Source Code
| Transaction Hash |
|
Block
|
From
|
To
|
|||||
|---|---|---|---|---|---|---|---|---|---|
Latest 1 internal transaction
Advanced mode:
| Parent Transaction Hash | Block | From | To | |||
|---|---|---|---|---|---|---|
| 25038694 | 145 days ago | Contract Creation | 0 FRAX |
Cross-Chain Transactions
Loading...
Loading
Contract Name:
AccessManagerFacet
Compiler Version
v0.8.19+commit.7dd6d404
Optimization Enabled:
Yes with 300 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
import { LibDiamond } from "../Libraries/LibDiamond.sol";
import { LibAccess } from "../Libraries/LibAccess.sol";
import { IAccessManagerFacet } from "../Interfaces/IAccessManagerFacet.sol";
import { CannotAuthorizeSelf } from "../Errors.sol";
/**
* @title AccessManagerFacet
* @author DZap
* @notice Provides functionality for managing method level access control
*/
contract AccessManagerFacet is IAccessManagerFacet {
/* ========= EXTERNAL ========= */
/// @inheritdoc IAccessManagerFacet
function setCanExecute(bytes4 _selector, address _executor, bool _canExecute) external {
if (_executor == address(this)) revert CannotAuthorizeSelf();
LibDiamond.enforceIsContractOwner();
_canExecute ? LibAccess.addAccess(_selector, _executor) : LibAccess.removeAccess(_selector, _executor);
if (_canExecute) emit ExecutionAllowed(_executor, _selector);
else emit ExecutionDenied(_executor, _selector);
}
/// @inheritdoc IAccessManagerFacet
function setBatchCanExecute(bytes4[] calldata _selector, address[] calldata _executor, bool[] calldata _canExecute) external {
uint256 length = _selector.length;
for (uint256 i = 0; i < length; ) {
bytes4 selector = _selector[i];
address executor = _executor[i];
if (executor == address(this)) revert CannotAuthorizeSelf();
LibDiamond.enforceIsContractOwner();
_canExecute[i] ? LibAccess.addAccess(selector, executor) : LibAccess.removeAccess(selector, executor);
if (_canExecute[i]) emit ExecutionAllowed(executor, selector);
else emit ExecutionDenied(executor, selector);
unchecked {
++i;
}
}
}
/// @inheritdoc IAccessManagerFacet
function addressCanExecuteMethod(bytes4 _selector, address _executor) external view returns (bool) {
return LibAccess.accessStorage().execAccess[_selector][_executor];
}
}// SPDX-License-Identifier: MIT pragma solidity 0.8.19; // DZap Common Errors error OnlyContractOwner(); error UnauthorizedCaller(); error UnAuthorized(); error CannotAuthorizeSelf(); error AlreadyInitialized(); error InsufficientBalance(uint256 amount, uint256 contractBalance); error SlippageTooHigh(uint256 minAmount, uint256 returnAmount); error AmountExceedsMaximum(); error TransferAmountMismatch(); error NoBridgeFromZeroAmount(); error NoSwapFromZeroAmount(); error ZeroAddress(); error NoTransferToNullAddress(); error NullAddrIsNotAValidSpender(); error NullAddrIsNotAValidRecipient(); error NativeTokenNotSupported(); error InvalidEncodedAddress(); error NotAContract(); error BridgeNotWhitelisted(address bridge); error AdapterNotWhitelisted(address adapter); error DexNotWhitelisted(address dex); error InvalidPermitType(); error CannotBridgeToSameNetwork(); error SwapCallFailed(address target, bytes4 funSig, bytes reason); error BridgeCallFailed(address target, bytes4 funSig, bytes reason); error AdapterCallFailed(address adapter, bytes res); error NativeCallFailed(bytes reason); error Erc20CallFailed(bytes reason); error NativeTransferFailed();
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
/**
* @title IAccessManagerFacet
* @author DZap
*/
interface IAccessManagerFacet {
event ExecutionAllowed(address indexed account, bytes4 indexed method);
event ExecutionDenied(address indexed account, bytes4 indexed method);
/// @notice Sets whether a specific address can call a method
/// @param _selector The method selector to set access for
/// @param _executor The address to set method access for
/// @param _canExecute Whether or not the address can execute the specified method
function setCanExecute(bytes4 _selector, address _executor, bool _canExecute) external;
/// @notice Sets in batches whether a specific address can call a method
/// @param _selector The method selector to set access for
/// @param _executor The address to set method access for
/// @param _canExecute Whether or not the address can execute the specified method
function setBatchCanExecute(bytes4[] calldata _selector, address[] calldata _executor, bool[] calldata _canExecute) external;
/// @notice Check if a method can be executed by a specific address
/// @param _selector The method selector to check
/// @param _executor The address to check
function addressCanExecuteMethod(bytes4 _selector, address _executor) external view returns (bool);
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
interface IDiamondCut {
enum FacetCutAction {
Add,
Replace,
Remove
}
// Add=0, Replace=1, Remove=2
struct FacetCut {
address facetAddress;
FacetCutAction action;
bytes4[] functionSelectors;
}
/// @notice Add/replace/remove any number of functions and optionally execute
/// a function with delegatecall
/// @param _diamondCut Contains the facet addresses and function selectors
/// @param _init The address of the contract or facet to execute _calldata
/// @param _calldata A function call, including function selector and arguments
/// _calldata is executed with delegatecall on _init
function diamondCut(FacetCut[] calldata _diamondCut, address _init, bytes calldata _calldata) external;
event DiamondCut(FacetCut[] _diamondCut, address _init, bytes _calldata);
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
import { CannotAuthorizeSelf, UnAuthorized } from "../Errors.sol";
struct AccessStorage {
mapping(bytes4 => mapping(address => bool)) execAccess;
}
/**
* @title LibAccess
* @author DZap
* @notice Provides functionality for managing method level access control
*/
library LibAccess {
/// Types ///
bytes32 internal constant _ACCESS_STORAGE_SLOT = keccak256("dzap.library.access.management");
/// Events ///
event AccessGranted(address indexed account, bytes4 indexed method);
event AccessRevoked(address indexed account, bytes4 indexed method);
/// @dev Fetch local storage
function accessStorage() internal pure returns (AccessStorage storage accStor) {
bytes32 position = _ACCESS_STORAGE_SLOT;
// solhint-disable-next-line no-inline-assembly
assembly {
accStor.slot := position
}
}
/// @notice Gives an address permission to execute a method
/// @param _selector The method selector to execute
/// @param _executor The address to grant permission to
function addAccess(bytes4 _selector, address _executor) internal {
if (_executor == address(this)) {
revert CannotAuthorizeSelf();
}
AccessStorage storage accStor = accessStorage();
accStor.execAccess[_selector][_executor] = true;
emit AccessGranted(_executor, _selector);
}
/// @notice Revokes permission to execute a method
/// @param _selector The method selector to execute
/// @param _executor The address to revoke permission from
function removeAccess(bytes4 _selector, address _executor) internal {
AccessStorage storage accStor = accessStorage();
accStor.execAccess[_selector][_executor] = false;
emit AccessRevoked(_executor, _selector);
}
/// @notice Enforces access control by reverting if `msg.sender`
/// has not been given permission to execute `msg.sig`
function enforceAccessControl() internal view {
AccessStorage storage accStor = accessStorage();
if (accStor.execAccess[msg.sig][msg.sender] != true) revert UnAuthorized();
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
/// https://github.com/Cryptorubic/multi-proxy-rubic/blob/master/src/Libraries/LibBytes.sol
library LibBytes {
// solhint-disable no-inline-assembly
// LibBytes specific errors
error SliceOverflow();
error SliceOutOfBounds();
error AddressOutOfBounds();
error UintOutOfBounds();
// -------------------------
function concat(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bytes memory) {
bytes memory tempBytes;
assembly {
// Get a location of some free memory and store it in tempBytes as
// Solidity does for memory variables.
tempBytes := mload(0x40)
// Store the length of the first bytes array at the beginning of
// the memory for tempBytes.
let length := mload(_preBytes)
mstore(tempBytes, length)
// Maintain a memory counter for the current write location in the
// temp bytes array by adding the 32 bytes for the array length to
// the starting location.
let mc := add(tempBytes, 0x20)
// Stop copying when the memory counter reaches the length of the
// first bytes array.
let end := add(mc, length)
for {
// Initialize a copy counter to the start of the _preBytes data,
// 32 bytes into its memory.
let cc := add(_preBytes, 0x20)
} lt(mc, end) {
// Increase both counters by 32 bytes each iteration.
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
// Write the _preBytes data into the tempBytes memory 32 bytes
// at a time.
mstore(mc, mload(cc))
}
// Add the length of _postBytes to the current length of tempBytes
// and store it as the new length in the first 32 bytes of the
// tempBytes memory.
length := mload(_postBytes)
mstore(tempBytes, add(length, mload(tempBytes)))
// Move the memory counter back from a multiple of 0x20 to the
// actual end of the _preBytes data.
mc := end
// Stop copying when the memory counter reaches the new combined
// length of the arrays.
end := add(mc, length)
for {
let cc := add(_postBytes, 0x20)
} lt(mc, end) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
mstore(mc, mload(cc))
}
// Update the free-memory pointer by padding our last write location
// to 32 bytes: add 31 bytes to the end of tempBytes to move to the
// next 32 byte block, then round down to the nearest multiple of
// 32. If the sum of the length of the two arrays is zero then add
// one before rounding down to leave a blank 32 bytes (the length block with 0).
mstore(
0x40,
and(
add(add(end, iszero(add(length, mload(_preBytes)))), 31),
not(31) // Round down to the nearest 32 bytes.
)
)
}
return tempBytes;
}
function concatStorage(bytes storage _preBytes, bytes memory _postBytes) internal {
assembly {
// Read the first 32 bytes of _preBytes storage, which is the length
// of the array. (We don't need to use the offset into the slot
// because arrays use the entire slot.)
let fslot := sload(_preBytes.slot)
// Arrays of 31 bytes or less have an even value in their slot,
// while longer arrays have an odd value. The actual length is
// the slot divided by two for odd values, and the lowest order
// byte divided by two for even values.
// If the slot is even, bitwise and the slot with 255 and divide by
// two to get the length. If the slot is odd, bitwise and the slot
// with -1 and divide by two.
let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
let mlength := mload(_postBytes)
let newlength := add(slength, mlength)
// slength can contain both the length and contents of the array
// if length < 32 bytes so let's prepare for that
// v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
switch add(lt(slength, 32), lt(newlength, 32))
case 2 {
// Since the new array still fits in the slot, we just need to
// update the contents of the slot.
// uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length
sstore(
_preBytes.slot,
// all the modifications to the slot are inside this
// next block
add(
// we can just add to the slot contents because the
// bytes we want to change are the LSBs
fslot,
add(
mul(
div(
// load the bytes from memory
mload(add(_postBytes, 0x20)),
// zero all bytes to the right
exp(0x100, sub(32, mlength))
),
// and now shift left the number of bytes to
// leave space for the length in the slot
exp(0x100, sub(32, newlength))
),
// increase length by the double of the memory
// bytes length
mul(mlength, 2)
)
)
)
}
case 1 {
// The stored value fits in the slot, but the combined value
// will exceed it.
// get the keccak hash to get the contents of the array
mstore(0x0, _preBytes.slot)
let sc := add(keccak256(0x0, 0x20), div(slength, 32))
// save new length
sstore(_preBytes.slot, add(mul(newlength, 2), 1))
// The contents of the _postBytes array start 32 bytes into
// the structure. Our first read should obtain the `submod`
// bytes that can fit into the unused space in the last word
// of the stored array. To get this, we read 32 bytes starting
// from `submod`, so the data we read overlaps with the array
// contents by `submod` bytes. Masking the lowest-order
// `submod` bytes allows us to add that value directly to the
// stored value.
let submod := sub(32, slength)
let mc := add(_postBytes, submod)
let end := add(_postBytes, mlength)
let mask := sub(exp(0x100, submod), 1)
sstore(sc, add(and(fslot, 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00), and(mload(mc), mask)))
for {
mc := add(mc, 0x20)
sc := add(sc, 1)
} lt(mc, end) {
sc := add(sc, 1)
mc := add(mc, 0x20)
} {
sstore(sc, mload(mc))
}
mask := exp(0x100, sub(mc, end))
sstore(sc, mul(div(mload(mc), mask), mask))
}
default {
// get the keccak hash to get the contents of the array
mstore(0x0, _preBytes.slot)
// Start copying to the last used word of the stored array.
let sc := add(keccak256(0x0, 0x20), div(slength, 32))
// save new length
sstore(_preBytes.slot, add(mul(newlength, 2), 1))
// Copy over the first `submod` bytes of the new data as in
// case 1 above.
let slengthmod := mod(slength, 32)
let submod := sub(32, slengthmod)
let mc := add(_postBytes, submod)
let end := add(_postBytes, mlength)
let mask := sub(exp(0x100, submod), 1)
sstore(sc, add(sload(sc), and(mload(mc), mask)))
for {
sc := add(sc, 1)
mc := add(mc, 0x20)
} lt(mc, end) {
sc := add(sc, 1)
mc := add(mc, 0x20)
} {
sstore(sc, mload(mc))
}
mask := exp(0x100, sub(mc, end))
sstore(sc, mul(div(mload(mc), mask), mask))
}
}
}
function slice(bytes memory _bytes, uint256 _start, uint256 _length) internal pure returns (bytes memory) {
if (_length + 31 < _length) revert SliceOverflow();
if (_bytes.length < _start + _length) revert SliceOutOfBounds();
bytes memory tempBytes;
assembly {
switch iszero(_length)
case 0 {
// Get a location of some free memory and store it in tempBytes as
// Solidity does for memory variables.
tempBytes := mload(0x40)
// The first word of the slice result is potentially a partial
// word read from the original array. To read it, we calculate
// the length of that partial word and start copying that many
// bytes into the array. The first word we copy will start with
// data we don't care about, but the last `lengthmod` bytes will
// land at the beginning of the contents of the new array. When
// we're done copying, we overwrite the full first word with
// the actual length of the slice.
let lengthmod := and(_length, 31)
// The multiplication in the next line is necessary
// because when slicing multiples of 32 bytes (lengthmod == 0)
// the following copy loop was copying the origin's length
// and then ending prematurely not copying everything it should.
let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
let end := add(mc, _length)
for {
// The multiplication in the next line has the same exact purpose
// as the one above.
let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
} lt(mc, end) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
mstore(mc, mload(cc))
}
mstore(tempBytes, _length)
//update free-memory pointer
//allocating the array padded to 32 bytes like the compiler does now
mstore(0x40, and(add(mc, 31), not(31)))
}
//if we want a zero-length slice let's just return a zero-length array
default {
tempBytes := mload(0x40)
//zero out the 32 bytes slice we are about to return
//we need to do it because Solidity does not garbage collect
mstore(tempBytes, 0)
mstore(0x40, add(tempBytes, 0x20))
}
}
return tempBytes;
}
function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) {
if (_bytes.length < _start + 20) {
revert AddressOutOfBounds();
}
address tempAddress;
assembly {
tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000)
}
return tempAddress;
}
function toUint8(bytes memory _bytes, uint256 _start) internal pure returns (uint8) {
if (_bytes.length < _start + 1) {
revert UintOutOfBounds();
}
uint8 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x1), _start))
}
return tempUint;
}
function toUint16(bytes memory _bytes, uint256 _start) internal pure returns (uint16) {
if (_bytes.length < _start + 2) {
revert UintOutOfBounds();
}
uint16 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x2), _start))
}
return tempUint;
}
function toUint32(bytes memory _bytes, uint256 _start) internal pure returns (uint32) {
if (_bytes.length < _start + 4) {
revert UintOutOfBounds();
}
uint32 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x4), _start))
}
return tempUint;
}
function toUint64(bytes memory _bytes, uint256 _start) internal pure returns (uint64) {
if (_bytes.length < _start + 8) {
revert UintOutOfBounds();
}
uint64 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x8), _start))
}
return tempUint;
}
function toUint96(bytes memory _bytes, uint256 _start) internal pure returns (uint96) {
if (_bytes.length < _start + 12) {
revert UintOutOfBounds();
}
uint96 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0xc), _start))
}
return tempUint;
}
function toUint128(bytes memory _bytes, uint256 _start) internal pure returns (uint128) {
if (_bytes.length < _start + 16) {
revert UintOutOfBounds();
}
uint128 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x10), _start))
}
return tempUint;
}
function toUint256(bytes memory _bytes, uint256 _start) internal pure returns (uint256) {
if (_bytes.length < _start + 32) {
revert UintOutOfBounds();
}
uint256 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x20), _start))
}
return tempUint;
}
function toBytes32(bytes memory _bytes, uint256 _start) internal pure returns (bytes32) {
if (_bytes.length < _start + 32) {
revert UintOutOfBounds();
}
bytes32 tempBytes32;
assembly {
tempBytes32 := mload(add(add(_bytes, 0x20), _start))
}
return tempBytes32;
}
function equal(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bool) {
bool success = true;
assembly {
let length := mload(_preBytes)
// if lengths don't match the arrays are not equal
switch eq(length, mload(_postBytes))
case 1 {
// cb is a circuit breaker in the for loop since there's
// no said feature for inline assembly loops
// cb = 1 - don't breaker
// cb = 0 - break
let cb := 1
let mc := add(_preBytes, 0x20)
let end := add(mc, length)
for {
let cc := add(_postBytes, 0x20)
// the next line is the loop condition:
// while(uint256(mc < end) + cb == 2)
} eq(add(lt(mc, end), cb), 2) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
// if any of these checks fails then arrays are not equal
if iszero(eq(mload(mc), mload(cc))) {
// unsuccess:
success := 0
cb := 0
}
}
}
default {
// unsuccess:
success := 0
}
}
return success;
}
function equalStorage(bytes storage _preBytes, bytes memory _postBytes) internal view returns (bool) {
bool success = true;
assembly {
// we know _preBytes_offset is 0
let fslot := sload(_preBytes.slot)
// Decode the length of the stored array like in concatStorage().
let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
let mlength := mload(_postBytes)
// if lengths don't match the arrays are not equal
switch eq(slength, mlength)
case 1 {
// slength can contain both the length and contents of the array
// if length < 32 bytes so let's prepare for that
// v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
if iszero(iszero(slength)) {
switch lt(slength, 32)
case 1 {
// blank the last byte which is the length
fslot := mul(div(fslot, 0x100), 0x100)
if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) {
// unsuccess:
success := 0
}
}
default {
// cb is a circuit breaker in the for loop since there's
// no said feature for inline assembly loops
// cb = 1 - don't breaker
// cb = 0 - break
let cb := 1
// get the keccak hash to get the contents of the array
mstore(0x0, _preBytes.slot)
let sc := keccak256(0x0, 0x20)
let mc := add(_postBytes, 0x20)
let end := add(mc, mlength)
// the next line is the loop condition:
// while(uint256(mc < end) + cb == 2)
// solhint-disable-next-line no-empty-blocks
for {
} eq(add(lt(mc, end), cb), 2) {
sc := add(sc, 1)
mc := add(mc, 0x20)
} {
if iszero(eq(sload(sc), mload(mc))) {
// unsuccess:
success := 0
cb := 0
}
}
}
}
}
default {
// unsuccess:
success := 0
}
}
return success;
}
function getFirst4Bytes(bytes memory data) internal pure returns (bytes4 outBytes4) {
if (data.length == 0) {
return 0x0;
}
assembly {
outBytes4 := mload(add(data, 32))
}
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
import { IDiamondCut } from "../Interfaces/IDiamondCut.sol";
import { LibUtil } from "../Libraries/LibUtil.sol";
import { OnlyContractOwner } from "../Errors.sol";
/// Implementation of EIP-2535 Diamond Standard
/// https://eips.ethereum.org/EIPS/eip-2535
library LibDiamond {
bytes32 internal constant DIAMOND_STORAGE_POSITION = keccak256("diamond.standard.diamond.storage");
// Diamond specific errors
error IncorrectFacetCutAction();
error NoSelectorsInFace();
error FunctionAlreadyExists();
error FacetAddressIsZero();
error FacetAddressIsNotZero();
error FacetContainsNoCode();
error FunctionDoesNotExist();
error FunctionIsImmutable();
error InitZeroButCalldataNotEmpty();
error CalldataEmptyButInitNotZero();
error InitReverted(bytes reason);
// ----------------
struct FacetAddressAndPosition {
address facetAddress;
uint96 functionSelectorPosition; // position in facetFunctionSelectors.functionSelectors array
}
struct FacetFunctionSelectors {
bytes4[] functionSelectors;
uint256 facetAddressPosition; // position of facetAddress in facetAddresses array
}
struct DiamondStorage {
// maps function selector to the facet address and
// the position of the selector in the facetFunctionSelectors.selectors array
mapping(bytes4 => FacetAddressAndPosition) selectorToFacetAndPosition;
// maps facet addresses to function selectors
mapping(address => FacetFunctionSelectors) facetFunctionSelectors;
// facet addresses
address[] facetAddresses;
// Used to query if a contract implements an interface.
// Used to implement ERC-165.
mapping(bytes4 => bool) supportedInterfaces;
// owner of the contract
address contractOwner;
}
function diamondStorage() internal pure returns (DiamondStorage storage ds) {
bytes32 position = DIAMOND_STORAGE_POSITION;
// solhint-disable-next-line no-inline-assembly
assembly {
ds.slot := position
}
}
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
function setContractOwner(address _newOwner) internal {
DiamondStorage storage ds = diamondStorage();
address previousOwner = ds.contractOwner;
ds.contractOwner = _newOwner;
emit OwnershipTransferred(previousOwner, _newOwner);
}
function contractOwner() internal view returns (address contractOwner_) {
contractOwner_ = diamondStorage().contractOwner;
}
function enforceIsContractOwner() internal view {
if (msg.sender != diamondStorage().contractOwner) revert OnlyContractOwner();
}
event DiamondCut(IDiamondCut.FacetCut[] _diamondCut, address _init, bytes _calldata);
// Internal function version of diamondCut
function diamondCut(IDiamondCut.FacetCut[] memory _diamondCut, address _init, bytes memory _calldata) internal {
for (uint256 facetIndex; facetIndex < _diamondCut.length; ) {
IDiamondCut.FacetCutAction action = _diamondCut[facetIndex].action;
if (action == IDiamondCut.FacetCutAction.Add) {
addFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
} else if (action == IDiamondCut.FacetCutAction.Replace) {
replaceFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
} else if (action == IDiamondCut.FacetCutAction.Remove) {
removeFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
} else {
revert IncorrectFacetCutAction();
}
unchecked {
++facetIndex;
}
}
emit DiamondCut(_diamondCut, _init, _calldata);
initializeDiamondCut(_init, _calldata);
}
function addFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
if (_functionSelectors.length == 0) {
revert NoSelectorsInFace();
}
DiamondStorage storage ds = diamondStorage();
if (LibUtil.isZeroAddress(_facetAddress)) {
revert FacetAddressIsZero();
}
uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length);
// add new facet address if it does not exist
if (selectorPosition == 0) {
addFacet(ds, _facetAddress);
}
for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
bytes4 selector = _functionSelectors[selectorIndex];
address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
if (!LibUtil.isZeroAddress(oldFacetAddress)) {
revert FunctionAlreadyExists();
}
addFunction(ds, selector, selectorPosition, _facetAddress);
unchecked {
++selectorPosition;
++selectorIndex;
}
}
}
function replaceFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
if (_functionSelectors.length == 0) {
revert NoSelectorsInFace();
}
DiamondStorage storage ds = diamondStorage();
if (LibUtil.isZeroAddress(_facetAddress)) {
revert FacetAddressIsZero();
}
uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length);
// add new facet address if it does not exist
if (selectorPosition == 0) {
addFacet(ds, _facetAddress);
}
for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
bytes4 selector = _functionSelectors[selectorIndex];
address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
if (oldFacetAddress == _facetAddress) {
revert FunctionAlreadyExists();
}
removeFunction(ds, oldFacetAddress, selector);
addFunction(ds, selector, selectorPosition, _facetAddress);
unchecked {
++selectorPosition;
++selectorIndex;
}
}
}
function removeFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
if (_functionSelectors.length == 0) {
revert NoSelectorsInFace();
}
DiamondStorage storage ds = diamondStorage();
// if function does not exist then do nothing and return
if (!LibUtil.isZeroAddress(_facetAddress)) {
revert FacetAddressIsNotZero();
}
for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
bytes4 selector = _functionSelectors[selectorIndex];
address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
removeFunction(ds, oldFacetAddress, selector);
unchecked {
++selectorIndex;
}
}
}
function addFacet(DiamondStorage storage ds, address _facetAddress) internal {
enforceHasContractCode(_facetAddress);
ds.facetFunctionSelectors[_facetAddress].facetAddressPosition = ds.facetAddresses.length;
ds.facetAddresses.push(_facetAddress);
}
function addFunction(DiamondStorage storage ds, bytes4 _selector, uint96 _selectorPosition, address _facetAddress) internal {
ds.selectorToFacetAndPosition[_selector].functionSelectorPosition = _selectorPosition;
ds.facetFunctionSelectors[_facetAddress].functionSelectors.push(_selector);
ds.selectorToFacetAndPosition[_selector].facetAddress = _facetAddress;
}
function removeFunction(DiamondStorage storage ds, address _facetAddress, bytes4 _selector) internal {
if (LibUtil.isZeroAddress(_facetAddress)) {
revert FunctionDoesNotExist();
}
// an immutable function is a function defined directly in a diamond
if (_facetAddress == address(this)) {
revert FunctionIsImmutable();
}
// replace selector with last selector, then delete last selector
uint256 selectorPosition = ds.selectorToFacetAndPosition[_selector].functionSelectorPosition;
uint256 lastSelectorPosition = ds.facetFunctionSelectors[_facetAddress].functionSelectors.length - 1;
// if not the same then replace _selector with lastSelector
if (selectorPosition != lastSelectorPosition) {
bytes4 lastSelector = ds.facetFunctionSelectors[_facetAddress].functionSelectors[lastSelectorPosition];
ds.facetFunctionSelectors[_facetAddress].functionSelectors[selectorPosition] = lastSelector;
ds.selectorToFacetAndPosition[lastSelector].functionSelectorPosition = uint96(selectorPosition);
}
// delete the last selector
ds.facetFunctionSelectors[_facetAddress].functionSelectors.pop();
delete ds.selectorToFacetAndPosition[_selector];
// if no more selectors for facet address then delete the facet address
if (lastSelectorPosition == 0) {
// replace facet address with last facet address and delete last facet address
uint256 lastFacetAddressPosition = ds.facetAddresses.length - 1;
uint256 facetAddressPosition = ds.facetFunctionSelectors[_facetAddress].facetAddressPosition;
if (facetAddressPosition != lastFacetAddressPosition) {
address lastFacetAddress = ds.facetAddresses[lastFacetAddressPosition];
ds.facetAddresses[facetAddressPosition] = lastFacetAddress;
ds.facetFunctionSelectors[lastFacetAddress].facetAddressPosition = facetAddressPosition;
}
ds.facetAddresses.pop();
delete ds.facetFunctionSelectors[_facetAddress].facetAddressPosition;
}
}
function initializeDiamondCut(address _init, bytes memory _calldata) internal {
if (LibUtil.isZeroAddress(_init)) {
if (_calldata.length != 0) {
revert InitZeroButCalldataNotEmpty();
}
} else {
if (_calldata.length == 0) {
revert CalldataEmptyButInitNotZero();
}
if (_init != address(this)) {
enforceHasContractCode(_init);
}
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory error) = _init.delegatecall(_calldata);
if (!success) {
revert InitReverted(error);
}
}
}
function enforceHasContractCode(address _contract) internal view {
uint256 contractSize;
// solhint-disable-next-line no-inline-assembly
assembly {
contractSize := extcodesize(_contract)
}
if (contractSize == 0) {
revert FacetContainsNoCode();
}
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
import "./LibBytes.sol";
library LibUtil {
using LibBytes for bytes;
function getRevertMsg(bytes memory _res) internal pure returns (string memory) {
if (_res.length < 68) return string(_res);
bytes memory revertData = _res.slice(4, _res.length - 4); // Remove the selector which is the first 4 bytes
return abi.decode(revertData, (string)); // All that remains is the revert string
}
/// @notice Determines whether the given address is the zero address
/// @param addr The address to verify
/// @return Boolean indicating if the address is the zero address
function isZeroAddress(address addr) internal pure returns (bool) {
return addr == address(0);
}
}{
"optimizer": {
"enabled": true,
"runs": 300
},
"viaIR": true,
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[],"name":"CannotAuthorizeSelf","type":"error"},{"inputs":[],"name":"OnlyContractOwner","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"bytes4","name":"method","type":"bytes4"}],"name":"ExecutionAllowed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"bytes4","name":"method","type":"bytes4"}],"name":"ExecutionDenied","type":"event"},{"inputs":[{"internalType":"bytes4","name":"_selector","type":"bytes4"},{"internalType":"address","name":"_executor","type":"address"}],"name":"addressCanExecuteMethod","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes4[]","name":"_selector","type":"bytes4[]"},{"internalType":"address[]","name":"_executor","type":"address[]"},{"internalType":"bool[]","name":"_canExecute","type":"bool[]"}],"name":"setBatchCanExecute","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"_selector","type":"bytes4"},{"internalType":"address","name":"_executor","type":"address"},{"internalType":"bool","name":"_canExecute","type":"bool"}],"name":"setCanExecute","outputs":[],"stateMutability":"nonpayable","type":"function"}]Contract Creation Code
6080806040523461001657610544908161001c8239f35b600080fdfe6040608081526004908136101561001557600080fd5b600091823560e01c80635b1be424146101a2578063612ad9cb1461012a5763a4c3366e1461004257600080fd5b346101265760603660031901126101265761005b61035b565b90610064610372565b604435918215158303610122576001600160a01b0382169430861461011557505061008d6104c9565b81156101065761009d90836103bb565b156100d4576001600160e01b031916907fd97cb52d6a919c35d1a9848f69806a32611c1381fa1078e5ea866186ee4c46c78380a380f35b6001600160e01b031916907f2fb75e73eca07a04ac148df401d1f013ddb4c8177a453af29c97c88037bac8488380a380f35b6101109083610450565b61009d565b51636d582a3160e11b8152fd5b8580fd5b8280fd5b50503461019e578060031936011261019e5760ff8160209361014a61035b565b610152610372565b9063ffffffff60e01b1682527f5d54ae78bb256b3b2ab9aba21ec80ea50728352673b79651649d3494dfcade6a86526001600160a01b0383832091168252855220541690519015158152f35b5080fd5b5090346101265760603660031901126101265767ffffffffffffffff8235818111610321576101d49036908501610325565b60249391933583811161031d576101ee9036908701610325565b9093604435908111610319576102079036908801610325565b969092885b818110610217578980f35b61022281838a610388565b3563ffffffff60e01b8116908181036103155761024083878b610388565b35906001600160a01b038216918281036103115730831461030157610281858e8196959461029a946102866102818f9b8560019d61027c6104c9565b610388565b6103ae565b156102f357610294916103bb565b8b610388565b156102ca577fd97cb52d6a919c35d1a9848f69806a32611c1381fa1078e5ea866186ee4c46c78d80a35b0161020c565b7f2fb75e73eca07a04ac148df401d1f013ddb4c8177a453af29c97c88037bac8488d80a36102c4565b6102fc91610450565b610294565b8951636d582a3160e11b81528790fd5b8d80fd5b8b80fd5b8780fd5b8680fd5b8480fd5b9181601f840112156103565782359167ffffffffffffffff8311610356576020808501948460051b01011161035657565b600080fd5b600435906001600160e01b03198216820361035657565b602435906001600160a01b038216820361035657565b91908110156103985760051b0190565b634e487b7160e01b600052603260045260246000fd5b3580151581036103565790565b906001600160a01b03169030821461043e5763ffffffff60e01b16907fcdd2f8ab598ea828ea63b4a6cfc86ccf7d40784556f0783753603ba712c83b0060008381527f5d54ae78bb256b3b2ab9aba21ec80ea50728352673b79651649d3494dfcade6a6020526040812083825260205260408120600160ff1982541617905580a3565b604051636d582a3160e11b8152600490fd5b63ffffffff60e01b16907f4e2965fe48abf86ff779f17f9368d20e8eb4eebd1473e650a0aae103adc4b68b60008381527f5d54ae78bb256b3b2ab9aba21ec80ea50728352673b79651649d3494dfcade6a6020526001600160a01b03604082209316928382526020526040812060ff19815416905580a3565b6001600160a01b037fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c1320541633036104fc57565b6040516304efaedf60e31b8152600490fdfea26469706673582212208329455c11ae3e7009adf63a0cc69348cbd7510e8332252e3b9ba579e153d12664736f6c63430008130033
Deployed Bytecode
0x6040608081526004908136101561001557600080fd5b600091823560e01c80635b1be424146101a2578063612ad9cb1461012a5763a4c3366e1461004257600080fd5b346101265760603660031901126101265761005b61035b565b90610064610372565b604435918215158303610122576001600160a01b0382169430861461011557505061008d6104c9565b81156101065761009d90836103bb565b156100d4576001600160e01b031916907fd97cb52d6a919c35d1a9848f69806a32611c1381fa1078e5ea866186ee4c46c78380a380f35b6001600160e01b031916907f2fb75e73eca07a04ac148df401d1f013ddb4c8177a453af29c97c88037bac8488380a380f35b6101109083610450565b61009d565b51636d582a3160e11b8152fd5b8580fd5b8280fd5b50503461019e578060031936011261019e5760ff8160209361014a61035b565b610152610372565b9063ffffffff60e01b1682527f5d54ae78bb256b3b2ab9aba21ec80ea50728352673b79651649d3494dfcade6a86526001600160a01b0383832091168252855220541690519015158152f35b5080fd5b5090346101265760603660031901126101265767ffffffffffffffff8235818111610321576101d49036908501610325565b60249391933583811161031d576101ee9036908701610325565b9093604435908111610319576102079036908801610325565b969092885b818110610217578980f35b61022281838a610388565b3563ffffffff60e01b8116908181036103155761024083878b610388565b35906001600160a01b038216918281036103115730831461030157610281858e8196959461029a946102866102818f9b8560019d61027c6104c9565b610388565b6103ae565b156102f357610294916103bb565b8b610388565b156102ca577fd97cb52d6a919c35d1a9848f69806a32611c1381fa1078e5ea866186ee4c46c78d80a35b0161020c565b7f2fb75e73eca07a04ac148df401d1f013ddb4c8177a453af29c97c88037bac8488d80a36102c4565b6102fc91610450565b610294565b8951636d582a3160e11b81528790fd5b8d80fd5b8b80fd5b8780fd5b8680fd5b8480fd5b9181601f840112156103565782359167ffffffffffffffff8311610356576020808501948460051b01011161035657565b600080fd5b600435906001600160e01b03198216820361035657565b602435906001600160a01b038216820361035657565b91908110156103985760051b0190565b634e487b7160e01b600052603260045260246000fd5b3580151581036103565790565b906001600160a01b03169030821461043e5763ffffffff60e01b16907fcdd2f8ab598ea828ea63b4a6cfc86ccf7d40784556f0783753603ba712c83b0060008381527f5d54ae78bb256b3b2ab9aba21ec80ea50728352673b79651649d3494dfcade6a6020526040812083825260205260408120600160ff1982541617905580a3565b604051636d582a3160e11b8152600490fd5b63ffffffff60e01b16907f4e2965fe48abf86ff779f17f9368d20e8eb4eebd1473e650a0aae103adc4b68b60008381527f5d54ae78bb256b3b2ab9aba21ec80ea50728352673b79651649d3494dfcade6a6020526001600160a01b03604082209316928382526020526040812060ff19815416905580a3565b6001600160a01b037fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c1320541633036104fc57565b6040516304efaedf60e31b8152600490fdfea26469706673582212208329455c11ae3e7009adf63a0cc69348cbd7510e8332252e3b9ba579e153d12664736f6c63430008130033
Loading...
Loading
Loading...
Loading
Loading...
Loading
Net Worth in USD
$0.00
Net Worth in FRAX
0
Multichain Portfolio | 35 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.