Source Code
| Transaction Hash |
|
Block
|
From
|
To
|
|||||
|---|---|---|---|---|---|---|---|---|---|
Latest 1 internal transaction
Advanced mode:
| Parent Transaction Hash | Block | From | To | |||
|---|---|---|---|---|---|---|
| 21763472 | 219 days ago | Contract Creation | 0 FRAX |
Cross-Chain Transactions
Loading...
Loading
Contract Name:
OnlyBoostAllocator
Compiler Version
v0.8.28+commit.7893614a
Optimization Enabled:
Yes with 200 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {CurveProtocol} from "@address-book/src/CurveEthereum.sol";
import {Allocator} from "src/Allocator.sol";
import {IBalanceProvider} from "src/interfaces/IBalanceProvider.sol";
import {ISidecar} from "src/interfaces/ISidecar.sol";
import {ISidecarFactory} from "src/interfaces/ISidecarFactory.sol";
/// @title OnlyBoostAllocator
/// @notice Contract that calculates the optimal LP token allocation for Stake DAO Locker and Convex
contract OnlyBoostAllocator is Allocator {
using Math for uint256;
/// @notice Address of the Curve Boost Delegation V3 contract
address public immutable BOOST_PROVIDER;
/// @notice Address of the Convex Boost Holder contract
address public immutable CONVEX_BOOST_HOLDER;
/// @notice Address of the Convex Sidecar Factory contract
ISidecarFactory public immutable CONVEX_SIDECAR_FACTORY;
/// @notice Initializes the OnlyBoostAllocator contract
/// @param _locker Address of the Stake DAO Liquidity Locker
/// @param _gateway Address of the gateway contract
/// @param _convexSidecarFactory Address of the Convex Sidecar Factory contract
constructor(
address _locker,
address _gateway,
address _convexSidecarFactory,
address _boostProvider,
address _convexBoostHolder
) Allocator(_locker, _gateway) {
BOOST_PROVIDER = _boostProvider;
CONVEX_BOOST_HOLDER = _convexBoostHolder;
CONVEX_SIDECAR_FACTORY = ISidecarFactory(_convexSidecarFactory);
}
//////////////////////////////////////////////////////
// --- DEPOSIT ALLOCATION
//////////////////////////////////////////////////////
/// @inheritdoc Allocator
function getDepositAllocation(address asset, address gauge, uint256 amount)
public
view
override
returns (Allocation memory alloc)
{
// 1. Resolve the sidecar for the gauge.
address sidecar = CONVEX_SIDECAR_FACTORY.sidecar(gauge);
// 2. If no sidecar exists, delegate to the base allocator.
if (sidecar == address(0)) {
return super.getDepositAllocation(asset, gauge, amount);
}
// 3. Prepare targets and amounts containers.
alloc.asset = asset;
alloc.gauge = gauge;
alloc.targets = _targets(sidecar);
alloc.amounts = _pair(0, 0);
// 4. Fetch current balances.
uint256 balanceOfLocker = IBalanceProvider(gauge).balanceOf(LOCKER);
uint256 balanceOfSidecar = ISidecar(sidecar).balanceOf();
uint256 total = balanceOfLocker + balanceOfSidecar + amount;
// 5. Compute the optimal Locker balance after the deposit.
uint256 optimalLocker = _computeLockerAllocation(total);
// 6. Determine how much to send to the Locker.
uint256 toLocker = optimalLocker > balanceOfLocker ? optimalLocker - balanceOfLocker : 0;
if (toLocker > amount) toLocker = amount; // Cap to available amount
// 7. Assign amounts.
alloc.amounts[1] = toLocker; // to Locker
alloc.amounts[0] = amount - toLocker; // remainder to Sidecar
}
//////////////////////////////////////////////////////
// --- WITHDRAWAL ALLOCATION
//////////////////////////////////////////////////////
/// @inheritdoc Allocator
function getWithdrawalAllocation(address asset, address gauge, uint256 amount)
public
view
override
returns (Allocation memory alloc)
{
// 1. Resolve the sidecar.
address sidecar = CONVEX_SIDECAR_FACTORY.sidecar(gauge);
// 2. Fallback to base allocator if none.
if (sidecar == address(0)) {
return super.getWithdrawalAllocation(asset, gauge, amount);
}
// 3. Prepare return struct.
alloc.asset = asset;
alloc.gauge = gauge;
alloc.targets = _targets(sidecar);
alloc.amounts = _pair(0, 0);
// 4. Current balances.
uint256 balanceOfLocker = IBalanceProvider(gauge).balanceOf(LOCKER);
uint256 balanceOfSidecar = ISidecar(sidecar).balanceOf();
uint256 totalBalance = balanceOfLocker + balanceOfSidecar;
// 5. If requesting the whole balance, withdraw everything.
if (amount >= totalBalance) {
alloc.amounts[0] = balanceOfSidecar;
alloc.amounts[1] = balanceOfLocker;
return alloc;
}
// 6. Compute optimal post‑withdraw Locker target.
uint256 total = totalBalance - amount;
uint256 lockerTarget = _computeLockerAllocation(total);
// 7. Withdraw up to the Locker’s excess first.
uint256 excessLocker = balanceOfLocker > lockerTarget ? balanceOfLocker - lockerTarget : 0;
uint256 fromLocker = Math.min(amount, excessLocker);
// 8. Withdraw any remaining amount from the Side‑car.
uint256 fromSidecar = amount - fromLocker;
if (fromSidecar > balanceOfSidecar) fromSidecar = balanceOfSidecar;
// 9. If we’re still short, take the rest from the Locker (may dip below target).
uint256 shortfall = amount - (fromLocker + fromSidecar);
if (shortfall > 0) {
uint256 extraFromLocker = Math.min(shortfall, balanceOfLocker - fromLocker);
fromLocker += extraFromLocker;
}
// 10. Assign amounts.
alloc.amounts[0] = fromSidecar;
alloc.amounts[1] = fromLocker;
}
//////////////////////////////////////////////////////
// --- REBALANCE ALLOCATION
//////////////////////////////////////////////////////
/// @inheritdoc Allocator
function getRebalancedAllocation(address asset, address gauge, uint256 totalBalance)
public
view
override
returns (Allocation memory alloc)
{
// 1. Resolve sidecar.
address sidecar = CONVEX_SIDECAR_FACTORY.sidecar(gauge);
if (sidecar == address(0)) {
return super.getRebalancedAllocation(asset, gauge, totalBalance);
}
// 2. Prepare struct.
alloc.asset = asset;
alloc.gauge = gauge;
alloc.targets = _targets(sidecar);
alloc.amounts = _pair(0, 0);
// 3. Compute one‑shot optimal split.
uint256 lockerAmt = _computeLockerAllocation(totalBalance);
alloc.amounts[1] = lockerAmt;
alloc.amounts[0] = totalBalance - lockerAmt;
}
//////////////////////////////////////////////////////
// --- VIEW HELPER FUNCTIONS
//////////////////////////////////////////////////////
/// @inheritdoc Allocator
function getAllocationTargets(address gauge) public view override returns (address[] memory) {
address sidecar = CONVEX_SIDECAR_FACTORY.sidecar(gauge);
return sidecar == address(0) ? super.getAllocationTargets(gauge) : _targets(sidecar);
}
//////////////////////////////////////////////////////
// --- HELPER FUNCTIONS
//////////////////////////////////////////////////////
/// @dev Returns the pair `[sidecar, LOCKER]` used by allocation targets.
function _targets(address sidecar) private view returns (address[] memory arr) {
arr = new address[](2);
arr[0] = sidecar;
arr[1] = LOCKER;
}
/// @dev Utility to allocate a two‑element uint256 array.
function _pair(uint256 a0, uint256 a1) private pure returns (uint256[] memory arr) {
arr = new uint256[](2);
arr[0] = a0;
arr[1] = a1;
}
/// @dev Computes the optimal amount to allocate to the locker based on ratio of veBoosts.
/// @param totalBalance The total balance of the gauge.
/// @return lockerAmt The optimal amount to allocate to the locker.
function _computeLockerAllocation(uint256 totalBalance) private view returns (uint256 lockerAmt) {
uint256 veLocker = IBalanceProvider(BOOST_PROVIDER).balanceOf(LOCKER);
uint256 veConvex = IBalanceProvider(BOOST_PROVIDER).balanceOf(CONVEX_BOOST_HOLDER);
lockerAmt = totalBalance.mulDiv(veLocker, veLocker + veConvex);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2²⁵⁶ + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= prod1) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 exp;
unchecked {
exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
value >>= exp;
result += exp;
exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
value >>= exp;
result += exp;
exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
value >>= exp;
result += exp;
exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
value >>= exp;
result += exp;
exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
value >>= exp;
result += exp;
exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
value >>= exp;
result += exp;
exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
value >>= exp;
result += exp;
result += SafeCast.toUint(value > 1);
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 isGt;
unchecked {
isGt = SafeCast.toUint(value > (1 << 128) - 1);
value >>= isGt * 128;
result += isGt * 16;
isGt = SafeCast.toUint(value > (1 << 64) - 1);
value >>= isGt * 64;
result += isGt * 8;
isGt = SafeCast.toUint(value > (1 << 32) - 1);
value >>= isGt * 32;
result += isGt * 4;
isGt = SafeCast.toUint(value > (1 << 16) - 1);
value >>= isGt * 16;
result += isGt * 2;
result += SafeCast.toUint(value > (1 << 8) - 1);
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;
library CurveProtocol {
address internal constant CRV = 0xD533a949740bb3306d119CC777fa900bA034cd52;
address internal constant VECRV = 0x5f3b5DfEb7B28CDbD7FAba78963EE202a494e2A2;
address internal constant CRV_USD = 0xf939E0A03FB07F59A73314E73794Be0E57ac1b4E;
address internal constant SD_VE_CRV = 0x478bBC744811eE8310B461514BDc29D03739084D;
address internal constant FEE_DISTRIBUTOR = 0xD16d5eC345Dd86Fb63C6a9C43c517210F1027914;
address internal constant GAUGE_CONTROLLER = 0x2F50D538606Fa9EDD2B11E2446BEb18C9D5846bB;
address internal constant SMART_WALLET_CHECKER = 0xca719728Ef172d0961768581fdF35CB116e0B7a4;
address internal constant VOTING_APP_OWNERSHIP = 0xE478de485ad2fe566d49342Cbd03E49ed7DB3356;
address internal constant VOTING_APP_PARAMETER = 0xBCfF8B0b9419b9A88c44546519b1e909cF330399;
address internal constant MINTER = 0xd061D61a4d941c39E5453435B6345Dc261C2fcE0;
address internal constant VE_BOOST = 0xD37A6aa3d8460Bd2b6536d608103D880695A23CD;
// Convex
address internal constant CONVEX_PROXY = 0x989AEb4d175e16225E39E87d0D97A3360524AD80;
address internal constant CONVEX_BOOSTER = 0xF403C135812408BFbE8713b5A23a04b3D48AAE31;
address internal constant CONVEX_TOKEN = 0x4e3FBD56CD56c3e72c1403e103b45Db9da5B9D2B; // CVX
}
library CurveLocker {
address internal constant TOKEN = 0xD533a949740bb3306d119CC777fa900bA034cd52;
address internal constant SDTOKEN = 0xD1b5651E55D4CeeD36251c61c50C889B36F6abB5;
address internal constant LOCKER = 0x52f541764E6e90eeBc5c21Ff570De0e2D63766B6;
address internal constant DEPOSITOR = 0x88C88Aa6a9cedc2aff9b4cA6820292F39cc64026;
address internal constant GAUGE = 0x7f50786A0b15723D741727882ee99a0BF34e3466;
address internal constant ACCUMULATOR = 0x615959a1d3E2740054d7130028613ECfa988056f;
address internal constant VOTER = 0x20b22019406Cf990F0569a6161cf30B8e6651dDa;
address internal constant STRATEGY = 0x69D61428d089C2F35Bf6a472F540D0F82D1EA2cd;
address internal constant FACTORY = 0xDC9718E7704f10DB1aFaad737f8A04bcd14C20AA;
address internal constant VE_BOOST_DELEGATION = 0xe1F9C8ebBC80A013cAf0940fdD1A8554d763b9cf;
}
// Preprod version
library CurveStrategy {
address internal constant ACCOUNTANT = 0x4813Ee3665D746264B035E49bDf81AD9c3904A3A;
address internal constant PROTOCOL_CONTROLLER = 0xC8beDF267fa6D4bE6d7C2146122936535130dd2B;
address internal constant LOCKER = 0x0000000000000000000000000000000000000000;
address internal constant GATEWAY = 0x9e75df8ee120c7342b634EE3c5A47015b399E321;
address internal constant STRATEGY = 0x0D40dB4f5eCe56FEe57fDef3Bf796AB943349C98;
address internal constant CONVEX_SIDECAR = 0x7fC725De09C05312D89066b3d14ffb4D87A38853;
address internal constant CONVEX_SIDECAR_FACTORY = 0x3D88bF4Ad8c119AD6Da3Ae44e1825AcDa85a377D;
address internal constant FACTORY = 0xF4CF447ef5f3668304eBeB3B5a4397c3dae1F31A;
address internal constant ALLOCATOR = 0xe8CCF44a276DCD9CD3ccE05483EFf1bb26637Cfc;
address internal constant REWARD_VAULT = 0x81E57d40a7D7900719C47963A76C2763C78b2af2;
address internal constant REWARD_RECEIVER = 0x2a6e4F61c3CF575e1561A45613B58b46C506b4Ad;
}
library CurveVotemarket {
address internal constant PLATFORM = 0x0000000895cB182E6f983eb4D8b4E0Aa0B31Ae4c;
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;
import {IAllocator} from "src/interfaces/IAllocator.sol";
/// @title Allocator
/// @author Stake DAO
/// @notice Determines where to deploy capital for optimal yield
/// @dev Base implementation sends everything to locker. Protocol-specific allocators
/// (e.g., OnlyBoostAllocator) override to split between locker and sidecars
/// based on yield optimization strategies
contract Allocator is IAllocator {
/// @notice The locker that holds and stakes protocol tokens (e.g., veCRV holder)
address public immutable LOCKER;
/// @notice Safe multisig that executes transactions (same as locker on L2s)
address public immutable GATEWAY;
/// @notice Error thrown when the gateway is zero address
error GatewayZeroAddress();
/// @notice Initializes the allocator with locker and gateway addresses
/// @param _locker Protocol's token holder (pass 0 for L2s where gateway holds tokens)
/// @param _gateway Safe multisig that executes transactions
constructor(address _locker, address _gateway) {
require(_gateway != address(0), GatewayZeroAddress());
GATEWAY = _gateway;
// L2 optimization: gateway acts as both executor and token holder
// @dev Security: ensures LOCKER is never zero, critical for fund routing
LOCKER = _locker == address(0) ? _gateway : _locker;
}
/// @notice Calculates where to send deposited LP tokens
/// @dev Base: 100% to locker. Override for complex strategies (e.g., split with Convex)
/// @param asset LP token being deposited
/// @param gauge Target gauge for staking
/// @param amount Total amount to allocate
/// @return Allocation with single target (locker) and full amount
function getDepositAllocation(address asset, address gauge, uint256 amount)
public
view
virtual
returns (Allocation memory)
{
address[] memory targets = new address[](1);
targets[0] = LOCKER;
uint256[] memory amounts = new uint256[](1);
amounts[0] = amount;
return Allocation({asset: asset, gauge: gauge, targets: targets, amounts: amounts});
}
/// @notice Calculates where to pull LP tokens from during withdrawal
/// @dev Base: 100% from locker. Override to handle multiple sources
/// @param asset LP token being withdrawn
/// @param gauge Source gauge
/// @param amount Total amount to withdraw
/// @return Allocation with single source (locker) and full amount
function getWithdrawalAllocation(address asset, address gauge, uint256 amount)
public
view
virtual
returns (Allocation memory)
{
address[] memory targets = new address[](1);
targets[0] = LOCKER;
uint256[] memory amounts = new uint256[](1);
amounts[0] = amount;
return Allocation({asset: asset, gauge: gauge, targets: targets, amounts: amounts});
}
/// @notice Calculates optimal distribution when rebalancing positions
/// @dev Base: same as deposit. Override to implement rebalancing logic
/// @param asset LP token to rebalance
/// @param gauge Target gauge
/// @param amount Total amount to redistribute
/// @return Allocation with rebalancing targets and amounts
function getRebalancedAllocation(address asset, address gauge, uint256 amount)
public
view
virtual
returns (Allocation memory)
{
return getDepositAllocation(asset, gauge, amount);
}
/// @notice Lists all possible allocation targets for a gauge
/// @dev Base: only locker. Override to include sidecars
/// @return targets Array of addresses that can receive allocations
function getAllocationTargets(address /*gauge*/ ) public view virtual returns (address[] memory) {
address[] memory targets = new address[](1);
targets[0] = LOCKER;
return targets;
}
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;
interface IBalanceProvider {
function balanceOf(address _address) external view returns (uint256);
function totalSupply() external view returns (uint256);
}/// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
interface ISidecar {
function balanceOf() external view returns (uint256);
function deposit(uint256 amount) external;
function withdraw(uint256 amount, address receiver) external;
function getPendingRewards() external returns (uint256);
function getRewardTokens() external view returns (address[] memory);
function claim() external returns (uint256);
function asset() external view returns (IERC20);
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;
interface ISidecarFactory {
function sidecar(address gauge) external view returns (address);
function create(address token, bytes memory args) external returns (address);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;
interface IAllocator {
struct Allocation {
address asset;
address gauge;
address[] targets;
uint256[] amounts;
}
function getDepositAllocation(address asset, address gauge, uint256 amount)
external
view
returns (Allocation memory);
function getWithdrawalAllocation(address asset, address gauge, uint256 amount)
external
view
returns (Allocation memory);
function getRebalancedAllocation(address asset, address gauge, uint256 amount)
external
view
returns (Allocation memory);
function getAllocationTargets(address gauge) external view returns (address[] memory);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}{
"remappings": [
"forge-std/=node_modules/forge-std/",
"shared/=node_modules/@stake-dao/shared/",
"layerzerolabs/oft-evm/=node_modules/@layerzerolabs/oft-evm/",
"@safe/=node_modules/@safe-global/safe-smart-account/",
"@openzeppelin/contracts/=node_modules/@openzeppelin/contracts/",
"@interfaces/=node_modules/@stake-dao/interfaces/src/interfaces/",
"@address-book/=node_modules/@stake-dao/address-book/",
"@layerzerolabs/=node_modules/@layerzerolabs/",
"@safe-global/=node_modules/@safe-global/",
"@solady/=node_modules/@solady/"
],
"optimizer": {
"enabled": true,
"runs": 200
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "ipfs",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "cancun",
"viaIR": false,
"libraries": {}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"address","name":"_locker","type":"address"},{"internalType":"address","name":"_gateway","type":"address"},{"internalType":"address","name":"_convexSidecarFactory","type":"address"},{"internalType":"address","name":"_boostProvider","type":"address"},{"internalType":"address","name":"_convexBoostHolder","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"GatewayZeroAddress","type":"error"},{"inputs":[],"name":"BOOST_PROVIDER","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"CONVEX_BOOST_HOLDER","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"CONVEX_SIDECAR_FACTORY","outputs":[{"internalType":"contract ISidecarFactory","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"GATEWAY","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"LOCKER","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"gauge","type":"address"}],"name":"getAllocationTargets","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"asset","type":"address"},{"internalType":"address","name":"gauge","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"getDepositAllocation","outputs":[{"components":[{"internalType":"address","name":"asset","type":"address"},{"internalType":"address","name":"gauge","type":"address"},{"internalType":"address[]","name":"targets","type":"address[]"},{"internalType":"uint256[]","name":"amounts","type":"uint256[]"}],"internalType":"struct IAllocator.Allocation","name":"alloc","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"asset","type":"address"},{"internalType":"address","name":"gauge","type":"address"},{"internalType":"uint256","name":"totalBalance","type":"uint256"}],"name":"getRebalancedAllocation","outputs":[{"components":[{"internalType":"address","name":"asset","type":"address"},{"internalType":"address","name":"gauge","type":"address"},{"internalType":"address[]","name":"targets","type":"address[]"},{"internalType":"uint256[]","name":"amounts","type":"uint256[]"}],"internalType":"struct IAllocator.Allocation","name":"alloc","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"asset","type":"address"},{"internalType":"address","name":"gauge","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"getWithdrawalAllocation","outputs":[{"components":[{"internalType":"address","name":"asset","type":"address"},{"internalType":"address","name":"gauge","type":"address"},{"internalType":"address[]","name":"targets","type":"address[]"},{"internalType":"uint256[]","name":"amounts","type":"uint256[]"}],"internalType":"struct IAllocator.Allocation","name":"alloc","type":"tuple"}],"stateMutability":"view","type":"function"}]Contract Creation Code
610120604052348015610010575f5ffd5b506040516112e03803806112e083398101604081905261002f916100b8565b84846001600160a01b0381166100585760405163616b7d3b60e11b815260040160405180910390fd5b6001600160a01b0380821660a0528216156100735781610075565b805b6001600160a01b0390811660805293841660c0525050811660e0521661010052506101199050565b80516001600160a01b03811681146100b3575f5ffd5b919050565b5f5f5f5f5f60a086880312156100cc575f5ffd5b6100d58661009d565b94506100e36020870161009d565b93506100f16040870161009d565b92506100ff6060870161009d565b915061010d6080870161009d565b90509295509295909350565b60805160a05160c05160e051610100516111316101af5f395f81816101b80152818161021d01528181610565015281816106c3015261093301525f818161015e0152610ca901525f818160dd01528181610c290152610cd601525f61013701525f81816099015281816102f30152818161079101528181610a0b01528181610b2a01528181610bfd0152610dc301526111315ff3fe608060405234801561000f575f5ffd5b5060043610610090575f3560e01c8063338c537111610063578063338c5371146101325780635f57342e1461015957806370f3971b14610180578063db8c1be914610193578063ec1100c2146101b3575f5ffd5b806308ecd9a61461009457806314d76bcd146100d857806322ce4d86146100ff5780632f3c319f1461011f575b5f5ffd5b6100bb7f000000000000000000000000000000000000000000000000000000000000000081565b6040516001600160a01b0390911681526020015b60405180910390f35b6100bb7f000000000000000000000000000000000000000000000000000000000000000081565b61011261010d366004610ef0565b6101da565b6040516100cf9190610f68565b61011261012d366004610ef0565b610522565b6100bb7f000000000000000000000000000000000000000000000000000000000000000081565b6100bb7f000000000000000000000000000000000000000000000000000000000000000081565b61011261018e366004610ef0565b610680565b6101a66101a1366004611001565b61090f565b6040516100cf919061101c565b6100bb7f000000000000000000000000000000000000000000000000000000000000000081565b604080516080810182525f80825260208201526060918101829052818101919091526040516301c3cb5f60e01b81526001600160a01b0384811660048301525f917f0000000000000000000000000000000000000000000000000000000000000000909116906301c3cb5f90602401602060405180830381865afa158015610264573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906102889190611067565b90506001600160a01b0381166102ab576102a38585856109c4565b91505061051b565b6001600160a01b038086168352841660208301526102c881610ad5565b60408301526102d75f80610b81565b60608301526040516370a0823160e01b81526001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000811660048301525f91908616906370a0823190602401602060405180830381865afa158015610343573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906103679190611082565b90505f826001600160a01b031663722713f76040518163ffffffff1660e01b8152600401602060405180830381865afa1580156103a6573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906103ca9190611082565b90505f6103d782846110ad565b9050808610610430578185606001515f815181106103f7576103f76110c0565b60200260200101818152505082856060015160018151811061041b5761041b6110c0565b6020026020010181815250505050505061051b565b5f61043b87836110d4565b90505f61044782610be6565b90505f818611610457575f610461565b61046182876110d4565b90505f61046e8a83610d5f565b90505f61047b828c6110d4565b9050868111156104885750855b5f61049382846110ad565b61049d908d6110d4565b905080156104c9575f6104b9826104b4868d6110d4565b610d5f565b90506104c581856110ad565b9350505b818b606001515f815181106104e0576104e06110c0565b602002602001018181525050828b60600151600181518110610504576105046110c0565b602002602001018181525050505050505050505050505b9392505050565b604080516080810182525f80825260208201526060918101829052818101919091526040516301c3cb5f60e01b81526001600160a01b0384811660048301525f917f0000000000000000000000000000000000000000000000000000000000000000909116906301c3cb5f90602401602060405180830381865afa1580156105ac573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105d09190611067565b90506001600160a01b0381166105eb576102a3858585610d6f565b6001600160a01b0380861683528416602083015261060881610ad5565b60408301526106175f80610b81565b60608301525f61062684610be6565b9050808360600151600181518110610640576106406110c0565b602090810291909101015261065581856110d4565b83606001515f8151811061066b5761066b6110c0565b60200260200101818152505050509392505050565b604080516080810182525f80825260208201526060918101829052818101919091526040516301c3cb5f60e01b81526001600160a01b0384811660048301525f917f0000000000000000000000000000000000000000000000000000000000000000909116906301c3cb5f90602401602060405180830381865afa15801561070a573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061072e9190611067565b90506001600160a01b038116610749576102a38585856109c4565b6001600160a01b0380861683528416602083015261076681610ad5565b60408301526107755f80610b81565b60608301526040516370a0823160e01b81526001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000811660048301525f91908616906370a0823190602401602060405180830381865afa1580156107e1573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906108059190611082565b90505f826001600160a01b031663722713f76040518163ffffffff1660e01b8152600401602060405180830381865afa158015610844573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906108689190611082565b90505f8561087683856110ad565b61088091906110ad565b90505f61088c82610be6565b90505f84821161089c575f6108a6565b6108a685836110d4565b9050878111156108b35750865b8087606001516001815181106108cb576108cb6110c0565b60209081029190910101526108e081896110d4565b87606001515f815181106108f6576108f66110c0565b6020026020010181815250505050505050509392505050565b6040516301c3cb5f60e01b81526001600160a01b0382811660048301526060915f917f000000000000000000000000000000000000000000000000000000000000000016906301c3cb5f90602401602060405180830381865afa158015610978573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061099c9190611067565b90506001600160a01b038116156109bb576109b681610ad5565b61051b565b61051b83610d9c565b604080516080810182525f80825260208201526060918101829052818101919091526040805160018082528183019092525f918160200160208202803683370190505090507f0000000000000000000000000000000000000000000000000000000000000000815f81518110610a3c57610a3c6110c0565b6001600160a01b0392909216602092830291909101909101526040805160018082528183019092525f9181602001602082028036833701905050905083815f81518110610a8b57610a8b6110c0565b6020026020010181815250506040518060800160405280876001600160a01b03168152602001866001600160a01b0316815260200183815260200182815250925050509392505050565b604080516002808252606080830184529260208301908036833701905050905081815f81518110610b0857610b086110c0565b60200260200101906001600160a01b031690816001600160a01b0316815250507f000000000000000000000000000000000000000000000000000000000000000081600181518110610b5c57610b5c6110c0565b60200260200101906001600160a01b031690816001600160a01b031681525050919050565b604080516002808252606080830184529260208301908036833701905050905082815f81518110610bb457610bb46110c0565b6020026020010181815250508181600181518110610bd457610bd46110c0565b60200260200101818152505092915050565b6040516370a0823160e01b81526001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000811660048301525f9182917f000000000000000000000000000000000000000000000000000000000000000016906370a0823190602401602060405180830381865afa158015610c6e573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610c929190611082565b6040516370a0823160e01b81526001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000811660048301529192505f917f000000000000000000000000000000000000000000000000000000000000000016906370a0823190602401602060405180830381865afa158015610d1b573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d3f9190611082565b9050610d5782610d4f83826110ad565b869190610e12565b949350505050565b8082108183180281185b92915050565b604080516080810182525f8082526020820152606091810182905281810191909152610d57848484610680565b6040805160018082528183019092526060915f9190602080830190803683370190505090507f0000000000000000000000000000000000000000000000000000000000000000815f81518110610df457610df46110c0565b6001600160a01b039092166020928302919091019091015292915050565b5f838302815f1985870982811083820303915050805f03610e4657838281610e3c57610e3c6110e7565b049250505061051b565b808411610e5d57610e5d6003851502601118610ec8565b5f848688095f868103871696879004966002600389028118808a02820302808a02820302808a02820302808a02820302808a02820302808a02909103029181900381900460010186841190950394909402919094039290920491909117919091029150509392505050565b634e487b715f52806020526024601cfd5b6001600160a01b0381168114610eed575f5ffd5b50565b5f5f5f60608486031215610f02575f5ffd5b8335610f0d81610ed9565b92506020840135610f1d81610ed9565b929592945050506040919091013590565b5f8151808452602084019350602083015f5b82811015610f5e578151865260209586019590910190600101610f40565b5093949350505050565b602080825282516001600160a01b0390811683830152838201511660408084019190915283015160806060840152805160a084018190525f929190910190829060c08501905b80831015610fd95783516001600160a01b031682526020938401936001939093019290910190610fae565b506060860151858203601f190160808701529250610ff78184610f2e565b9695505050505050565b5f60208284031215611011575f5ffd5b813561051b81610ed9565b602080825282518282018190525f918401906040840190835b8181101561105c5783516001600160a01b0316835260209384019390920191600101611035565b509095945050505050565b5f60208284031215611077575f5ffd5b815161051b81610ed9565b5f60208284031215611092575f5ffd5b5051919050565b634e487b7160e01b5f52601160045260245ffd5b80820180821115610d6957610d69611099565b634e487b7160e01b5f52603260045260245ffd5b81810381811115610d6957610d69611099565b634e487b7160e01b5f52601260045260245ffdfea26469706673582212207372a13ef20a4e79506f47ec24097432deea6be6acecad8ab3eead2b54fc156764736f6c634300081c0033000000000000000000000000000000000000000000000000000000000000000000000000000000000000000052f541764e6e90eebc5c21ff570de0e2d63766b6000000000000000000000000b8368dd16e0a29ba8936856887003be9bf31d3a4000000000000000000000000c73e8d8f7a68fc9d67e989250484e57ae03a5da3000000000000000000000000989aeb4d175e16225e39e87d0d97a3360524ad80
Deployed Bytecode
0x608060405234801561000f575f5ffd5b5060043610610090575f3560e01c8063338c537111610063578063338c5371146101325780635f57342e1461015957806370f3971b14610180578063db8c1be914610193578063ec1100c2146101b3575f5ffd5b806308ecd9a61461009457806314d76bcd146100d857806322ce4d86146100ff5780632f3c319f1461011f575b5f5ffd5b6100bb7f00000000000000000000000052f541764e6e90eebc5c21ff570de0e2d63766b681565b6040516001600160a01b0390911681526020015b60405180910390f35b6100bb7f000000000000000000000000c73e8d8f7a68fc9d67e989250484e57ae03a5da381565b61011261010d366004610ef0565b6101da565b6040516100cf9190610f68565b61011261012d366004610ef0565b610522565b6100bb7f00000000000000000000000052f541764e6e90eebc5c21ff570de0e2d63766b681565b6100bb7f000000000000000000000000989aeb4d175e16225e39e87d0d97a3360524ad8081565b61011261018e366004610ef0565b610680565b6101a66101a1366004611001565b61090f565b6040516100cf919061101c565b6100bb7f000000000000000000000000b8368dd16e0a29ba8936856887003be9bf31d3a481565b604080516080810182525f80825260208201526060918101829052818101919091526040516301c3cb5f60e01b81526001600160a01b0384811660048301525f917f000000000000000000000000b8368dd16e0a29ba8936856887003be9bf31d3a4909116906301c3cb5f90602401602060405180830381865afa158015610264573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906102889190611067565b90506001600160a01b0381166102ab576102a38585856109c4565b91505061051b565b6001600160a01b038086168352841660208301526102c881610ad5565b60408301526102d75f80610b81565b60608301526040516370a0823160e01b81526001600160a01b037f00000000000000000000000052f541764e6e90eebc5c21ff570de0e2d63766b6811660048301525f91908616906370a0823190602401602060405180830381865afa158015610343573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906103679190611082565b90505f826001600160a01b031663722713f76040518163ffffffff1660e01b8152600401602060405180830381865afa1580156103a6573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906103ca9190611082565b90505f6103d782846110ad565b9050808610610430578185606001515f815181106103f7576103f76110c0565b60200260200101818152505082856060015160018151811061041b5761041b6110c0565b6020026020010181815250505050505061051b565b5f61043b87836110d4565b90505f61044782610be6565b90505f818611610457575f610461565b61046182876110d4565b90505f61046e8a83610d5f565b90505f61047b828c6110d4565b9050868111156104885750855b5f61049382846110ad565b61049d908d6110d4565b905080156104c9575f6104b9826104b4868d6110d4565b610d5f565b90506104c581856110ad565b9350505b818b606001515f815181106104e0576104e06110c0565b602002602001018181525050828b60600151600181518110610504576105046110c0565b602002602001018181525050505050505050505050505b9392505050565b604080516080810182525f80825260208201526060918101829052818101919091526040516301c3cb5f60e01b81526001600160a01b0384811660048301525f917f000000000000000000000000b8368dd16e0a29ba8936856887003be9bf31d3a4909116906301c3cb5f90602401602060405180830381865afa1580156105ac573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105d09190611067565b90506001600160a01b0381166105eb576102a3858585610d6f565b6001600160a01b0380861683528416602083015261060881610ad5565b60408301526106175f80610b81565b60608301525f61062684610be6565b9050808360600151600181518110610640576106406110c0565b602090810291909101015261065581856110d4565b83606001515f8151811061066b5761066b6110c0565b60200260200101818152505050509392505050565b604080516080810182525f80825260208201526060918101829052818101919091526040516301c3cb5f60e01b81526001600160a01b0384811660048301525f917f000000000000000000000000b8368dd16e0a29ba8936856887003be9bf31d3a4909116906301c3cb5f90602401602060405180830381865afa15801561070a573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061072e9190611067565b90506001600160a01b038116610749576102a38585856109c4565b6001600160a01b0380861683528416602083015261076681610ad5565b60408301526107755f80610b81565b60608301526040516370a0823160e01b81526001600160a01b037f00000000000000000000000052f541764e6e90eebc5c21ff570de0e2d63766b6811660048301525f91908616906370a0823190602401602060405180830381865afa1580156107e1573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906108059190611082565b90505f826001600160a01b031663722713f76040518163ffffffff1660e01b8152600401602060405180830381865afa158015610844573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906108689190611082565b90505f8561087683856110ad565b61088091906110ad565b90505f61088c82610be6565b90505f84821161089c575f6108a6565b6108a685836110d4565b9050878111156108b35750865b8087606001516001815181106108cb576108cb6110c0565b60209081029190910101526108e081896110d4565b87606001515f815181106108f6576108f66110c0565b6020026020010181815250505050505050509392505050565b6040516301c3cb5f60e01b81526001600160a01b0382811660048301526060915f917f000000000000000000000000b8368dd16e0a29ba8936856887003be9bf31d3a416906301c3cb5f90602401602060405180830381865afa158015610978573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061099c9190611067565b90506001600160a01b038116156109bb576109b681610ad5565b61051b565b61051b83610d9c565b604080516080810182525f80825260208201526060918101829052818101919091526040805160018082528183019092525f918160200160208202803683370190505090507f00000000000000000000000052f541764e6e90eebc5c21ff570de0e2d63766b6815f81518110610a3c57610a3c6110c0565b6001600160a01b0392909216602092830291909101909101526040805160018082528183019092525f9181602001602082028036833701905050905083815f81518110610a8b57610a8b6110c0565b6020026020010181815250506040518060800160405280876001600160a01b03168152602001866001600160a01b0316815260200183815260200182815250925050509392505050565b604080516002808252606080830184529260208301908036833701905050905081815f81518110610b0857610b086110c0565b60200260200101906001600160a01b031690816001600160a01b0316815250507f00000000000000000000000052f541764e6e90eebc5c21ff570de0e2d63766b681600181518110610b5c57610b5c6110c0565b60200260200101906001600160a01b031690816001600160a01b031681525050919050565b604080516002808252606080830184529260208301908036833701905050905082815f81518110610bb457610bb46110c0565b6020026020010181815250508181600181518110610bd457610bd46110c0565b60200260200101818152505092915050565b6040516370a0823160e01b81526001600160a01b037f00000000000000000000000052f541764e6e90eebc5c21ff570de0e2d63766b6811660048301525f9182917f000000000000000000000000c73e8d8f7a68fc9d67e989250484e57ae03a5da316906370a0823190602401602060405180830381865afa158015610c6e573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610c929190611082565b6040516370a0823160e01b81526001600160a01b037f000000000000000000000000989aeb4d175e16225e39e87d0d97a3360524ad80811660048301529192505f917f000000000000000000000000c73e8d8f7a68fc9d67e989250484e57ae03a5da316906370a0823190602401602060405180830381865afa158015610d1b573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d3f9190611082565b9050610d5782610d4f83826110ad565b869190610e12565b949350505050565b8082108183180281185b92915050565b604080516080810182525f8082526020820152606091810182905281810191909152610d57848484610680565b6040805160018082528183019092526060915f9190602080830190803683370190505090507f00000000000000000000000052f541764e6e90eebc5c21ff570de0e2d63766b6815f81518110610df457610df46110c0565b6001600160a01b039092166020928302919091019091015292915050565b5f838302815f1985870982811083820303915050805f03610e4657838281610e3c57610e3c6110e7565b049250505061051b565b808411610e5d57610e5d6003851502601118610ec8565b5f848688095f868103871696879004966002600389028118808a02820302808a02820302808a02820302808a02820302808a02820302808a02909103029181900381900460010186841190950394909402919094039290920491909117919091029150509392505050565b634e487b715f52806020526024601cfd5b6001600160a01b0381168114610eed575f5ffd5b50565b5f5f5f60608486031215610f02575f5ffd5b8335610f0d81610ed9565b92506020840135610f1d81610ed9565b929592945050506040919091013590565b5f8151808452602084019350602083015f5b82811015610f5e578151865260209586019590910190600101610f40565b5093949350505050565b602080825282516001600160a01b0390811683830152838201511660408084019190915283015160806060840152805160a084018190525f929190910190829060c08501905b80831015610fd95783516001600160a01b031682526020938401936001939093019290910190610fae565b506060860151858203601f190160808701529250610ff78184610f2e565b9695505050505050565b5f60208284031215611011575f5ffd5b813561051b81610ed9565b602080825282518282018190525f918401906040840190835b8181101561105c5783516001600160a01b0316835260209384019390920191600101611035565b509095945050505050565b5f60208284031215611077575f5ffd5b815161051b81610ed9565b5f60208284031215611092575f5ffd5b5051919050565b634e487b7160e01b5f52601160045260245ffd5b80820180821115610d6957610d69611099565b634e487b7160e01b5f52603260045260245ffd5b81810381811115610d6957610d69611099565b634e487b7160e01b5f52601260045260245ffdfea26469706673582212207372a13ef20a4e79506f47ec24097432deea6be6acecad8ab3eead2b54fc156764736f6c634300081c0033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000052f541764e6e90eebc5c21ff570de0e2d63766b6000000000000000000000000b8368dd16e0a29ba8936856887003be9bf31d3a4000000000000000000000000c73e8d8f7a68fc9d67e989250484e57ae03a5da3000000000000000000000000989aeb4d175e16225e39e87d0d97a3360524ad80
-----Decoded View---------------
Arg [0] : _locker (address): 0x0000000000000000000000000000000000000000
Arg [1] : _gateway (address): 0x52f541764E6e90eeBc5c21Ff570De0e2D63766B6
Arg [2] : _convexSidecarFactory (address): 0xb8368DD16E0A29ba8936856887003Be9bF31d3A4
Arg [3] : _boostProvider (address): 0xc73e8d8f7A68Fc9d67e989250484E57Ae03a5Da3
Arg [4] : _convexBoostHolder (address): 0x989AEb4d175e16225E39E87d0D97A3360524AD80
-----Encoded View---------------
5 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000000000000000000000000000000000000
Arg [1] : 00000000000000000000000052f541764e6e90eebc5c21ff570de0e2d63766b6
Arg [2] : 000000000000000000000000b8368dd16e0a29ba8936856887003be9bf31d3a4
Arg [3] : 000000000000000000000000c73e8d8f7a68fc9d67e989250484e57ae03a5da3
Arg [4] : 000000000000000000000000989aeb4d175e16225e39e87d0d97a3360524ad80
Loading...
Loading
Loading...
Loading
Loading...
Loading
Net Worth in USD
$0.00
Net Worth in FRAX
0
Multichain Portfolio | 35 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.