffer) private pure returns (bool) {
uint256 chunk;
for (uint256 i = 0; i < buffer.length; i += 0x20) {
// See _unsafeReadBytesOffset from utils/Bytes.sol
assembly ("memory-safe") {
chunk := mload(add(add(buffer, 0x20), i))
}
if (chunk >> (8 * saturatingSub(i + 0x20, buffer.length)) != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// If upper 8 bits of 16-bit half set, add 8 to result
r |= SafeCast.toUint((x >> r) > 0xff) << 3;
// If upper 4 bits of 8-bit half set, add 4 to result
r |= SafeCast.toUint((x >> r) > 0xf) << 2;
// Shifts value right by the current result and use it as an index into this lookup table:
//
// | x (4 bits) | index | table[index] = MSB position |
// |------------|---------|-----------------------------|
// | 0000 | 0 | table[0] = 0 |
// | 0001 | 1 | table[1] = 0 |
// | 0010 | 2 | table[2] = 1 |
// | 0011 | 3 | table[3] = 1 |
// | 0100 | 4 | table[4] = 2 |
// | 0101 | 5 | table[5] = 2 |
// | 0110 | 6 | table[6] = 2 |
// | 0111 | 7 | table[7] = 2 |
// | 1000 | 8 | table[8] = 3 |
// | 1001 | 9 | table[9] = 3 |
// | 1010 | 10 | table[10] = 3 |
// | 1011 | 11 | table[11] = 3 |
// | 1100 | 12 | table[12] = 3 |
// | 1101 | 13 | table[13] = 3 |
// | 1110 | 14 | table[14] = 3 |
// | 1111 | 15 | table[15] = 3 |
//
// The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the first 16 bytes (most significant half).
assembly ("memory-safe") {
r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
}
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
/**
* @dev Counts the number of leading zero bits in a uint256.
*/
function clz(uint256 x) internal pure returns (uint256) {
return ternary(x == 0, 256, 255 - log2(x));
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/Calldata.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for manipulating objects in calldata.
*/
library Calldata {
// slither-disable-next-line write-after-write
function emptyBytes() internal pure returns (bytes calldata result) {
assembly ("memory-safe") {
result.offset := 0
result.length := 0
}
}
// slither-disable-next-line write-after-write
function emptyString() internal pure returns (string calldata result) {
assembly ("memory-safe") {
result.offset := 0
result.length := 0
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (utils/Packing.sol)
// This file was procedurally generated from scripts/generate/templates/Packing.js.
pragma solidity ^0.8.20;
/**
* @dev Helper library packing and unpacking multiple values into bytesXX.
*
* Example usage:
*
* ```solidity
* library MyPacker {
* type MyType is bytes32;
*
* function _pack(address account, bytes4 selector, uint64 period) external pure returns (MyType) {
* bytes12 subpack = Packing.pack_4_8(selector, bytes8(period));
* bytes32 pack = Packing.pack_20_12(bytes20(account), subpack);
* return MyType.wrap(pack);
* }
*
* function _unpack(MyType self) external pure returns (address, bytes4, uint64) {
* bytes32 pack = MyType.unwrap(self);
* return (
* address(Packing.extract_32_20(pack, 0)),
* Packing.extract_32_4(pack, 20),
* uint64(Packing.extract_32_8(pack, 24))
* );
* }
* }
* ```
*
* _Available since v5.1._
*/
// solhint-disable func-name-mixedcase
library Packing {
error OutOfRangeAccess();
function pack_1_1(bytes1 left, bytes1 right) internal pure returns (bytes2 result) {
assembly ("memory-safe") {
left := and(left, shl(248, not(0)))
right := and(right, shl(248, not(0)))
result := or(left, shr(8, right))
}
}
function pack_2_2(bytes2 left, bytes2 right) internal pure returns (bytes4 result) {
assembly ("memory-safe") {
left := and(left, shl(240, not(0)))
right := and(right, shl(240, not(0)))
result := or(left, shr(16, right))
}
}
function pack_2_4(bytes2 left, bytes4 right) internal pure returns (bytes6 result) {
assembly ("memory-safe") {
left := and(left, shl(240, not(0)))
right := and(right, shl(224, not(0)))
result := or(left, shr(16, right))
}
}
function pack_2_6(bytes2 left, bytes6 right) internal pure returns (bytes8 result) {
assembly ("memory-safe") {
left := and(left, shl(240, not(0)))
right := and(right, shl(208, not(0)))
result := or(left, shr(16, right))
}
}
function pack_2_8(bytes2 left, bytes8 right) internal pure returns (bytes10 result) {
assembly ("memory-safe") {
left := and(left, shl(240, not(0)))
right := and(right, shl(192, not(0)))
result := or(left, shr(16, right))
}
}
function pack_2_10(bytes2 left, bytes10 right) internal pure returns (bytes12 result) {
assembly ("memory-safe") {
left := and(left, shl(240, not(0)))
right := and(right, shl(176, not(0)))
result := or(left, shr(16, right))
}
}
function pack_2_20(bytes2 left, bytes20 right) internal pure returns (bytes22 result) {
assembly ("memory-safe") {
left := and(left, shl(240, not(0)))
right := and(right, shl(96, not(0)))
result := or(left, shr(16, right))
}
}
function pack_2_22(bytes2 left, bytes22 right) internal pure returns (bytes24 result) {
assembly ("memory-safe") {
left := and(left, shl(240, not(0)))
right := and(right, shl(80, not(0)))
result := or(left, shr(16, right))
}
}
function pack_4_2(bytes4 left, bytes2 right) internal pure returns (bytes6 result) {
assembly ("memory-safe") {
left := and(left, shl(224, not(0)))
right := and(right, shl(240, not(0)))
result := or(left, shr(32, right))
}
}
function pack_4_4(bytes4 left, bytes4 right) internal pure returns (bytes8 result) {
assembly ("memory-safe") {
left := and(left, shl(224, not(0)))
right := and(right, shl(224, not(0)))
result := or(left, shr(32, right))
}
}
function pack_4_6(bytes4 left, bytes6 right) internal pure returns (bytes10 result) {
assembly ("memory-safe") {
left := and(left, shl(224, not(0)))
right := and(right, shl(208, not(0)))
result := or(left, shr(32, right))
}
}
function pack_4_8(bytes4 left, bytes8 right) internal pure returns (bytes12 result) {
assembly ("memory-safe") {
left := and(left, shl(224, not(0)))
right := and(right, shl(192, not(0)))
result := or(left, shr(32, right))
}
}
function pack_4_12(bytes4 left, bytes12 right) internal pure returns (bytes16 result) {
assembly ("memory-safe") {
left := and(left, shl(224, not(0)))
right := and(right, shl(160, not(0)))
result := or(left, shr(32, right))
}
}
function pack_4_16(bytes4 left, bytes16 right) internal pure returns (bytes20 result) {
assembly ("memory-safe") {
left := and(left, shl(224, not(0)))
right := and(right, shl(128, not(0)))
result := or(left, shr(32, right))
}
}
function pack_4_20(bytes4 left, bytes20 right) internal pure returns (bytes24 result) {
assembly ("memory-safe") {
left := and(left, shl(224, not(0)))
right := and(right, shl(96, not(0)))
result := or(left, shr(32, right))
}
}
function pack_4_24(bytes4 left, bytes24 right) internal pure returns (bytes28 result) {
assembly ("memory-safe") {
left := and(left, shl(224, not(0)))
right := and(right, shl(64, not(0)))
result := or(left, shr(32, right))
}
}
function pack_4_28(bytes4 left, bytes28 right) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
left := and(left, shl(224, not(0)))
right := and(right, shl(32, not(0)))
result := or(left, shr(32, right))
}
}
function pack_6_2(bytes6 left, bytes2 right) internal pure returns (bytes8 result) {
assembly ("memory-safe") {
left := and(left, shl(208, not(0)))
right := and(right, shl(240, not(0)))
result := or(left, shr(48, right))
}
}
function pack_6_4(bytes6 left, bytes4 right) internal pure returns (bytes10 result) {
assembly ("memory-safe") {
left := and(left, shl(208, not(0)))
right := and(right, shl(224, not(0)))
result := or(left, shr(48, right))
}
}
function pack_6_6(bytes6 left, bytes6 right) internal pure returns (bytes12 result) {
assembly ("memory-safe") {
left := and(left, shl(208, not(0)))
right := and(right, shl(208, not(0)))
result := or(left, shr(48, right))
}
}
function pack_6_10(bytes6 left, bytes10 right) internal pure returns (bytes16 result) {
assembly ("memory-safe") {
left := and(left, shl(208, not(0)))
right := and(right, shl(176, not(0)))
result := or(left, shr(48, right))
}
}
function pack_6_16(bytes6 left, bytes16 right) internal pure returns (bytes22 result) {
assembly ("memory-safe") {
left := and(left, shl(208, not(0)))
right := and(right, shl(128, not(0)))
result := or(left, shr(48, right))
}
}
function pack_6_22(bytes6 left, bytes22 right) internal pure returns (bytes28 result) {
assembly ("memory-safe") {
left := and(left, shl(208, not(0)))
right := and(right, shl(80, not(0)))
result := or(left, shr(48, right))
}
}
function pack_8_2(bytes8 left, bytes2 right) internal pure returns (bytes10 result) {
assembly ("memory-safe") {
left := and(left, shl(192, not(0)))
right := and(right, shl(240, not(0)))
result := or(left, shr(64, right))
}
}
function pack_8_4(bytes8 left, bytes4 right) internal pure returns (bytes12 result) {
assembly ("memory-safe") {
left := and(left, shl(192, not(0)))
right := and(right, shl(224, not(0)))
result := or(left, shr(64, right))
}
}
function pack_8_8(bytes8 left, bytes8 right) internal pure returns (bytes16 result) {
assembly ("memory-safe") {
left := and(left, shl(192, not(0)))
right := and(right, shl(192, not(0)))
result := or(left, shr(64, right))
}
}
function pack_8_12(bytes8 left, bytes12 right) internal pure returns (bytes20 result) {
assembly ("memory-safe") {
left := and(left, shl(192, not(0)))
right := and(right, shl(160, not(0)))
result := or(left, shr(64, right))
}
}
function pack_8_16(bytes8 left, bytes16 right) internal pure returns (bytes24 result) {
assembly ("memory-safe") {
left := and(left, shl(192, not(0)))
right := and(right, shl(128, not(0)))
result := or(left, shr(64, right))
}
}
function pack_8_20(bytes8 left, bytes20 right) internal pure returns (bytes28 result) {
assembly ("memory-safe") {
left := and(left, shl(192, not(0)))
right := and(right, shl(96, not(0)))
result := or(left, shr(64, right))
}
}
function pack_8_24(bytes8 left, bytes24 right) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
left := and(left, shl(192, not(0)))
right := and(right, shl(64, not(0)))
result := or(left, shr(64, right))
}
}
function pack_10_2(bytes10 left, bytes2 right) internal pure returns (bytes12 result) {
assembly ("memory-safe") {
left := and(left, shl(176, not(0)))
right := and(right, shl(240, not(0)))
result := or(left, shr(80, right))
}
}
function pack_10_6(bytes10 left, bytes6 right) internal pure returns (bytes16 result) {
assembly ("memory-safe") {
left := and(left, shl(176, not(0)))
right := and(right, shl(208, not(0)))
result := or(left, shr(80, right))
}
}
function pack_10_10(bytes10 left, bytes10 right) internal pure returns (bytes20 result) {
assembly ("memory-safe") {
left := and(left, shl(176, not(0)))
right := and(right, shl(176, not(0)))
result := or(left, shr(80, right))
}
}
function pack_10_12(bytes10 left, bytes12 right) internal pure returns (bytes22 result) {
assembly ("memory-safe") {
left := and(left, shl(176, not(0)))
right := and(right, shl(160, not(0)))
result := or(left, shr(80, right))
}
}
function pack_10_22(bytes10 left, bytes22 right) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
left := and(left, shl(176, not(0)))
right := and(right, shl(80, not(0)))
result := or(left, shr(80, right))
}
}
function pack_12_4(bytes12 left, bytes4 right) internal pure returns (bytes16 result) {
assembly ("memory-safe") {
left := and(left, shl(160, not(0)))
right := and(right, shl(224, not(0)))
result := or(left, shr(96, right))
}
}
function pack_12_8(bytes12 left, bytes8 right) internal pure returns (bytes20 result) {
assembly ("memory-safe") {
left := and(left, shl(160, not(0)))
right := and(right, shl(192, not(0)))
result := or(left, shr(96, right))
}
}
function pack_12_10(bytes12 left, bytes10 right) internal pure returns (bytes22 result) {
assembly ("memory-safe") {
left := and(left, shl(160, not(0)))
right := and(right, shl(176, not(0)))
result := or(left, shr(96, right))
}
}
function pack_12_12(bytes12 left, bytes12 right) internal pure returns (bytes24 result) {
assembly ("memory-safe") {
left := and(left, shl(160, not(0)))
right := and(right, shl(160, not(0)))
result := or(left, shr(96, right))
}
}
function pack_12_16(bytes12 left, bytes16 right) internal pure returns (bytes28 result) {
assembly ("memory-safe") {
left := and(left, shl(160, not(0)))
right := and(right, shl(128, not(0)))
result := or(left, shr(96, right))
}
}
function pack_12_20(bytes12 left, bytes20 right) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
left := and(left, shl(160, not(0)))
right := and(right, shl(96, not(0)))
result := or(left, shr(96, right))
}
}
function pack_16_4(bytes16 left, bytes4 right) internal pure returns (bytes20 result) {
assembly ("memory-safe") {
left := and(left, shl(128, not(0)))
right := and(right, shl(224, not(0)))
result := or(left, shr(128, right))
}
}
function pack_16_6(bytes16 left, bytes6 right) internal pure returns (bytes22 result) {
assembly ("memory-safe") {
left := and(left, shl(128, not(0)))
right := and(right, shl(208, not(0)))
result := or(left, shr(128, right))
}
}
function pack_16_8(bytes16 left, bytes8 right) internal pure returns (bytes24 result) {
assembly ("memory-safe") {
left := and(left, shl(128, not(0)))
right := and(right, shl(192, not(0)))
result := or(left, shr(128, right))
}
}
function pack_16_12(bytes16 left, bytes12 right) internal pure returns (bytes28 result) {
assembly ("memory-safe") {
left := and(left, shl(128, not(0)))
right := and(right, shl(160, not(0)))
result := or(left, shr(128, right))
}
}
function pack_16_16(bytes16 left, bytes16 right) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
left := and(left, shl(128, not(0)))
right := and(right, shl(128, not(0)))
result := or(left, shr(128, right))
}
}
function pack_20_2(bytes20 left, bytes2 right) internal pure returns (bytes22 result) {
assembly ("memory-safe") {
left := and(left, shl(96, not(0)))
right := and(right, shl(240, not(0)))
result := or(left, shr(160, right))
}
}
function pack_20_4(bytes20 left, bytes4 right) internal pure returns (bytes24 result) {
assembly ("memory-safe") {
left := and(left, shl(96, not(0)))
right := and(right, shl(224, not(0)))
result := or(left, shr(160, right))
}
}
function pack_20_8(bytes20 left, bytes8 right) internal pure returns (bytes28 result) {
assembly ("memory-safe") {
left := and(left, shl(96, not(0)))
right := and(right, shl(192, not(0)))
result := or(left, shr(160, right))
}
}
function pack_20_12(bytes20 left, bytes12 right) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
left := and(left, shl(96, not(0)))
right := and(right, shl(160, not(0)))
result := or(left, shr(160, right))
}
}
function pack_22_2(bytes22 left, bytes2 right) internal pure returns (bytes24 result) {
assembly ("memory-safe") {
left := and(left, shl(80, not(0)))
right := and(right, shl(240, not(0)))
result := or(left, shr(176, right))
}
}
function pack_22_6(bytes22 left, bytes6 right) internal pure returns (bytes28 result) {
assembly ("memory-safe") {
left := and(left, shl(80, not(0)))
right := and(right, shl(208, not(0)))
result := or(left, shr(176, right))
}
}
function pack_22_10(bytes22 left, bytes10 right) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
left := and(left, shl(80, not(0)))
right := and(right, shl(176, not(0)))
result := or(left, shr(176, right))
}
}
function pack_24_4(bytes24 left, bytes4 right) internal pure returns (bytes28 result) {
assembly ("memory-safe") {
left := and(left, shl(64, not(0)))
right := and(right, shl(224, not(0)))
result := or(left, shr(192, right))
}
}
function pack_24_8(bytes24 left, bytes8 right) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
left := and(left, shl(64, not(0)))
right := and(right, shl(192, not(0)))
result := or(left, shr(192, right))
}
}
function pack_28_4(bytes28 left, bytes4 right) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
left := and(left, shl(32, not(0)))
right := and(right, shl(224, not(0)))
result := or(left, shr(224, right))
}
}
function extract_2_1(bytes2 self, uint8 offset) internal pure returns (bytes1 result) {
if (offset > 1) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(248, not(0)))
}
}
function replace_2_1(bytes2 self, bytes1 value, uint8 offset) internal pure returns (bytes2 result) {
bytes1 oldValue = extract_2_1(self, offset);
assembly ("memory-safe") {
value := and(value, shl(248, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_4_1(bytes4 self, uint8 offset) internal pure returns (bytes1 result) {
if (offset > 3) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(248, not(0)))
}
}
function replace_4_1(bytes4 self, bytes1 value, uint8 offset) internal pure returns (bytes4 result) {
bytes1 oldValue = extract_4_1(self, offset);
assembly ("memory-safe") {
value := and(value, shl(248, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_4_2(bytes4 self, uint8 offset) internal pure returns (bytes2 result) {
if (offset > 2) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(240, not(0)))
}
}
function replace_4_2(bytes4 self, bytes2 value, uint8 offset) internal pure returns (bytes4 result) {
bytes2 oldValue = extract_4_2(self, offset);
assembly ("memory-safe") {
value := and(value, shl(240, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_6_1(bytes6 self, uint8 offset) internal pure returns (bytes1 result) {
if (offset > 5) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(248, not(0)))
}
}
function replace_6_1(bytes6 self, bytes1 value, uint8 offset) internal pure returns (bytes6 result) {
bytes1 oldValue = extract_6_1(self, offset);
assembly ("memory-safe") {
value := and(value, shl(248, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_6_2(bytes6 self, uint8 offset) internal pure returns (bytes2 result) {
if (offset > 4) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(240, not(0)))
}
}
function replace_6_2(bytes6 self, bytes2 value, uint8 offset) internal pure returns (bytes6 result) {
bytes2 oldValue = extract_6_2(self, offset);
assembly ("memory-safe") {
value := and(value, shl(240, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_6_4(bytes6 self, uint8 offset) internal pure returns (bytes4 result) {
if (offset > 2) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(224, not(0)))
}
}
function replace_6_4(bytes6 self, bytes4 value, uint8 offset) internal pure returns (bytes6 result) {
bytes4 oldValue = extract_6_4(self, offset);
assembly ("memory-safe") {
value := and(value, shl(224, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_8_1(bytes8 self, uint8 offset) internal pure returns (bytes1 result) {
if (offset > 7) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(248, not(0)))
}
}
function replace_8_1(bytes8 self, bytes1 value, uint8 offset) internal pure returns (bytes8 result) {
bytes1 oldValue = extract_8_1(self, offset);
assembly ("memory-safe") {
value := and(value, shl(248, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_8_2(bytes8 self, uint8 offset) internal pure returns (bytes2 result) {
if (offset > 6) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(240, not(0)))
}
}
function replace_8_2(bytes8 self, bytes2 value, uint8 offset) internal pure returns (bytes8 result) {
bytes2 oldValue = extract_8_2(self, offset);
assembly ("memory-safe") {
value := and(value, shl(240, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_8_4(bytes8 self, uint8 offset) internal pure returns (bytes4 result) {
if (offset > 4) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(224, not(0)))
}
}
function replace_8_4(bytes8 self, bytes4 value, uint8 offset) internal pure returns (bytes8 result) {
bytes4 oldValue = extract_8_4(self, offset);
assembly ("memory-safe") {
value := and(value, shl(224, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_8_6(bytes8 self, uint8 offset) internal pure returns (bytes6 result) {
if (offset > 2) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(208, not(0)))
}
}
function replace_8_6(bytes8 self, bytes6 value, uint8 offset) internal pure returns (bytes8 result) {
bytes6 oldValue = extract_8_6(self, offset);
assembly ("memory-safe") {
value := and(value, shl(208, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_10_1(bytes10 self, uint8 offset) internal pure returns (bytes1 result) {
if (offset > 9) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(248, not(0)))
}
}
function replace_10_1(bytes10 self, bytes1 value, uint8 offset) internal pure returns (bytes10 result) {
bytes1 oldValue = extract_10_1(self, offset);
assembly ("memory-safe") {
value := and(value, shl(248, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_10_2(bytes10 self, uint8 offset) internal pure returns (bytes2 result) {
if (offset > 8) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(240, not(0)))
}
}
function replace_10_2(bytes10 self, bytes2 value, uint8 offset) internal pure returns (bytes10 result) {
bytes2 oldValue = extract_10_2(self, offset);
assembly ("memory-safe") {
value := and(value, shl(240, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_10_4(bytes10 self, uint8 offset) internal pure returns (bytes4 result) {
if (offset > 6) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(224, not(0)))
}
}
function replace_10_4(bytes10 self, bytes4 value, uint8 offset) internal pure returns (bytes10 result) {
bytes4 oldValue = extract_10_4(self, offset);
assembly ("memory-safe") {
value := and(value, shl(224, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_10_6(bytes10 self, uint8 offset) internal pure returns (bytes6 result) {
if (offset > 4) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(208, not(0)))
}
}
function replace_10_6(bytes10 self, bytes6 value, uint8 offset) internal pure returns (bytes10 result) {
bytes6 oldValue = extract_10_6(self, offset);
assembly ("memory-safe") {
value := and(value, shl(208, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_10_8(bytes10 self, uint8 offset) internal pure returns (bytes8 result) {
if (offset > 2) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(192, not(0)))
}
}
function replace_10_8(bytes10 self, bytes8 value, uint8 offset) internal pure returns (bytes10 result) {
bytes8 oldValue = extract_10_8(self, offset);
assembly ("memory-safe") {
value := and(value, shl(192, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_12_1(bytes12 self, uint8 offset) internal pure returns (bytes1 result) {
if (offset > 11) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(248, not(0)))
}
}
function replace_12_1(bytes12 self, bytes1 value, uint8 offset) internal pure returns (bytes12 result) {
bytes1 oldValue = extract_12_1(self, offset);
assembly ("memory-safe") {
value := and(value, shl(248, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_12_2(bytes12 self, uint8 offset) internal pure returns (bytes2 result) {
if (offset > 10) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(240, not(0)))
}
}
function replace_12_2(bytes12 self, bytes2 value, uint8 offset) internal pure returns (bytes12 result) {
bytes2 oldValue = extract_12_2(self, offset);
assembly ("memory-safe") {
value := and(value, shl(240, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_12_4(bytes12 self, uint8 offset) internal pure returns (bytes4 result) {
if (offset > 8) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(224, not(0)))
}
}
function replace_12_4(bytes12 self, bytes4 value, uint8 offset) internal pure returns (bytes12 result) {
bytes4 oldValue = extract_12_4(self, offset);
assembly ("memory-safe") {
value := and(value, shl(224, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_12_6(bytes12 self, uint8 offset) internal pure returns (bytes6 result) {
if (offset > 6) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(208, not(0)))
}
}
function replace_12_6(bytes12 self, bytes6 value, uint8 offset) internal pure returns (bytes12 result) {
bytes6 oldValue = extract_12_6(self, offset);
assembly ("memory-safe") {
value := and(value, shl(208, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_12_8(bytes12 self, uint8 offset) internal pure returns (bytes8 result) {
if (offset > 4) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(192, not(0)))
}
}
function replace_12_8(bytes12 self, bytes8 value, uint8 offset) internal pure returns (bytes12 result) {
bytes8 oldValue = extract_12_8(self, offset);
assembly ("memory-safe") {
value := and(value, shl(192, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_12_10(bytes12 self, uint8 offset) internal pure returns (bytes10 result) {
if (offset > 2) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(176, not(0)))
}
}
function replace_12_10(bytes12 self, bytes10 value, uint8 offset) internal pure returns (bytes12 result) {
bytes10 oldValue = extract_12_10(self, offset);
assembly ("memory-safe") {
value := and(value, shl(176, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_16_1(bytes16 self, uint8 offset) internal pure returns (bytes1 result) {
if (offset > 15) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(248, not(0)))
}
}
function replace_16_1(bytes16 self, bytes1 value, uint8 offset) internal pure returns (bytes16 result) {
bytes1 oldValue = extract_16_1(self, offset);
assembly ("memory-safe") {
value := and(value, shl(248, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_16_2(bytes16 self, uint8 offset) internal pure returns (bytes2 result) {
if (offset > 14) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(240, not(0)))
}
}
function replace_16_2(bytes16 self, bytes2 value, uint8 offset) internal pure returns (bytes16 result) {
bytes2 oldValue = extract_16_2(self, offset);
assembly ("memory-safe") {
value := and(value, shl(240, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_16_4(bytes16 self, uint8 offset) internal pure returns (bytes4 result) {
if (offset > 12) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(224, not(0)))
}
}
function replace_16_4(bytes16 self, bytes4 value, uint8 offset) internal pure returns (bytes16 result) {
bytes4 oldValue = extract_16_4(self, offset);
assembly ("memory-safe") {
value := and(value, shl(224, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_16_6(bytes16 self, uint8 offset) internal pure returns (bytes6 result) {
if (offset > 10) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(208, not(0)))
}
}
function replace_16_6(bytes16 self, bytes6 value, uint8 offset) internal pure returns (bytes16 result) {
bytes6 oldValue = extract_16_6(self, offset);
assembly ("memory-safe") {
value := and(value, shl(208, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_16_8(bytes16 self, uint8 offset) internal pure returns (bytes8 result) {
if (offset > 8) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(192, not(0)))
}
}
function replace_16_8(bytes16 self, bytes8 value, uint8 offset) internal pure returns (bytes16 result) {
bytes8 oldValue = extract_16_8(self, offset);
assembly ("memory-safe") {
value := and(value, shl(192, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_16_10(bytes16 self, uint8 offset) internal pure returns (bytes10 result) {
if (offset > 6) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(176, not(0)))
}
}
function replace_16_10(bytes16 self, bytes10 value, uint8 offset) internal pure returns (bytes16 result) {
bytes10 oldValue = extract_16_10(self, offset);
assembly ("memory-safe") {
value := and(value, shl(176, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_16_12(bytes16 self, uint8 offset) internal pure returns (bytes12 result) {
if (offset > 4) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(160, not(0)))
}
}
function replace_16_12(bytes16 self, bytes12 value, uint8 offset) internal pure returns (bytes16 result) {
bytes12 oldValue = extract_16_12(self, offset);
assembly ("memory-safe") {
value := and(value, shl(160, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_20_1(bytes20 self, uint8 offset) internal pure returns (bytes1 result) {
if (offset > 19) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(248, not(0)))
}
}
function replace_20_1(bytes20 self, bytes1 value, uint8 offset) internal pure returns (bytes20 result) {
bytes1 oldValue = extract_20_1(self, offset);
assembly ("memory-safe") {
value := and(value, shl(248, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_20_2(bytes20 self, uint8 offset) internal pure returns (bytes2 result) {
if (offset > 18) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(240, not(0)))
}
}
function replace_20_2(bytes20 self, bytes2 value, uint8 offset) internal pure returns (bytes20 result) {
bytes2 oldValue = extract_20_2(self, offset);
assembly ("memory-safe") {
value := and(value, shl(240, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_20_4(bytes20 self, uint8 offset) internal pure returns (bytes4 result) {
if (offset > 16) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(224, not(0)))
}
}
function replace_20_4(bytes20 self, bytes4 value, uint8 offset) internal pure returns (bytes20 result) {
bytes4 oldValue = extract_20_4(self, offset);
assembly ("memory-safe") {
value := and(value, shl(224, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_20_6(bytes20 self, uint8 offset) internal pure returns (bytes6 result) {
if (offset > 14) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(208, not(0)))
}
}
function replace_20_6(bytes20 self, bytes6 value, uint8 offset) internal pure returns (bytes20 result) {
bytes6 oldValue = extract_20_6(self, offset);
assembly ("memory-safe") {
value := and(value, shl(208, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_20_8(bytes20 self, uint8 offset) internal pure returns (bytes8 result) {
if (offset > 12) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(192, not(0)))
}
}
function replace_20_8(bytes20 self, bytes8 value, uint8 offset) internal pure returns (bytes20 result) {
bytes8 oldValue = extract_20_8(self, offset);
assembly ("memory-safe") {
value := and(value, shl(192, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_20_10(bytes20 self, uint8 offset) internal pure returns (bytes10 result) {
if (offset > 10) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(176, not(0)))
}
}
function replace_20_10(bytes20 self, bytes10 value, uint8 offset) internal pure returns (bytes20 result) {
bytes10 oldValue = extract_20_10(self, offset);
assembly ("memory-safe") {
value := and(value, shl(176, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_20_12(bytes20 self, uint8 offset) internal pure returns (bytes12 result) {
if (offset > 8) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(160, not(0)))
}
}
function replace_20_12(bytes20 self, bytes12 value, uint8 offset) internal pure returns (bytes20 result) {
bytes12 oldValue = extract_20_12(self, offset);
assembly ("memory-safe") {
value := and(value, shl(160, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_20_16(bytes20 self, uint8 offset) internal pure returns (bytes16 result) {
if (offset > 4) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(128, not(0)))
}
}
function replace_20_16(bytes20 self, bytes16 value, uint8 offset) internal pure returns (bytes20 result) {
bytes16 oldValue = extract_20_16(self, offset);
assembly ("memory-safe") {
value := and(value, shl(128, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_22_1(bytes22 self, uint8 offset) internal pure returns (bytes1 result) {
if (offset > 21) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(248, not(0)))
}
}
function replace_22_1(bytes22 self, bytes1 value, uint8 offset) internal pure returns (bytes22 result) {
bytes1 oldValue = extract_22_1(self, offset);
assembly ("memory-safe") {
value := and(value, shl(248, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_22_2(bytes22 self, uint8 offset) internal pure returns (bytes2 result) {
if (offset > 20) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(240, not(0)))
}
}
function replace_22_2(bytes22 self, bytes2 value, uint8 offset) internal pure returns (bytes22 result) {
bytes2 oldValue = extract_22_2(self, offset);
assembly ("memory-safe") {
value := and(value, shl(240, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_22_4(bytes22 self, uint8 offset) internal pure returns (bytes4 result) {
if (offset > 18) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(224, not(0)))
}
}
function replace_22_4(bytes22 self, bytes4 value, uint8 offset) internal pure returns (bytes22 result) {
bytes4 oldValue = extract_22_4(self, offset);
assembly ("memory-safe") {
value := and(value, shl(224, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_22_6(bytes22 self, uint8 offset) internal pure returns (bytes6 result) {
if (offset > 16) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(208, not(0)))
}
}
function replace_22_6(bytes22 self, bytes6 value, uint8 offset) internal pure returns (bytes22 result) {
bytes6 oldValue = extract_22_6(self, offset);
assembly ("memory-safe") {
value := and(value, shl(208, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_22_8(bytes22 self, uint8 offset) internal pure returns (bytes8 result) {
if (offset > 14) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(192, not(0)))
}
}
function replace_22_8(bytes22 self, bytes8 value, uint8 offset) internal pure returns (bytes22 result) {
bytes8 oldValue = extract_22_8(self, offset);
assembly ("memory-safe") {
value := and(value, shl(192, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_22_10(bytes22 self, uint8 offset) internal pure returns (bytes10 result) {
if (offset > 12) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(176, not(0)))
}
}
function replace_22_10(bytes22 self, bytes10 value, uint8 offset) internal pure returns (bytes22 result) {
bytes10 oldValue = extract_22_10(self, offset);
assembly ("memory-safe") {
value := and(value, shl(176, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_22_12(bytes22 self, uint8 offset) internal pure returns (bytes12 result) {
if (offset > 10) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(160, not(0)))
}
}
function replace_22_12(bytes22 self, bytes12 value, uint8 offset) internal pure returns (bytes22 result) {
bytes12 oldValue = extract_22_12(self, offset);
assembly ("memory-safe") {
value := and(value, shl(160, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_22_16(bytes22 self, uint8 offset) internal pure returns (bytes16 result) {
if (offset > 6) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(128, not(0)))
}
}
function replace_22_16(bytes22 self, bytes16 value, uint8 offset) internal pure returns (bytes22 result) {
bytes16 oldValue = extract_22_16(self, offset);
assembly ("memory-safe") {
value := and(value, shl(128, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_22_20(bytes22 self, uint8 offset) internal pure returns (bytes20 result) {
if (offset > 2) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(96, not(0)))
}
}
function replace_22_20(bytes22 self, bytes20 value, uint8 offset) internal pure returns (bytes22 result) {
bytes20 oldValue = extract_22_20(self, offset);
assembly ("memory-safe") {
value := and(value, shl(96, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_24_1(bytes24 self, uint8 offset) internal pure returns (bytes1 result) {
if (offset > 23) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(248, not(0)))
}
}
function replace_24_1(bytes24 self, bytes1 value, uint8 offset) internal pure returns (bytes24 result) {
bytes1 oldValue = extract_24_1(self, offset);
assembly ("memory-safe") {
value := and(value, shl(248, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_24_2(bytes24 self, uint8 offset) internal pure returns (bytes2 result) {
if (offset > 22) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(240, not(0)))
}
}
function replace_24_2(bytes24 self, bytes2 value, uint8 offset) internal pure returns (bytes24 result) {
bytes2 oldValue = extract_24_2(self, offset);
assembly ("memory-safe") {
value := and(value, shl(240, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_24_4(bytes24 self, uint8 offset) internal pure returns (bytes4 result) {
if (offset > 20) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(224, not(0)))
}
}
function replace_24_4(bytes24 self, bytes4 value, uint8 offset) internal pure returns (bytes24 result) {
bytes4 oldValue = extract_24_4(self, offset);
assembly ("memory-safe") {
value := and(value, shl(224, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_24_6(bytes24 self, uint8 offset) internal pure returns (bytes6 result) {
if (offset > 18) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(208, not(0)))
}
}
function replace_24_6(bytes24 self, bytes6 value, uint8 offset) internal pure returns (bytes24 result) {
bytes6 oldValue = extract_24_6(self, offset);
assembly ("memory-safe") {
value := and(value, shl(208, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_24_8(bytes24 self, uint8 offset) internal pure returns (bytes8 result) {
if (offset > 16) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(192, not(0)))
}
}
function replace_24_8(bytes24 self, bytes8 value, uint8 offset) internal pure returns (bytes24 result) {
bytes8 oldValue = extract_24_8(self, offset);
assembly ("memory-safe") {
value := and(value, shl(192, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_24_10(bytes24 self, uint8 offset) internal pure returns (bytes10 result) {
if (offset > 14) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(176, not(0)))
}
}
function replace_24_10(bytes24 self, bytes10 value, uint8 offset) internal pure returns (bytes24 result) {
bytes10 oldValue = extract_24_10(self, offset);
assembly ("memory-safe") {
value := and(value, shl(176, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_24_12(bytes24 self, uint8 offset) internal pure returns (bytes12 result) {
if (offset > 12) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(160, not(0)))
}
}
function replace_24_12(bytes24 self, bytes12 value, uint8 offset) internal pure returns (bytes24 result) {
bytes12 oldValue = extract_24_12(self, offset);
assembly ("memory-safe") {
value := and(value, shl(160, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_24_16(bytes24 self, uint8 offset) internal pure returns (bytes16 result) {
if (offset > 8) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(128, not(0)))
}
}
function replace_24_16(bytes24 self, bytes16 value, uint8 offset) internal pure returns (bytes24 result) {
bytes16 oldValue = extract_24_16(self, offset);
assembly ("memory-safe") {
value := and(value, shl(128, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_24_20(bytes24 self, uint8 offset) internal pure returns (bytes20 result) {
if (offset > 4) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(96, not(0)))
}
}
function replace_24_20(bytes24 self, bytes20 value, uint8 offset) internal pure returns (bytes24 result) {
bytes20 oldValue = extract_24_20(self, offset);
assembly ("memory-safe") {
value := and(value, shl(96, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_24_22(bytes24 self, uint8 offset) internal pure returns (bytes22 result) {
if (offset > 2) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(80, not(0)))
}
}
function replace_24_22(bytes24 self, bytes22 value, uint8 offset) internal pure returns (bytes24 result) {
bytes22 oldValue = extract_24_22(self, offset);
assembly ("memory-safe") {
value := and(value, shl(80, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_28_1(bytes28 self, uint8 offset) internal pure returns (bytes1 result) {
if (offset > 27) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(248, not(0)))
}
}
function replace_28_1(bytes28 self, bytes1 value, uint8 offset) internal pure returns (bytes28 result) {
bytes1 oldValue = extract_28_1(self, offset);
assembly ("memory-safe") {
value := and(value, shl(248, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_28_2(bytes28 self, uint8 offset) internal pure returns (bytes2 result) {
if (offset > 26) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(240, not(0)))
}
}
function replace_28_2(bytes28 self, bytes2 value, uint8 offset) internal pure returns (bytes28 result) {
bytes2 oldValue = extract_28_2(self, offset);
assembly ("memory-safe") {
value := and(value, shl(240, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_28_4(bytes28 self, uint8 offset) internal pure returns (bytes4 result) {
if (offset > 24) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(224, not(0)))
}
}
function replace_28_4(bytes28 self, bytes4 value, uint8 offset) internal pure returns (bytes28 result) {
bytes4 oldValue = extract_28_4(self, offset);
assembly ("memory-safe") {
value := and(value, shl(224, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_28_6(bytes28 self, uint8 offset) internal pure returns (bytes6 result) {
if (offset > 22) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(208, not(0)))
}
}
function replace_28_6(bytes28 self, bytes6 value, uint8 offset) internal pure returns (bytes28 result) {
bytes6 oldValue = extract_28_6(self, offset);
assembly ("memory-safe") {
value := and(value, shl(208, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_28_8(bytes28 self, uint8 offset) internal pure returns (bytes8 result) {
if (offset > 20) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(192, not(0)))
}
}
function replace_28_8(bytes28 self, bytes8 value, uint8 offset) internal pure returns (bytes28 result) {
bytes8 oldValue = extract_28_8(self, offset);
assembly ("memory-safe") {
value := and(value, shl(192, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_28_10(bytes28 self, uint8 offset) internal pure returns (bytes10 result) {
if (offset > 18) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(176, not(0)))
}
}
function replace_28_10(bytes28 self, bytes10 value, uint8 offset) internal pure returns (bytes28 result) {
bytes10 oldValue = extract_28_10(self, offset);
assembly ("memory-safe") {
value := and(value, shl(176, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_28_12(bytes28 self, uint8 offset) internal pure returns (bytes12 result) {
if (offset > 16) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(160, not(0)))
}
}
function replace_28_12(bytes28 self, bytes12 value, uint8 offset) internal pure returns (bytes28 result) {
bytes12 oldValue = extract_28_12(self, offset);
assembly ("memory-safe") {
value := and(value, shl(160, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_28_16(bytes28 self, uint8 offset) internal pure returns (bytes16 result) {
if (offset > 12) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(128, not(0)))
}
}
function replace_28_16(bytes28 self, bytes16 value, uint8 offset) internal pure returns (bytes28 result) {
bytes16 oldValue = extract_28_16(self, offset);
assembly ("memory-safe") {
value := and(value, shl(128, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_28_20(bytes28 self, uint8 offset) internal pure returns (bytes20 result) {
if (offset > 8) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(96, not(0)))
}
}
function replace_28_20(bytes28 self, bytes20 value, uint8 offset) internal pure returns (bytes28 result) {
bytes20 oldValue = extract_28_20(self, offset);
assembly ("memory-safe") {
value := and(value, shl(96, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_28_22(bytes28 self, uint8 offset) internal pure returns (bytes22 result) {
if (offset > 6) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(80, not(0)))
}
}
function replace_28_22(bytes28 self, bytes22 value, uint8 offset) internal pure returns (bytes28 result) {
bytes22 oldValue = extract_28_22(self, offset);
assembly ("memory-safe") {
value := and(value, shl(80, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_28_24(bytes28 self, uint8 offset) internal pure returns (bytes24 result) {
if (offset > 4) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(64, not(0)))
}
}
function replace_28_24(bytes28 self, bytes24 value, uint8 offset) internal pure returns (bytes28 result) {
bytes24 oldValue = extract_28_24(self, offset);
assembly ("memory-safe") {
value := and(value, shl(64, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_32_1(bytes32 self, uint8 offset) internal pure returns (bytes1 result) {
if (offset > 31) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(248, not(0)))
}
}
function replace_32_1(bytes32 self, bytes1 value, uint8 offset) internal pure returns (bytes32 result) {
bytes1 oldValue = extract_32_1(self, offset);
assembly ("memory-safe") {
value := and(value, shl(248, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_32_2(bytes32 self, uint8 offset) internal pure returns (bytes2 result) {
if (offset > 30) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(240, not(0)))
}
}
function replace_32_2(bytes32 self, bytes2 value, uint8 offset) internal pure returns (bytes32 result) {
bytes2 oldValue = extract_32_2(self, offset);
assembly ("memory-safe") {
value := and(value, shl(240, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_32_4(bytes32 self, uint8 offset) internal pure returns (bytes4 result) {
if (offset > 28) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(224, not(0)))
}
}
function replace_32_4(bytes32 self, bytes4 value, uint8 offset) internal pure returns (bytes32 result) {
bytes4 oldValue = extract_32_4(self, offset);
assembly ("memory-safe") {
value := and(value, shl(224, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_32_6(bytes32 self, uint8 offset) internal pure returns (bytes6 result) {
if (offset > 26) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(208, not(0)))
}
}
function replace_32_6(bytes32 self, bytes6 value, uint8 offset) internal pure returns (bytes32 result) {
bytes6 oldValue = extract_32_6(self, offset);
assembly ("memory-safe") {
value := and(value, shl(208, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_32_8(bytes32 self, uint8 offset) internal pure returns (bytes8 result) {
if (offset > 24) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(192, not(0)))
}
}
function replace_32_8(bytes32 self, bytes8 value, uint8 offset) internal pure returns (bytes32 result) {
bytes8 oldValue = extract_32_8(self, offset);
assembly ("memory-safe") {
value := and(value, shl(192, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_32_10(bytes32 self, uint8 offset) internal pure returns (bytes10 result) {
if (offset > 22) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(176, not(0)))
}
}
function replace_32_10(bytes32 self, bytes10 value, uint8 offset) internal pure returns (bytes32 result) {
bytes10 oldValue = extract_32_10(self, offset);
assembly ("memory-safe") {
value := and(value, shl(176, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_32_12(bytes32 self, uint8 offset) internal pure returns (bytes12 result) {
if (offset > 20) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(160, not(0)))
}
}
function replace_32_12(bytes32 self, bytes12 value, uint8 offset) internal pure returns (bytes32 result) {
bytes12 oldValue = extract_32_12(self, offset);
assembly ("memory-safe") {
value := and(value, shl(160, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_32_16(bytes32 self, uint8 offset) internal pure returns (bytes16 result) {
if (offset > 16) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(128, not(0)))
}
}
function replace_32_16(bytes32 self, bytes16 value, uint8 offset) internal pure returns (bytes32 result) {
bytes16 oldValue = extract_32_16(self, offset);
assembly ("memory-safe") {
value := and(value, shl(128, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_32_20(bytes32 self, uint8 offset) internal pure returns (bytes20 result) {
if (offset > 12) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(96, not(0)))
}
}
function replace_32_20(bytes32 self, bytes20 value, uint8 offset) internal pure returns (bytes32 result) {
bytes20 oldValue = extract_32_20(self, offset);
assembly ("memory-safe") {
value := and(value, shl(96, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_32_22(bytes32 self, uint8 offset) internal pure returns (bytes22 result) {
if (offset > 10) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(80, not(0)))
}
}
function replace_32_22(bytes32 self, bytes22 value, uint8 offset) internal pure returns (bytes32 result) {
bytes22 oldValue = extract_32_22(self, offset);
assembly ("memory-safe") {
value := and(value, shl(80, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_32_24(bytes32 self, uint8 offset) internal pure returns (bytes24 result) {
if (offset > 8) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(64, not(0)))
}
}
function replace_32_24(bytes32 self, bytes24 value, uint8 offset) internal pure returns (bytes32 result) {
bytes24 oldValue = extract_32_24(self, offset);
assembly ("memory-safe") {
value := and(value, shl(64, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
function extract_32_28(bytes32 self, uint8 offset) internal pure returns (bytes28 result) {
if (offset > 4) revert OutOfRangeAccess();
assembly ("memory-safe") {
result := and(shl(mul(8, offset), self), shl(32, not(0)))
}
}
function replace_32_28(bytes32 self, bytes28 value, uint8 offset) internal pure returns (bytes32 result) {
bytes28 oldValue = extract_32_28(self, offset);
assembly ("memory-safe") {
value := and(value, shl(32, not(0)))
result := xor(self, shr(mul(8, offset), xor(oldValue, value)))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/cryptography/MessageHashUtils.sol)
pragma solidity ^0.8.24;
import {Strings} from "../Strings.sol";
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
error ERC5267ExtensionsNotSupported();
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing a bytes32 `messageHash` with
* `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
* hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
*
* NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
* keccak256, although any bytes32 value can be safely used because the final digest will
* be re-hashed.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
}
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing an arbitrary `message` with
* `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
* hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
return
keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x00` (data with intended validator).
*
* The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
* `validator` address. Then hashing the result.
*
* See {ECDSA-recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(hex"19_00", validator, data));
}
/**
* @dev Variant of {toDataWithIntendedValidatorHash-address-bytes} optimized for cases where `data` is a bytes32.
*/
function toDataWithIntendedValidatorHash(
address validator,
bytes32 messageHash
) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, hex"19_00")
mstore(0x02, shl(96, validator))
mstore(0x16, messageHash)
digest := keccak256(0x00, 0x36)
}
}
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\x19\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* See {ECDSA-recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
let ptr := mload(0x40)
mstore(ptr, hex"19_01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
/**
* @dev Returns the EIP-712 domain separator constructed from an `eip712Domain`. See {IERC5267-eip712Domain}
*
* This function dynamically constructs the domain separator based on which fields are present in the
* `fields` parameter. It contains flags that indicate which domain fields are present:
*
* * Bit 0 (0x01): name
* * Bit 1 (0x02): version
* * Bit 2 (0x04): chainId
* * Bit 3 (0x08): verifyingContract
* * Bit 4 (0x10): salt
*
* Arguments that correspond to fields which are not present in `fields` are ignored. For example, if `fields` is
* `0x0f` (`0b01111`), then the `salt` parameter is ignored.
*/
function toDomainSeparator(
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt
) internal pure returns (bytes32 hash) {
return
toDomainSeparator(
fields,
keccak256(bytes(name)),
keccak256(bytes(version)),
chainId,
verifyingContract,
salt
);
}
/// @dev Variant of {toDomainSeparator-bytes1-string-string-uint256-address-bytes32} that uses hashed name and version.
function toDomainSeparator(
bytes1 fields,
bytes32 nameHash,
bytes32 versionHash,
uint256 chainId,
address verifyingContract,
bytes32 salt
) internal pure returns (bytes32 hash) {
bytes32 domainTypeHash = toDomainTypeHash(fields);
assembly ("memory-safe") {
// align fields to the right for easy processing
fields := shr(248, fields)
// FMP used as scratch space
let fmp := mload(0x40)
mstore(fmp, domainTypeHash)
let ptr := add(fmp, 0x20)
if and(fields, 0x01) {
mstore(ptr, nameHash)
ptr := add(ptr, 0x20)
}
if and(fields, 0x02) {
mstore(ptr, versionHash)
ptr := add(ptr, 0x20)
}
if and(fields, 0x04) {
mstore(ptr, chainId)
ptr := add(ptr, 0x20)
}
if and(fields, 0x08) {
mstore(ptr, verifyingContract)
ptr := add(ptr, 0x20)
}
if and(fields, 0x10) {
mstore(ptr, salt)
ptr := add(ptr, 0x20)
}
hash := keccak256(fmp, sub(ptr, fmp))
}
}
/// @dev Builds an EIP-712 domain type hash depending on the `fields` provided, following https://eips.ethereum.org/EIPS/eip-5267[ERC-5267]
function toDomainTypeHash(bytes1 fields) internal pure returns (bytes32 hash) {
if (fields & 0x20 == 0x20) revert ERC5267ExtensionsNotSupported();
assembly ("memory-safe") {
// align fields to the right for easy processing
fields := shr(248, fields)
// FMP used as scratch space
let fmp := mload(0x40)
mstore(fmp, "EIP712Domain(")
let ptr := add(fmp, 0x0d)
// name field
if and(fields, 0x01) {
mstore(ptr, "string name,")
ptr := add(ptr, 0x0c)
}
// version field
if and(fields, 0x02) {
mstore(ptr, "string version,")
ptr := add(ptr, 0x0f)
}
// chainId field
if and(fields, 0x04) {
mstore(ptr, "uint256 chainId,")
ptr := add(ptr, 0x10)
}
// verifyingContract field
if and(fields, 0x08) {
mstore(ptr, "address verifyingContract,")
ptr := add(ptr, 0x1a)
}
// salt field
if and(fields, 0x10) {
mstore(ptr, "bytes32 salt,")
ptr := add(ptr, 0x0d)
}
// if any field is enabled, remove the trailing comma
ptr := sub(ptr, iszero(iszero(and(fields, 0x1f))))
// add the closing brace
mstore8(ptr, 0x29) // add closing brace
ptr := add(ptr, 1)
hash := keccak256(fmp, sub(ptr, fmp))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/ShortStrings.sol)
pragma solidity ^0.8.20;
import {StorageSlot} from "./StorageSlot.sol";
// | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
// | length | 0x BB |
type ShortString is bytes32;
/**
* @dev This library provides functions to convert short memory strings
* into a `ShortString` type that can be used as an immutable variable.
*
* Strings of arbitrary length can be optimized using this library if
* they are short enough (up to 31 bytes) by packing them with their
* length (1 byte) in a single EVM word (32 bytes). Additionally, a
* fallback mechanism can be used for every other case.
*
* Usage example:
*
* ```solidity
* contract Named {
* using ShortStrings for *;
*
* ShortString private immutable _name;
* string private _nameFallback;
*
* constructor(string memory contractName) {
* _name = contractName.toShortStringWithFallback(_nameFallback);
* }
*
* function name() external view returns (string memory) {
* return _name.toStringWithFallback(_nameFallback);
* }
* }
* ```
*/
library ShortStrings {
// Used as an identifier for strings longer than 31 bytes.
bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
error StringTooLong(string str);
error InvalidShortString();
/**
* @dev Encode a string of at most 31 chars into a `ShortString`.
*
* This will trigger a `StringTooLong` error is the input string is too long.
*/
function toShortString(string memory str) internal pure returns (ShortString) {
bytes memory bstr = bytes(str);
if (bstr.length > 0x1f) {
revert StringTooLong(str);
}
return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
}
/**
* @dev Decode a `ShortString` back to a "normal" string.
*/
function toString(ShortString sstr) internal pure returns (string memory) {
uint256 len = byteLength(sstr);
// using `new string(len)` would work locally but is not memory safe.
string memory str = new string(0x20);
assembly ("memory-safe") {
mstore(str, len)
mstore(add(str, 0x20), sstr)
}
return str;
}
/**
* @dev Return the length of a `ShortString`.
*/
function byteLength(ShortString sstr) internal pure returns (uint256) {
uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
if (result > 0x1f) {
revert InvalidShortString();
}
return result;
}
/**
* @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
*/
function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
if (bytes(value).length < 0x20) {
return toShortString(value);
} else {
StorageSlot.getStringSlot(store).value = value;
return ShortString.wrap(FALLBACK_SENTINEL);
}
}
/**
* @dev Decode a string that was encoded to `ShortString` or written to storage using {toShortStringWithFallback}.
*/
function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return toString(value);
} else {
return store;
}
}
/**
* @dev Return the length of a string that was encoded to `ShortString` or written to storage using
* {toShortStringWithFallback}.
*
* WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
* actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
*/
function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return byteLength(value);
} else {
return bytes(store).length;
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC5267.sol)
pragma solidity >=0.4.16;
interface IERC5267 {
/**
* @dev MAY be emitted to signal that the domain could have changed.
*/
event EIP712DomainChanged();
/**
* @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
* signature.
*/
function eip712Domain()
external
view
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in a uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in a uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev A uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/Strings.sol)
pragma solidity ^0.8.24;
import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";
import {Bytes} from "./Bytes.sol";
/**
* @dev String operations.
*/
library Strings {
using SafeCast for *;
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
uint256 private constant SPECIAL_CHARS_LOOKUP =
(1 << 0x08) | // backspace
(1 << 0x09) | // tab
(1 << 0x0a) | // newline
(1 << 0x0c) | // form feed
(1 << 0x0d) | // carriage return
(1 << 0x22) | // double quote
(1 << 0x5c); // backslash
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev The string being parsed contains characters that are not in scope of the given base.
*/
error StringsInvalidChar();
/**
* @dev The string being parsed is not a properly formatted address.
*/
error StringsInvalidAddressFormat();
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
assembly ("memory-safe") {
ptr := add(add(buffer, 0x20), length)
}
while (true) {
ptr--;
assembly ("memory-safe") {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
* representation, according to EIP-55.
*/
function toChecksumHexString(address addr) internal pure returns (string memory) {
bytes memory buffer = bytes(toHexString(addr));
// hash the hex part of buffer (skip length + 2 bytes, length 40)
uint256 hashValue;
assembly ("memory-safe") {
hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
}
for (uint256 i = 41; i > 1; --i) {
// possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
// case shift by xoring with 0x20
buffer[i] ^= 0x20;
}
hashValue >>= 4;
}
return string(buffer);
}
/**
* @dev Converts a `bytes` buffer to its ASCII `string` hexadecimal representation.
*/
function toHexString(bytes memory input) internal pure returns (string memory) {
unchecked {
bytes memory buffer = new bytes(2 * input.length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 0; i < input.length; ++i) {
uint8 v = uint8(input[i]);
buffer[2 * i + 2] = HEX_DIGITS[v >> 4];
buffer[2 * i + 3] = HEX_DIGITS[v & 0xf];
}
return string(buffer);
}
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return Bytes.equal(bytes(a), bytes(b));
}
/**
* @dev Parse a decimal string and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input) internal pure returns (uint256) {
return parseUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
uint256 result = 0;
for (uint256 i = begin; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 9) return (false, 0);
result *= 10;
result += chr;
}
return (true, result);
}
/**
* @dev Parse a decimal string and returns the value as a `int256`.
*
* Requirements:
* - The string must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input) internal pure returns (int256) {
return parseInt(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
(bool success, int256 value) = tryParseInt(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
* the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
}
uint256 private constant ABS_MIN_INT256 = 2 ** 255;
/**
* @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character or if the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, int256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseIntUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseIntUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, int256 value) {
bytes memory buffer = bytes(input);
// Check presence of a negative sign.
bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
bool positiveSign = sign == bytes1("+");
bool negativeSign = sign == bytes1("-");
uint256 offset = (positiveSign || negativeSign).toUint();
(bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);
if (absSuccess && absValue < ABS_MIN_INT256) {
return (true, negativeSign ? -int256(absValue) : int256(absValue));
} else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
return (true, type(int256).min);
} else return (false, 0);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input) internal pure returns (uint256) {
return parseHexUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseHexUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
* invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseHexUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseHexUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
// skip 0x prefix if present
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 offset = hasPrefix.toUint() * 2;
uint256 result = 0;
for (uint256 i = begin + offset; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 15) return (false, 0);
result *= 16;
unchecked {
// Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
// This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked.
result += chr;
}
}
return (true, result);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input) internal pure returns (address) {
return parseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
(bool success, address value) = tryParseAddress(input, begin, end);
if (!success) revert StringsInvalidAddressFormat();
return value;
}
/**
* @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
* formatted address. See {parseAddress-string} requirements.
*/
function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
return tryParseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
* formatted address. See {parseAddress-string-uint256-uint256} requirements.
*/
function tryParseAddress(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, address value) {
if (end > bytes(input).length || begin > end) return (false, address(0));
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 expectedLength = 40 + hasPrefix.toUint() * 2;
// check that input is the correct length
if (end - begin == expectedLength) {
// length guarantees that this does not overflow, and value is at most type(uint160).max
(bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
return (s, address(uint160(v)));
} else {
return (false, address(0));
}
}
function _tryParseChr(bytes1 chr) private pure returns (uint8) {
uint8 value = uint8(chr);
// Try to parse `chr`:
// - Case 1: [0-9]
// - Case 2: [a-f]
// - Case 3: [A-F]
// - otherwise not supported
unchecked {
if (value > 47 && value < 58) value -= 48;
else if (value > 96 && value < 103) value -= 87;
else if (value > 64 && value < 71) value -= 55;
else return type(uint8).max;
}
return value;
}
/**
* @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata.
*
* WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped.
*
* NOTE: This function escapes all unicode characters, and not just the ones in ranges defined in section 2.5 of
* RFC-4627 (U+0000 to U+001F, U+0022 and U+005C). ECMAScript's `JSON.parse` does recover escaped unicode
* characters that are not in this range, but other tooling may provide different results.
*/
function escapeJSON(string memory input) internal pure returns (string memory) {
bytes memory buffer = bytes(input);
bytes memory output = new bytes(2 * buffer.length); // worst case scenario
uint256 outputLength = 0;
for (uint256 i = 0; i < buffer.length; ++i) {
bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i));
if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) {
output[outputLength++] = "\\";
if (char == 0x08) output[outputLength++] = "b";
else if (char == 0x09) output[outputLength++] = "t";
else if (char == 0x0a) output[outputLength++] = "n";
else if (char == 0x0c) output[outputLength++] = "f";
else if (char == 0x0d) output[outputLength++] = "r";
else if (char == 0x5c) output[outputLength++] = "\\";
else if (char == 0x22) {
// solhint-disable-next-line quotes
output[outputLength++] = '"';
}
} else {
output[outputLength++] = char;
}
}
// write the actual length and deallocate unused memory
assembly ("memory-safe") {
mstore(output, outputLength)
mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63)))))
}
return string(output);
}
/**
* @dev Reads a bytes32 from a bytes array without bounds checking.
*
* NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
* assembly block as such would prevent some optimizations.
*/
function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
// This is not memory safe in the general case, but all calls to this private function are within bounds.
assembly ("memory-safe") {
value := mload(add(add(buffer, 0x20), offset))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.20;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC-1967 implementation slot:
* ```solidity
* contract ERC1967 {
* // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(newImplementation.code.length > 0);
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*
* TIP: Consider using this library along with {SlotDerivation}.
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct Int256Slot {
int256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Int256Slot` with member `value` located at `slot`.
*/
function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
/**
* @dev Returns a `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
}
}
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
// Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
// taking advantage of the most significant (or "sign" bit) in two's complement representation.
// This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
// the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
int256 mask = n >> 255;
// A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
return uint256((n + mask) ^ mask);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/Bytes.sol)
pragma solidity ^0.8.24;
import {Math} from "./math/Math.sol";
/**
* @dev Bytes operations.
*/
library Bytes {
/**
* @dev Forward search for `s` in `buffer`
* * If `s` is present in the buffer, returns the index of the first instance
* * If `s` is not present in the buffer, returns type(uint256).max
*
* NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/indexOf[Javascript's `Array.indexOf`]
*/
function indexOf(bytes memory buffer, bytes1 s) internal pure returns (uint256) {
return indexOf(buffer, s, 0);
}
/**
* @dev Forward search for `s` in `buffer` starting at position `pos`
* * If `s` is present in the buffer (at or after `pos`), returns the index of the next instance
* * If `s` is not present in the buffer (at or after `pos`), returns type(uint256).max
*
* NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/indexOf[Javascript's `Array.indexOf`]
*/
function indexOf(bytes memory buffer, bytes1 s, uint256 pos) internal pure returns (uint256) {
uint256 length = buffer.length;
for (uint256 i = pos; i < length; ++i) {
if (bytes1(_unsafeReadBytesOffset(buffer, i)) == s) {
return i;
}
}
return type(uint256).max;
}
/**
* @dev Backward search for `s` in `buffer`
* * If `s` is present in the buffer, returns the index of the last instance
* * If `s` is not present in the buffer, returns type(uint256).max
*
* NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/lastIndexOf[Javascript's `Array.lastIndexOf`]
*/
function lastIndexOf(bytes memory buffer, bytes1 s) internal pure returns (uint256) {
return lastIndexOf(buffer, s, type(uint256).max);
}
/**
* @dev Backward search for `s` in `buffer` starting at position `pos`
* * If `s` is present in the buffer (at or before `pos`), returns the index of the previous instance
* * If `s` is not present in the buffer (at or before `pos`), returns type(uint256).max
*
* NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/lastIndexOf[Javascript's `Array.lastIndexOf`]
*/
function lastIndexOf(bytes memory buffer, bytes1 s, uint256 pos) internal pure returns (uint256) {
unchecked {
uint256 length = buffer.length;
for (uint256 i = Math.min(Math.saturatingAdd(pos, 1), length); i > 0; --i) {
if (bytes1(_unsafeReadBytesOffset(buffer, i - 1)) == s) {
return i - 1;
}
}
return type(uint256).max;
}
}
/**
* @dev Copies the content of `buffer`, from `start` (included) to the end of `buffer` into a new bytes object in
* memory.
*
* NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/slice[Javascript's `Array.slice`]
*/
function slice(bytes memory buffer, uint256 start) internal pure returns (bytes memory) {
return slice(buffer, start, buffer.length);
}
/**
* @dev Copies the content of `buffer`, from `start` (included) to `end` (excluded) into a new bytes object in
* memory. The `end` argument is truncated to the length of the `buffer`.
*
* NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/slice[Javascript's `Array.slice`]
*/
function slice(bytes memory buffer, uint256 start, uint256 end) internal pure returns (bytes memory) {
// sanitize
end = Math.min(end, buffer.length);
start = Math.min(start, end);
// allocate and copy
bytes memory result = new bytes(end - start);
assembly ("memory-safe") {
mcopy(add(result, 0x20), add(add(buffer, 0x20), start), sub(end, start))
}
return result;
}
/**
* @dev Moves the content of `buffer`, from `start` (included) to the end of `buffer` to the start of that buffer.
*
* NOTE: This function modifies the provided buffer in place. If you need to preserve the original buffer, use {slice} instead
* NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/splice[Javascript's `Array.splice`]
*/
function splice(bytes memory buffer, uint256 start) internal pure returns (bytes memory) {
return splice(buffer, start, buffer.length);
}
/**
* @dev Moves the content of `buffer`, from `start` (included) to end (excluded) to the start of that buffer. The
* `end` argument is truncated to the length of the `buffer`.
*
* NOTE: This function modifies the provided buffer in place. If you need to preserve the original buffer, use {slice} instead
* NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/splice[Javascript's `Array.splice`]
*/
function splice(bytes memory buffer, uint256 start, uint256 end) internal pure returns (bytes memory) {
// sanitize
end = Math.min(end, buffer.length);
start = Math.min(start, end);
// allocate and copy
assembly ("memory-safe") {
mcopy(add(buffer, 0x20), add(add(buffer, 0x20), start), sub(end, start))
mstore(buffer, sub(end, start))
}
return buffer;
}
/**
* @dev Replaces bytes in `buffer` starting at `pos` with all bytes from `replacement`.
*
* Parameters are clamped to valid ranges (i.e. `pos` is clamped to `[0, buffer.length]`).
* If `pos >= buffer.length`, no replacement occurs and the buffer is returned unchanged.
*
* NOTE: This function modifies the provided buffer in place.
*/
function replace(bytes memory buffer, uint256 pos, bytes memory replacement) internal pure returns (bytes memory) {
return replace(buffer, pos, replacement, 0, replacement.length);
}
/**
* @dev Replaces bytes in `buffer` starting at `pos` with bytes from `replacement` starting at `offset`.
* Copies at most `length` bytes from `replacement` to `buffer`.
*
* Parameters are clamped to valid ranges (i.e. `pos` is clamped to `[0, buffer.length]`, `offset` is
* clamped to `[0, replacement.length]`, and `length` is clamped to `min(length, replacement.length - offset,
* buffer.length - pos))`. If `pos >= buffer.length` or `offset >= replacement.length`, no replacement occurs
* and the buffer is returned unchanged.
*
* NOTE: This function modifies the provided buffer in place.
*/
function replace(
bytes memory buffer,
uint256 pos,
bytes memory replacement,
uint256 offset,
uint256 length
) internal pure returns (bytes memory) {
// sanitize
pos = Math.min(pos, buffer.length);
offset = Math.min(offset, replacement.length);
length = Math.min(length, Math.min(replacement.length - offset, buffer.length - pos));
// allocate and copy
assembly ("memory-safe") {
mcopy(add(add(buffer, 0x20), pos), add(add(replacement, 0x20), offset), length)
}
return buffer;
}
/**
* @dev Concatenate an array of bytes into a single bytes object.
*
* For fixed bytes types, we recommend using the solidity built-in `bytes.concat` or (equivalent)
* `abi.encodePacked`.
*
* NOTE: this could be done in assembly with a single loop that expands starting at the FMP, but that would be
* significantly less readable. It might be worth benchmarking the savings of the full-assembly approach.
*/
function concat(bytes[] memory buffers) internal pure returns (bytes memory) {
uint256 length = 0;
for (uint256 i = 0; i < buffers.length; ++i) {
length += buffers[i].length;
}
bytes memory result = new bytes(length);
uint256 offset = 0x20;
for (uint256 i = 0; i < buffers.length; ++i) {
bytes memory input = buffers[i];
assembly ("memory-safe") {
mcopy(add(result, offset), add(input, 0x20), mload(input))
}
unchecked {
offset += input.length;
}
}
return result;
}
/**
* @dev Split each byte in `input` into two nibbles (4 bits each)
*
* Example: hex"01234567" → hex"0001020304050607"
*/
function toNibbles(bytes memory input) internal pure returns (bytes memory output) {
assembly ("memory-safe") {
let length := mload(input)
output := mload(0x40)
mstore(0x40, add(add(output, 0x20), mul(length, 2)))
mstore(output, mul(length, 2))
for {
let i := 0
} lt(i, length) {
i := add(i, 0x10)
} {
let chunk := shr(128, mload(add(add(input, 0x20), i)))
chunk := and(
0x0000000000000000ffffffffffffffff0000000000000000ffffffffffffffff,
or(shl(64, chunk), chunk)
)
chunk := and(
0x00000000ffffffff00000000ffffffff00000000ffffffff00000000ffffffff,
or(shl(32, chunk), chunk)
)
chunk := and(
0x0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff,
or(shl(16, chunk), chunk)
)
chunk := and(
0x00ff00ff00ff00ff00ff00ff00ff00ff00ff00ff00ff00ff00ff00ff00ff00ff,
or(shl(8, chunk), chunk)
)
chunk := and(
0x0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f,
or(shl(4, chunk), chunk)
)
mstore(add(add(output, 0x20), mul(i, 2)), chunk)
}
}
}
/**
* @dev Returns true if the two byte buffers are equal.
*/
function equal(bytes memory a, bytes memory b) internal pure returns (bool) {
return a.length == b.length && keccak256(a) == keccak256(b);
}
/**
* @dev Reverses the byte order of a bytes32 value, converting between little-endian and big-endian.
* Inspired by https://graphics.stanford.edu/~seander/bithacks.html#ReverseParallel[Reverse Parallel]
*/
function reverseBytes32(bytes32 value) internal pure returns (bytes32) {
value = // swap bytes
((value >> 8) & 0x00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF) |
((value & 0x00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF) << 8);
value = // swap 2-byte long pairs
((value >> 16) & 0x0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF) |
((value & 0x0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF) << 16);
value = // swap 4-byte long pairs
((value >> 32) & 0x00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF) |
((value & 0x00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF) << 32);
value = // swap 8-byte long pairs
((value >> 64) & 0x0000000000000000FFFFFFFFFFFFFFFF0000000000000000FFFFFFFFFFFFFFFF) |
((value & 0x0000000000000000FFFFFFFFFFFFFFFF0000000000000000FFFFFFFFFFFFFFFF) << 64);
return (value >> 128) | (value << 128); // swap 16-byte long pairs
}
/// @dev Same as {reverseBytes32} but optimized for 128-bit values.
function reverseBytes16(bytes16 value) internal pure returns (bytes16) {
value = // swap bytes
((value & 0xFF00FF00FF00FF00FF00FF00FF00FF00) >> 8) |
((value & 0x00FF00FF00FF00FF00FF00FF00FF00FF) << 8);
value = // swap 2-byte long pairs
((value & 0xFFFF0000FFFF0000FFFF0000FFFF0000) >> 16) |
((value & 0x0000FFFF0000FFFF0000FFFF0000FFFF) << 16);
value = // swap 4-byte long pairs
((value & 0xFFFFFFFF00000000FFFFFFFF00000000) >> 32) |
((value & 0x00000000FFFFFFFF00000000FFFFFFFF) << 32);
return (value >> 64) | (value << 64); // swap 8-byte long pairs
}
/// @dev Same as {reverseBytes32} but optimized for 64-bit values.
function reverseBytes8(bytes8 value) internal pure returns (bytes8) {
value = ((value & 0xFF00FF00FF00FF00) >> 8) | ((value & 0x00FF00FF00FF00FF) << 8); // swap bytes
value = ((value & 0xFFFF0000FFFF0000) >> 16) | ((value & 0x0000FFFF0000FFFF) << 16); // swap 2-byte long pairs
return (value >> 32) | (value << 32); // swap 4-byte long pairs
}
/// @dev Same as {reverseBytes32} but optimized for 32-bit values.
function reverseBytes4(bytes4 value) internal pure returns (bytes4) {
value = ((value & 0xFF00FF00) >> 8) | ((value & 0x00FF00FF) << 8); // swap bytes
return (value >> 16) | (value << 16); // swap 2-byte long pairs
}
/// @dev Same as {reverseBytes32} but optimized for 16-bit values.
function reverseBytes2(bytes2 value) internal pure returns (bytes2) {
return (value >> 8) | (value << 8);
}
/**
* @dev Counts the number of leading zero bits a bytes array. Returns `8 * buffer.length`
* if the buffer is all zeros.
*/
function clz(bytes memory buffer) internal pure returns (uint256) {
for (uint256 i = 0; i < buffer.length; i += 0x20) {
bytes32 chunk = _unsafeReadBytesOffset(buffer, i);
if (chunk != bytes32(0)) {
return Math.min(8 * i + Math.clz(uint256(chunk)), 8 * buffer.length);
}
}
return 8 * buffer.length;
}
/**
* @dev Reads a bytes32 from a bytes array without bounds checking.
*
* NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
* assembly block as such would prevent some optimizations.
*/
function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
// This is not memory safe in the general case, but all calls to this private function are within bounds.
assembly ("memory-safe") {
value := mload(add(add(buffer, 0x20), offset))
}
}
}{
"remappings": [
"forge-std/=lib/forge-std/src/",
"@openzeppelin/contracts/=lib/openzeppelin-community-contracts/lib/@openzeppelin-contracts/contracts/",
"@openzeppelin/community-contracts/=lib/openzeppelin-community-contracts/contracts/",
"@axelar-network/axelar-gmp-sdk-solidity/=lib/openzeppelin-community-contracts/lib/axelar-gmp-sdk-solidity/",
"@openzeppelin-contracts-upgradeable/=lib/openzeppelin-community-contracts/lib/@openzeppelin-contracts-upgradeable/",
"@openzeppelin-contracts/=lib/openzeppelin-community-contracts/lib/@openzeppelin-contracts/",
"@openzeppelin/contracts-upgradeable/=lib/openzeppelin-community-contracts/lib/@openzeppelin-contracts-upgradeable/contracts/",
"@zk-email/contracts/=lib/openzeppelin-community-contracts/lib/zk-email-verify/packages/contracts/",
"@zk-email/email-tx-builder/=lib/openzeppelin-community-contracts/lib/email-tx-builder/packages/contracts/",
"IERC20/=lib/openzeppelin-community-contracts/lib/wormhole-solidity-sdk/src/interfaces/token/",
"SafeERC20/=lib/openzeppelin-community-contracts/lib/wormhole-solidity-sdk/src/libraries/",
"axelar-gmp-sdk-solidity/=lib/openzeppelin-community-contracts/lib/axelar-gmp-sdk-solidity/contracts/",
"ds-test/=lib/openzeppelin-community-contracts/lib/wormhole-solidity-sdk/lib/forge-std/lib/ds-test/src/",
"email-tx-builder/=lib/openzeppelin-community-contracts/lib/email-tx-builder/",
"erc4626-tests/=lib/openzeppelin-community-contracts/lib/@openzeppelin-contracts/lib/erc4626-tests/",
"halmos-cheatcodes/=lib/openzeppelin-community-contracts/lib/@openzeppelin-contracts/lib/halmos-cheatcodes/src/",
"openzeppelin-community-contracts/=lib/openzeppelin-community-contracts/contracts/",
"openzeppelin-contracts/=lib/openzeppelin-community-contracts/lib/@openzeppelin-contracts-upgradeable/lib/openzeppelin-contracts/",
"wormhole-sdk/=lib/openzeppelin-community-contracts/lib/wormhole-solidity-sdk/src/",
"wormhole-solidity-sdk/=lib/openzeppelin-community-contracts/lib/wormhole-solidity-sdk/src/",
"zk-email-verify/=lib/openzeppelin-community-contracts/lib/zk-email-verify/"
],
"optimizer": {
"enabled": true,
"runs": 200
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "ipfs",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "prague",
"viaIR": false
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"address","name":"signerAddr","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"PaymasterUnauthorized","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"actualGasCost","type":"uint256"}],"name":"UserOperationSponsored","type":"event"},{"inputs":[{"internalType":"uint32","name":"unstakeDelaySec","type":"uint32"}],"name":"addStake","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"deposit","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"entryPoint","outputs":[{"internalType":"contract IEntryPoint","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"enum IPaymaster.PostOpMode","name":"mode","type":"uint8"},{"internalType":"bytes","name":"context","type":"bytes"},{"internalType":"uint256","name":"actualGasCost","type":"uint256"},{"internalType":"uint256","name":"actualUserOpFeePerGas","type":"uint256"}],"name":"postOp","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"signer","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unlockStake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes","name":"initCode","type":"bytes"},{"internalType":"bytes","name":"callData","type":"bytes"},{"internalType":"bytes32","name":"accountGasLimits","type":"bytes32"},{"internalType":"uint256","name":"preVerificationGas","type":"uint256"},{"internalType":"bytes32","name":"gasFees","type":"bytes32"},{"internalType":"bytes","name":"paymasterAndData","type":"bytes"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct PackedUserOperation","name":"userOp","type":"tuple"},{"internalType":"bytes32","name":"userOpHash","type":"bytes32"},{"internalType":"uint256","name":"maxCost","type":"uint256"}],"name":"validatePaymasterUserOp","outputs":[{"internalType":"bytes","name":"context","type":"bytes"},{"internalType":"uint256","name":"validationData","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address payable","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address payable","name":"to","type":"address"}],"name":"withdrawStake","outputs":[],"stateMutability":"nonpayable","type":"function"}]Contract Creation Code
610160604052348015610010575f5ffd5b5060405161156938038061156983398101604081905261002f91610242565b80816040518060400160405280600d81526020016c233930bc2830bcb6b0b9ba32b960991b815250604051806040016040528060018152602001603160f81b8152506100845f8361018260201b90919060201c565b61012052610093816001610182565b61014052815160208084019190912060e052815190820120610100524660a05261011f60e05161010051604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201529081019290925260608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b60805250503060c052600280546001600160a01b0319166001600160a01b038316179055506001600160a01b03811661017257604051631e4fbdf760e01b81525f60048201526024015b60405180910390fd5b61017b816101b4565b5050610419565b5f60208351101561019d5761019683610205565b90506101ae565b816101a88482610307565b5060ff90505b92915050565b600380546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b5f5f829050601f8151111561022f578260405163305a27a960e01b815260040161016991906103c1565b805161023a826103f6565b179392505050565b5f60208284031215610252575f5ffd5b81516001600160a01b0381168114610268575f5ffd5b9392505050565b634e487b7160e01b5f52604160045260245ffd5b600181811c9082168061029757607f821691505b6020821081036102b557634e487b7160e01b5f52602260045260245ffd5b50919050565b601f82111561030257805f5260205f20601f840160051c810160208510156102e05750805b601f840160051c820191505b818110156102ff575f81556001016102ec565b50505b505050565b81516001600160401b038111156103205761032061026f565b6103348161032e8454610283565b846102bb565b6020601f821160018114610366575f831561034f5750848201515b5f19600385901b1c1916600184901b1784556102ff565b5f84815260208120601f198516915b828110156103955787850151825560209485019460019092019101610375565b50848210156103b257868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b602081525f82518060208401528060208501604085015e5f604082850101526040601f19601f83011684010191505092915050565b805160208083015191908110156102b5575f1960209190910360031b1b16919050565b60805160a05160c05160e0516101005161012051610140516110ff61046a5f395f61065d01525f61062c01525f610be301525f610bbb01525f610b1601525f610b4001525f610b6a01526110ff5ff3fe6080604052600436106100bf575f3560e01c80638da5cb5b1161007c578063c23a5cea11610057578063c23a5cea146101e8578063d0e30db014610207578063f2fde38b1461020f578063f3fef3a31461022e575f5ffd5b80638da5cb5b14610195578063b0d691fe146101b2578063bb9fe6bf146101d4575f5ffd5b80630396cb60146100c3578063238ac933146100d857806352b7512c1461010e578063715018a61461013b5780637c627b211461014f57806384b0196e1461016e575b5f5ffd5b6100d66100d1366004610d44565b61024d565b005b3480156100e3575f5ffd5b506002546001600160a01b03165b6040516001600160a01b0390911681526020015b60405180910390f35b348015610119575f5ffd5b5061012d610128366004610d6e565b6102bf565b604051610105929190610deb565b348015610146575f5ffd5b506100d66102e1565b34801561015a575f5ffd5b506100d6610169366004610e0c565b6102f4565b348015610179575f5ffd5b50610182610303565b6040516101059796959493929190610ea0565b3480156101a0575f5ffd5b506003546001600160a01b03166100f1565b3480156101bd575f5ffd5b506f71727de22e5e9d8baf0edac6f37da0326100f1565b3480156101df575f5ffd5b506100d6610345565b3480156101f3575f5ffd5b506100d6610202366004610f4a565b6103ad565b6100d661041a565b34801561021a575f5ffd5b506100d6610229366004610f4a565b61046d565b348015610239575f5ffd5b506100d6610248366004610f65565b6104af565b6f71727de22e5e9d8baf0edac6f37da032604051621cb65b60e51b815263ffffffff831660048201526001600160a01b039190911690630396cb609034906024015f604051808303818588803b1580156102a5575f5ffd5b505af11580156102b7573d5f5f3e3d5ffd5b505050505050565b60605f6102ca610511565b6102d585858561054d565b91509150935093915050565b6102e96105a7565b6102f25f6105d4565b565b6102fc610511565b5050505050565b5f6060805f5f5f6060610314610625565b61031c610656565b604080515f80825260208201909252600f60f81b9b939a50919850469750309650945092509050565b61034d610683565b6f71727de22e5e9d8baf0edac6f37da0326001600160a01b031663bb9fe6bf6040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610395575f5ffd5b505af11580156103a7573d5f5f3e3d5ffd5b50505050565b6103b5610683565b6f71727de22e5e9d8baf0edac6f37da03260405163611d2e7560e11b81526001600160a01b038381166004830152919091169063c23a5cea906024015f604051808303815f87803b158015610408575f5ffd5b505af11580156102fc573d5f5f3e3d5ffd5b6f71727de22e5e9d8baf0edac6f37da03260405163b760faf960e01b81523060048201526001600160a01b03919091169063b760faf99034906024015f604051808303818588803b158015610408575f5ffd5b6104756105a7565b6001600160a01b0381166104a357604051631e4fbdf760e01b81525f60048201526024015b60405180910390fd5b6104ac816105d4565b50565b6104b7610683565b6f71727de22e5e9d8baf0edac6f37da03260405163040b850f60e31b81526001600160a01b03848116600483015260248201849052919091169063205c2878906044015f604051808303815f87803b1580156102a5575f5ffd5b336f71727de22e5e9d8baf0edac6f37da03281146104ac5760405163327499a760e01b81526001600160a01b038216600482015260240161049a565b60605f5f5f365f61055d8961068b565b935093509350935060405180602001604052805f815250610597858561058e6105878e8a8a6106f0565b8787610820565b1515919061087f565b9550955050505050935093915050565b6003546001600160a01b031633146102f25760405163118cdaa760e01b815233600482015260240161049a565b600380546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b60606106517f00000000000000000000000000000000000000000000000000000000000000005f610890565b905090565b60606106517f00000000000000000000000000000000000000000000000000000000000000006001610890565b6102f26105a7565b5f5f365f365f61069a8761093b565b90925090506106ac60065f8385610f8f565b6106b591610fb6565b60d01c6106c6600c60068486610f8f565b6106cf91610fb6565b60d01c6106df83600c8187610f8f565b955095509550955050509193509193565b5f6108187f0c330b34f0aad8cab1ae5a4241b0d75388786a99fffb1a39c5ce8dec5a5700676107226020870187610f4a565b60208701356107346040890189610fee565b604051610742929190611038565b60405190819003902061075860608a018a610fee565b604051610766929190611038565b604051809103902089608001358a60a001358b60c001356107868d61097f565b61078f8e6109dd565b60408051602081019b909b526001600160a01b03909916988a01989098526060890196909652608088019490945260a087019290925260c086015260e085015261010084015261012083015261014082015265ffffffffffff80861661016083015284166101808201526101a00160405160208183030381529060405280519060200120610a10565b949350505050565b5f5f5f61082e868686610a3c565b5091509150816001600160a01b031661084f6002546001600160a01b031690565b6001600160a01b031614801561087557505f81600381111561087357610873611047565b145b9695505050505050565b5f6108188415156001188484610a83565b606060ff83146108aa576108a383610acd565b9050610935565b8180546108b69061105b565b80601f01602080910402602001604051908101604052809291908181526020018280546108e29061105b565b801561092d5780601f106109045761010080835404028352916020019161092d565b820191905f5260205f20905b81548152906001019060200180831161091057829003601f168201915b505050505090505b92915050565b365f603461094c60e0850185610fee565b9050106109735761096060e0840184610fee565b61096e916034908290610f8f565b610976565b5f805b91509150915091565b5f603461098f60e0840184610fee565b9050106109c3576109a360e0830183610fee565b6109b291602491601491610f8f565b6109bb91611093565b60801c6109c5565b5f5b6fffffffffffffffffffffffffffffffff1692915050565b5f60346109ed60e0840184610fee565b9050106109c357610a0160e0830183610fee565b6109b291603491602491610f8f565b5f610935610a1c610b0a565b8360405161190160f01b8152600281019290925260228201526042902090565b5f80806041849003610a70578435602086013560408701355f1a610a6289828585610c33565b955095509550505050610a7a565b505f915060029050825b93509350939050565b5f6108188460601b610aae8460d01b8660d01b6001600160d01b031916610cfb90919063ffffffff16565b6001600160a01b0319169060601c6001600160a01b0319919091161790565b60605f610ad983610d1d565b6040805160208082528183019092529192505f91906020820181803683375050509182525060208101929092525090565b5f306001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016148015610b6257507f000000000000000000000000000000000000000000000000000000000000000046145b15610b8c57507f000000000000000000000000000000000000000000000000000000000000000090565b610651604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527f0000000000000000000000000000000000000000000000000000000000000000918101919091527f000000000000000000000000000000000000000000000000000000000000000060608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b5f80807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0841115610c6c57505f91506003905082610cf1565b604080515f808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa158015610cbd573d5f5f3e3d5ffd5b5050604051601f1901519150506001600160a01b038116610ce857505f925060019150829050610cf1565b92505f91508190505b9450945094915050565b65ffffffffffff60a01b60309190911c166001600160d01b0319919091161790565b5f60ff8216601f81111561093557604051632cd44ac360e21b815260040160405180910390fd5b5f60208284031215610d54575f5ffd5b813563ffffffff81168114610d67575f5ffd5b9392505050565b5f5f5f60608486031215610d80575f5ffd5b833567ffffffffffffffff811115610d96575f5ffd5b84016101208187031215610da8575f5ffd5b95602085013595506040909401359392505050565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b604081525f610dfd6040830185610dbd565b90508260208301529392505050565b5f5f5f5f5f60808688031215610e20575f5ffd5b853560038110610e2e575f5ffd5b9450602086013567ffffffffffffffff811115610e49575f5ffd5b8601601f81018813610e59575f5ffd5b803567ffffffffffffffff811115610e6f575f5ffd5b886020828401011115610e80575f5ffd5b959860209190910197509495604081013595606090910135945092505050565b60ff60f81b8816815260e060208201525f610ebe60e0830189610dbd565b8281036040840152610ed08189610dbd565b606084018890526001600160a01b038716608085015260a0840186905283810360c0850152845180825260208087019350909101905f5b81811015610f25578351835260209384019390920191600101610f07565b50909b9a5050505050505050505050565b6001600160a01b03811681146104ac575f5ffd5b5f60208284031215610f5a575f5ffd5b8135610d6781610f36565b5f5f60408385031215610f76575f5ffd5b8235610f8181610f36565b946020939093013593505050565b5f5f85851115610f9d575f5ffd5b83861115610fa9575f5ffd5b5050820193919092039150565b80356001600160d01b03198116906006841015610fe7576001600160d01b0319600685900360031b81901b82161691505b5092915050565b5f5f8335601e19843603018112611003575f5ffd5b83018035915067ffffffffffffffff82111561101d575f5ffd5b602001915036819003821315611031575f5ffd5b9250929050565b818382375f9101908152919050565b634e487b7160e01b5f52602160045260245ffd5b600181811c9082168061106f57607f821691505b60208210810361108d57634e487b7160e01b5f52602260045260245ffd5b50919050565b80356001600160801b03198116906010841015610fe7576001600160801b031960109490940360031b84901b169092169291505056fea2646970667358221220b249500fe40cb4adb8ffa27445eccc0976534b4ac66b537d2b65b3c4e751630464736f6c634300081c0033000000000000000000000000aa5f55001e50c6c13684884278fac0d9539837f2
Deployed Bytecode
0x6080604052600436106100bf575f3560e01c80638da5cb5b1161007c578063c23a5cea11610057578063c23a5cea146101e8578063d0e30db014610207578063f2fde38b1461020f578063f3fef3a31461022e575f5ffd5b80638da5cb5b14610195578063b0d691fe146101b2578063bb9fe6bf146101d4575f5ffd5b80630396cb60146100c3578063238ac933146100d857806352b7512c1461010e578063715018a61461013b5780637c627b211461014f57806384b0196e1461016e575b5f5ffd5b6100d66100d1366004610d44565b61024d565b005b3480156100e3575f5ffd5b506002546001600160a01b03165b6040516001600160a01b0390911681526020015b60405180910390f35b348015610119575f5ffd5b5061012d610128366004610d6e565b6102bf565b604051610105929190610deb565b348015610146575f5ffd5b506100d66102e1565b34801561015a575f5ffd5b506100d6610169366004610e0c565b6102f4565b348015610179575f5ffd5b50610182610303565b6040516101059796959493929190610ea0565b3480156101a0575f5ffd5b506003546001600160a01b03166100f1565b3480156101bd575f5ffd5b506f71727de22e5e9d8baf0edac6f37da0326100f1565b3480156101df575f5ffd5b506100d6610345565b3480156101f3575f5ffd5b506100d6610202366004610f4a565b6103ad565b6100d661041a565b34801561021a575f5ffd5b506100d6610229366004610f4a565b61046d565b348015610239575f5ffd5b506100d6610248366004610f65565b6104af565b6f71727de22e5e9d8baf0edac6f37da032604051621cb65b60e51b815263ffffffff831660048201526001600160a01b039190911690630396cb609034906024015f604051808303818588803b1580156102a5575f5ffd5b505af11580156102b7573d5f5f3e3d5ffd5b505050505050565b60605f6102ca610511565b6102d585858561054d565b91509150935093915050565b6102e96105a7565b6102f25f6105d4565b565b6102fc610511565b5050505050565b5f6060805f5f5f6060610314610625565b61031c610656565b604080515f80825260208201909252600f60f81b9b939a50919850469750309650945092509050565b61034d610683565b6f71727de22e5e9d8baf0edac6f37da0326001600160a01b031663bb9fe6bf6040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610395575f5ffd5b505af11580156103a7573d5f5f3e3d5ffd5b50505050565b6103b5610683565b6f71727de22e5e9d8baf0edac6f37da03260405163611d2e7560e11b81526001600160a01b038381166004830152919091169063c23a5cea906024015f604051808303815f87803b158015610408575f5ffd5b505af11580156102fc573d5f5f3e3d5ffd5b6f71727de22e5e9d8baf0edac6f37da03260405163b760faf960e01b81523060048201526001600160a01b03919091169063b760faf99034906024015f604051808303818588803b158015610408575f5ffd5b6104756105a7565b6001600160a01b0381166104a357604051631e4fbdf760e01b81525f60048201526024015b60405180910390fd5b6104ac816105d4565b50565b6104b7610683565b6f71727de22e5e9d8baf0edac6f37da03260405163040b850f60e31b81526001600160a01b03848116600483015260248201849052919091169063205c2878906044015f604051808303815f87803b1580156102a5575f5ffd5b336f71727de22e5e9d8baf0edac6f37da03281146104ac5760405163327499a760e01b81526001600160a01b038216600482015260240161049a565b60605f5f5f365f61055d8961068b565b935093509350935060405180602001604052805f815250610597858561058e6105878e8a8a6106f0565b8787610820565b1515919061087f565b9550955050505050935093915050565b6003546001600160a01b031633146102f25760405163118cdaa760e01b815233600482015260240161049a565b600380546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b60606106517f467261785061796d61737465720000000000000000000000000000000000000d5f610890565b905090565b60606106517f31000000000000000000000000000000000000000000000000000000000000016001610890565b6102f26105a7565b5f5f365f365f61069a8761093b565b90925090506106ac60065f8385610f8f565b6106b591610fb6565b60d01c6106c6600c60068486610f8f565b6106cf91610fb6565b60d01c6106df83600c8187610f8f565b955095509550955050509193509193565b5f6108187f0c330b34f0aad8cab1ae5a4241b0d75388786a99fffb1a39c5ce8dec5a5700676107226020870187610f4a565b60208701356107346040890189610fee565b604051610742929190611038565b60405190819003902061075860608a018a610fee565b604051610766929190611038565b604051809103902089608001358a60a001358b60c001356107868d61097f565b61078f8e6109dd565b60408051602081019b909b526001600160a01b03909916988a01989098526060890196909652608088019490945260a087019290925260c086015260e085015261010084015261012083015261014082015265ffffffffffff80861661016083015284166101808201526101a00160405160208183030381529060405280519060200120610a10565b949350505050565b5f5f5f61082e868686610a3c565b5091509150816001600160a01b031661084f6002546001600160a01b031690565b6001600160a01b031614801561087557505f81600381111561087357610873611047565b145b9695505050505050565b5f6108188415156001188484610a83565b606060ff83146108aa576108a383610acd565b9050610935565b8180546108b69061105b565b80601f01602080910402602001604051908101604052809291908181526020018280546108e29061105b565b801561092d5780601f106109045761010080835404028352916020019161092d565b820191905f5260205f20905b81548152906001019060200180831161091057829003601f168201915b505050505090505b92915050565b365f603461094c60e0850185610fee565b9050106109735761096060e0840184610fee565b61096e916034908290610f8f565b610976565b5f805b91509150915091565b5f603461098f60e0840184610fee565b9050106109c3576109a360e0830183610fee565b6109b291602491601491610f8f565b6109bb91611093565b60801c6109c5565b5f5b6fffffffffffffffffffffffffffffffff1692915050565b5f60346109ed60e0840184610fee565b9050106109c357610a0160e0830183610fee565b6109b291603491602491610f8f565b5f610935610a1c610b0a565b8360405161190160f01b8152600281019290925260228201526042902090565b5f80806041849003610a70578435602086013560408701355f1a610a6289828585610c33565b955095509550505050610a7a565b505f915060029050825b93509350939050565b5f6108188460601b610aae8460d01b8660d01b6001600160d01b031916610cfb90919063ffffffff16565b6001600160a01b0319169060601c6001600160a01b0319919091161790565b60605f610ad983610d1d565b6040805160208082528183019092529192505f91906020820181803683375050509182525060208101929092525090565b5f306001600160a01b037f000000000000000000000000149e8d2f435f09b81f1d8e098b6570ea20cdb4e416148015610b6257507f00000000000000000000000000000000000000000000000000000000000000fc46145b15610b8c57507fc89fdd7d072c4070b676ba54965e9af7bf71f00ef4a4e5b574ed69ec8535c4ab90565b610651604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527fa417199dc12b4b792caa891973ea1e900379f569d1b3e6ba85ee8c8df2b48c79918101919091527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc660608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b5f80807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0841115610c6c57505f91506003905082610cf1565b604080515f808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa158015610cbd573d5f5f3e3d5ffd5b5050604051601f1901519150506001600160a01b038116610ce857505f925060019150829050610cf1565b92505f91508190505b9450945094915050565b65ffffffffffff60a01b60309190911c166001600160d01b0319919091161790565b5f60ff8216601f81111561093557604051632cd44ac360e21b815260040160405180910390fd5b5f60208284031215610d54575f5ffd5b813563ffffffff81168114610d67575f5ffd5b9392505050565b5f5f5f60608486031215610d80575f5ffd5b833567ffffffffffffffff811115610d96575f5ffd5b84016101208187031215610da8575f5ffd5b95602085013595506040909401359392505050565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b604081525f610dfd6040830185610dbd565b90508260208301529392505050565b5f5f5f5f5f60808688031215610e20575f5ffd5b853560038110610e2e575f5ffd5b9450602086013567ffffffffffffffff811115610e49575f5ffd5b8601601f81018813610e59575f5ffd5b803567ffffffffffffffff811115610e6f575f5ffd5b886020828401011115610e80575f5ffd5b959860209190910197509495604081013595606090910135945092505050565b60ff60f81b8816815260e060208201525f610ebe60e0830189610dbd565b8281036040840152610ed08189610dbd565b606084018890526001600160a01b038716608085015260a0840186905283810360c0850152845180825260208087019350909101905f5b81811015610f25578351835260209384019390920191600101610f07565b50909b9a5050505050505050505050565b6001600160a01b03811681146104ac575f5ffd5b5f60208284031215610f5a575f5ffd5b8135610d6781610f36565b5f5f60408385031215610f76575f5ffd5b8235610f8181610f36565b946020939093013593505050565b5f5f85851115610f9d575f5ffd5b83861115610fa9575f5ffd5b5050820193919092039150565b80356001600160d01b03198116906006841015610fe7576001600160d01b0319600685900360031b81901b82161691505b5092915050565b5f5f8335601e19843603018112611003575f5ffd5b83018035915067ffffffffffffffff82111561101d575f5ffd5b602001915036819003821315611031575f5ffd5b9250929050565b818382375f9101908152919050565b634e487b7160e01b5f52602160045260245ffd5b600181811c9082168061106f57607f821691505b60208210810361108d57634e487b7160e01b5f52602260045260245ffd5b50919050565b80356001600160801b03198116906010841015610fe7576001600160801b031960109490940360031b84901b169092169291505056fea2646970667358221220b249500fe40cb4adb8ffa27445eccc0976534b4ac66b537d2b65b3c4e751630464736f6c634300081c0033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000aa5f55001e50c6c13684884278fac0d9539837f2
-----Decoded View---------------
Arg [0] : signerAddr (address): 0xaA5f55001E50c6C13684884278FaC0D9539837F2
-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 000000000000000000000000aa5f55001e50c6c13684884278fac0d9539837f2
Loading...
Loading
Loading...
Loading
Loading...
Loading
Net Worth in USD
$0.00
Net Worth in FRAX
0
Multichain Portfolio | 35 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.