FRAX Price: $0.86 (-15.59%)

Contract

0x3B1d8484b7036f62feD9D5EaE15B186Bd7C3E8b4

Overview

FRAX Balance | FXTL Balance

0 FRAX | 42,124 FXTL

FRAX Value

$0.00

Token Holdings

More Info

Private Name Tags

Multichain Info

No addresses found
Transaction Hash
Block
From
To

There are no matching entries

> 10 Internal Transactions and > 10 Token Transfers found.

Latest 25 internal transactions (View All)

Advanced mode:
Parent Transaction Hash Block From To
312728212026-01-25 15:52:3316 mins ago1769356353
0x3B1d8484...Bd7C3E8b4
0 FRAX
312728212026-01-25 15:52:3316 mins ago1769356353
0x3B1d8484...Bd7C3E8b4
0 FRAX
312728212026-01-25 15:52:3316 mins ago1769356353
0x3B1d8484...Bd7C3E8b4
0 FRAX
312728212026-01-25 15:52:3316 mins ago1769356353
0x3B1d8484...Bd7C3E8b4
0 FRAX
312728212026-01-25 15:52:3316 mins ago1769356353
0x3B1d8484...Bd7C3E8b4
0 FRAX
312728212026-01-25 15:52:3316 mins ago1769356353
0x3B1d8484...Bd7C3E8b4
0 FRAX
312728212026-01-25 15:52:3316 mins ago1769356353
0x3B1d8484...Bd7C3E8b4
0 FRAX
312728212026-01-25 15:52:3316 mins ago1769356353
0x3B1d8484...Bd7C3E8b4
0 FRAX
312728212026-01-25 15:52:3316 mins ago1769356353
0x3B1d8484...Bd7C3E8b4
0 FRAX
312728212026-01-25 15:52:3316 mins ago1769356353
0x3B1d8484...Bd7C3E8b4
0 FRAX
312728212026-01-25 15:52:3316 mins ago1769356353
0x3B1d8484...Bd7C3E8b4
0 FRAX
312728212026-01-25 15:52:3316 mins ago1769356353
0x3B1d8484...Bd7C3E8b4
0 FRAX
312728212026-01-25 15:52:3316 mins ago1769356353
0x3B1d8484...Bd7C3E8b4
0 FRAX
312728012026-01-25 15:51:5317 mins ago1769356313
0x3B1d8484...Bd7C3E8b4
0 FRAX
312728012026-01-25 15:51:5317 mins ago1769356313
0x3B1d8484...Bd7C3E8b4
0 FRAX
312728012026-01-25 15:51:5317 mins ago1769356313
0x3B1d8484...Bd7C3E8b4
0 FRAX
312728012026-01-25 15:51:5317 mins ago1769356313
0x3B1d8484...Bd7C3E8b4
0 FRAX
312728012026-01-25 15:51:5317 mins ago1769356313
0x3B1d8484...Bd7C3E8b4
0 FRAX
312728012026-01-25 15:51:5317 mins ago1769356313
0x3B1d8484...Bd7C3E8b4
0 FRAX
312728012026-01-25 15:51:5317 mins ago1769356313
0x3B1d8484...Bd7C3E8b4
0 FRAX
312728012026-01-25 15:51:5317 mins ago1769356313
0x3B1d8484...Bd7C3E8b4
0 FRAX
312728012026-01-25 15:51:5317 mins ago1769356313
0x3B1d8484...Bd7C3E8b4
0 FRAX
312728012026-01-25 15:51:5317 mins ago1769356313
0x3B1d8484...Bd7C3E8b4
0 FRAX
312728012026-01-25 15:51:5317 mins ago1769356313
0x3B1d8484...Bd7C3E8b4
0 FRAX
312728012026-01-25 15:51:5317 mins ago1769356313
0x3B1d8484...Bd7C3E8b4
0 FRAX
View All Internal Transactions

Cross-Chain Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
FraxswapOracle

Compiler Version
v0.8.23+commit.f704f362

Optimization Enabled:
Yes with 10000 runs

Other Settings:
shanghai EvmVersion
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.23;

// ====================================================================
// |     ______                   _______                             |
// |    / _____________ __  __   / ____(_____  ____ _____  ________   |
// |   / /_  / ___/ __ `| |/_/  / /_  / / __ \/ __ `/ __ \/ ___/ _ \  |
// |  / __/ / /  / /_/ _>  <   / __/ / / / / / /_/ / / / / /__/  __/  |
// | /_/   /_/   \__,_/_/|_|  /_/   /_/_/ /_/\__,_/_/ /_/\___/\___/   |
// |                                                                  |
// ====================================================================
// =========================== FraxswapOracle =========================
// ====================================================================
// Gets token0 and token1 prices from a Fraxswap pair

import { FixedPoint } from "./libraries/FixedPoint.sol";
import { UQ112x112 } from "./libraries/UQ112x112.sol";
import { IFraxswapPair } from "dev-fraxswap/src/contracts/core/interfaces/IFraxswapPair.sol";
import { SafeCast } from "@openzeppelin/contracts/utils/math/SafeCast.sol";
import { IFraxswapOracle } from "./interfaces/IFraxswapOracle.sol";

contract FraxswapOracle is IFraxswapOracle {
    using UQ112x112 for uint224;
    using FixedPoint for *;
    using SafeCast for *;

    /// @notice Gets the prices for token0 and token1 from a Fraxswap pool
    /// @param pool The LP contract
    /// @param period The minimum size of the period between observations, in seconds
    /// @param rounds 2 ^ rounds # of blocks to search
    /// @param maxDiffPerc Max price change from last value
    /// @return result0 The price for token0
    /// @return result1 The price for token1
    function getPrice(
        IFraxswapPair pool,
        uint256 period,
        uint256 rounds,
        uint256 maxDiffPerc
    ) public view returns (uint256 result0, uint256 result1) {
        uint256 lastObservationIndex = pool.getTWAPHistoryLength() - 1;
        IFraxswapPair.TWAPObservation memory lastObservation = pool.TWAPObservationHistory(lastObservationIndex);

        // Update last observation up to the current block
        if (lastObservation.timestamp < block.timestamp) {
            // Update the reserves
            (uint112 _reserve0, uint112 _reserve1, ) = pool.getReserves();
            uint32 blockTimestamp = uint32(block.timestamp % 2 ** 32);
            // Get the latest observed prices
            unchecked {
                uint32 timeElapsed = blockTimestamp - uint32(lastObservation.timestamp);
                lastObservation.price0CumulativeLast +=
                    uint256(UQ112x112.encode(_reserve1).uqdiv(_reserve0)) *
                    timeElapsed;
                lastObservation.price1CumulativeLast +=
                    uint256(UQ112x112.encode(_reserve0).uqdiv(_reserve1)) *
                    timeElapsed;
                lastObservation.timestamp = blockTimestamp;
            }
        }

        bool found;
        // Search for an observation via binary search within the last 2^round number of observations
        IFraxswapPair.TWAPObservation memory foundObservation;
        uint256 step = 2 ** rounds;
        uint256 min = (lastObservationIndex + 2 > step) ? (lastObservationIndex + 2 - step) : 0;
        while (step > 1) {
            step = step >> 1; // divide by 2
            uint256 pos = min + step - 1;
            if (pos <= lastObservationIndex) {
                IFraxswapPair.TWAPObservation memory observation = pool.TWAPObservationHistory(pos);
                unchecked {
                    if (lastObservation.timestamp - observation.timestamp > period) {
                        found = true;
                        foundObservation = observation;
                        min = pos + 1;
                    }
                }
            }
        }

        // Reverts when a matching period can not be found
        require(found, "Period too long");

        // Get the price results 1E34 based
        uint256 encoded0;
        uint256 encoded1;
        unchecked {
            encoded0 =
                (lastObservation.price0CumulativeLast - foundObservation.price0CumulativeLast) /
                uint32(lastObservation.timestamp - foundObservation.timestamp);
            encoded1 =
                (lastObservation.price1CumulativeLast - foundObservation.price1CumulativeLast) /
                uint32(lastObservation.timestamp - foundObservation.timestamp);
        }

        // Handwave unit conversion given: https://github.com/Uniswap/v2-periphery/blob/0335e8f7e1bd1e8d8329fd300aea2ef2f36dd19f/contracts/examples/ExampleSlidingWindowOracle.sol#L99
        result0 = mulDecode(encoded0.toUint224());
        result1 = mulDecode(encoded1.toUint224());

        // Revert if the price changed too much
        uint256 checkResult0 = 1e68 / result1;
        uint256 diff = (checkResult0 > result0 ? checkResult0 - result0 : result0 - checkResult0);
        uint256 diffPerc = (diff * 10_000) / result0;
        if (diffPerc > maxDiffPerc) revert("Max diff");
    }

    /// @notice Gets the prices for token0 from a Fraxswap pool
    /// @param pool The LP contract
    /// @param period The minimum size of the period between observations, in seconds
    /// @param rounds 2 ^ rounds # of blocks to search
    /// @param maxDiffPerc Max price change from last value
    /// @return result0 The price for token0
    function getPrice0(
        IFraxswapPair pool,
        uint256 period,
        uint256 rounds,
        uint256 maxDiffPerc
    ) external view returns (uint256 result0) {
        (result0, ) = getPrice(pool, period, rounds, maxDiffPerc);
    }

    /// @notice Gets the price for token1 from a Fraxswap pool
    /// @param pool The LP contract
    /// @param period The minimum size of the period between observations, in seconds
    /// @param rounds 2 ^ rounds # of blocks to search
    /// @param maxDiffPerc Max price change from last value
    /// @return result1 The price for token1
    function getPrice1(
        IFraxswapPair pool,
        uint256 period,
        uint256 rounds,
        uint256 maxDiffPerc
    ) external view returns (uint256 result1) {
        (, result1) = getPrice(pool, period, rounds, maxDiffPerc);
    }

    // multiplies the uq112x112 with 1E34 without overflowing and then converting it to uint.
    function mulDecode(uint224 value) public pure returns (uint256 result) {
        if (value < type(uint224).max / 1e34) {
            result = FixedPoint.uq112x112(value).mul(1e34).decode144();
        } else if (value < type(uint224).max / 1e17) {
            result = uint256(FixedPoint.uq112x112(value).mul(1e17).decode144()) * 1e17;
        } else {
            result = uint256(FixedPoint.uq112x112(value).decode()) * 1e34;
        }
    }
}

// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.0;

import { FullMath } from "./FullMath.sol";
import { BitMath } from "./BitMath.sol";
import { Math } from "dev-fraxswap/src/contracts/core/libraries/Math.sol";

// a library for handling binary fixed point numbers (https://en.wikipedia.org/wiki/Q_(number_format))
library FixedPoint {
    // range: [0, 2**112 - 1]
    // resolution: 1 / 2**112
    struct uq112x112 {
        uint224 _x;
    }

    // range: [0, 2**144 - 1]
    // resolution: 1 / 2**112
    struct uq144x112 {
        uint256 _x;
    }

    uint8 public constant RESOLUTION = 112;
    uint256 public constant Q112 = 0x10000000000000000000000000000; // 2**112
    uint256 private constant Q224 = 0x100000000000000000000000000000000000000000000000000000000; // 2**224
    uint256 private constant LOWER_MASK = 0xffffffffffffffffffffffffffff; // decimal of UQ*x112 (lower 112 bits)

    // encode a uint112 as a UQ112x112
    function encode(uint112 x) internal pure returns (uq112x112 memory) {
        return uq112x112(uint224(x) << RESOLUTION);
    }

    // encodes a uint144 as a UQ144x112
    function encode144(uint144 x) internal pure returns (uq144x112 memory) {
        return uq144x112(uint256(x) << RESOLUTION);
    }

    // decode a UQ112x112 into a uint112 by truncating after the radix point
    function decode(uq112x112 memory self) internal pure returns (uint112) {
        return uint112(self._x >> RESOLUTION);
    }

    // decode a UQ144x112 into a uint144 by truncating after the radix point
    function decode144(uq144x112 memory self) internal pure returns (uint144) {
        return uint144(self._x >> RESOLUTION);
    }

    // multiply a UQ112x112 by a uint, returning a UQ144x112
    // reverts on overflow
    function mul(uq112x112 memory self, uint256 y) internal pure returns (uq144x112 memory) {
        uint256 z = 0;
        require(y == 0 || (z = self._x * y) / y == self._x, "FixedPoint::mul: overflow");
        return uq144x112(z);
    }

    // multiply a UQ112x112 by an int and decode, returning an int
    // reverts on overflow
    function muli(uq112x112 memory self, int256 y) internal pure returns (int256) {
        uint256 z = FullMath.mulDiv(self._x, uint256(y < 0 ? -y : y), Q112);
        require(z < 2 ** 255, "FixedPoint::muli: overflow");
        return y < 0 ? -int256(z) : int256(z);
    }

    // multiply a UQ112x112 by a UQ112x112, returning a UQ112x112
    // lossy
    function muluq(uq112x112 memory self, uq112x112 memory other) internal pure returns (uq112x112 memory) {
        if (self._x == 0 || other._x == 0) {
            return uq112x112(0);
        }
        uint112 upper_self = uint112(self._x >> RESOLUTION); // * 2^0
        uint112 lower_self = uint112(self._x & LOWER_MASK); // * 2^-112
        uint112 upper_other = uint112(other._x >> RESOLUTION); // * 2^0
        uint112 lower_other = uint112(other._x & LOWER_MASK); // * 2^-112

        // partial products
        uint224 upper = uint224(upper_self) * upper_other; // * 2^0
        uint224 lower = uint224(lower_self) * lower_other; // * 2^-224
        uint224 uppers_lowero = uint224(upper_self) * lower_other; // * 2^-112
        uint224 uppero_lowers = uint224(upper_other) * lower_self; // * 2^-112

        // so the bit shift does not overflow
        require(upper <= type(uint112).max, "FixedPoint::muluq: upper overflow");

        // this cannot exceed 256 bits, all values are 224 bits
        uint256 sum = uint256(upper << RESOLUTION) + uppers_lowero + uppero_lowers + (lower >> RESOLUTION);

        // so the cast does not overflow
        require(sum <= type(uint224).max, "FixedPoint::muluq: sum overflow");

        return uq112x112(uint224(sum));
    }

    // divide a UQ112x112 by a UQ112x112, returning a UQ112x112
    function divuq(uq112x112 memory self, uq112x112 memory other) internal pure returns (uq112x112 memory) {
        require(other._x > 0, "FixedPoint::divuq: division by zero");
        if (self._x == other._x) {
            return uq112x112(uint224(Q112));
        }
        if (self._x <= type(uint144).max) {
            uint256 value = (uint256(self._x) << RESOLUTION) / other._x;
            require(value <= type(uint224).max, "FixedPoint::divuq: overflow");
            return uq112x112(uint224(value));
        }

        uint256 result = FullMath.mulDiv(Q112, self._x, other._x);
        require(result <= type(uint224).max, "FixedPoint::divuq: overflow");
        return uq112x112(uint224(result));
    }

    // returns a UQ112x112 which represents the ratio of the numerator to the denominator
    // can be lossy
    function fraction(uint256 numerator, uint256 denominator) internal pure returns (uq112x112 memory) {
        require(denominator > 0, "FixedPoint::fraction: division by zero");
        if (numerator == 0) return FixedPoint.uq112x112(0);

        if (numerator <= type(uint144).max) {
            uint256 result = (numerator << RESOLUTION) / denominator;
            require(result <= type(uint224).max, "FixedPoint::fraction: overflow");
            return uq112x112(uint224(result));
        } else {
            uint256 result = FullMath.mulDiv(numerator, Q112, denominator);
            require(result <= type(uint224).max, "FixedPoint::fraction: overflow");
            return uq112x112(uint224(result));
        }
    }

    // take the reciprocal of a UQ112x112
    // reverts on overflow
    // lossy
    function reciprocal(uq112x112 memory self) internal pure returns (uq112x112 memory) {
        require(self._x != 0, "FixedPoint::reciprocal: reciprocal of zero");
        require(self._x != 1, "FixedPoint::reciprocal: overflow");
        return uq112x112(uint224(Q224 / self._x));
    }

    // square root of a UQ112x112
    // lossy between 0/1 and 40 bits
    function sqrt(uq112x112 memory self) internal pure returns (uq112x112 memory) {
        if (self._x <= type(uint144).max) {
            return uq112x112(uint224(Math.sqrt(uint256(self._x) << 112)));
        }

        uint8 safeShiftBits = 255 - BitMath.mostSignificantBit(self._x);
        safeShiftBits -= safeShiftBits % 2;
        return uq112x112(uint224(Math.sqrt(uint256(self._x) << safeShiftBits) << ((112 - safeShiftBits) / 2)));
    }
}

pragma solidity >=0.8.0;

// a library for handling binary fixed point numbers (https://en.wikipedia.org/wiki/Q_(number_format))

// range: [0, 2**112 - 1]
// resolution: 1 / 2**112

library UQ112x112 {
    uint224 constant Q112 = 2 ** 112;

    // encode a uint112 as a UQ112x112
    function encode(uint112 y) internal pure returns (uint224 z) {
        z = uint224(y) * Q112; // never overflows
    }

    // divide a UQ112x112 by a uint112, returning a UQ112x112
    function uqdiv(uint224 x, uint112 y) internal pure returns (uint224 z) {
        z = x / uint224(y);
    }
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;

import { IUniswapV2Pair } from "@uniswap/v2-core/contracts/interfaces/IUniswapV2Pair.sol";

/// @dev Fraxswap LP Pair Interface
interface IFraxswapPair is IUniswapV2Pair {
    // TWAMM
    struct TWAPObservation {
        uint256 timestamp;
        uint256 price0CumulativeLast;
        uint256 price1CumulativeLast;
    }

    function TWAPObservationHistory(uint256 index) external view returns (TWAPObservation memory);

    event LongTermSwap0To1(address indexed addr, uint256 orderId, uint256 amount0In, uint256 numberOfTimeIntervals);
    event LongTermSwap1To0(address indexed addr, uint256 orderId, uint256 amount1In, uint256 numberOfTimeIntervals);
    event CancelLongTermOrder(
        address indexed addr,
        uint256 orderId,
        address sellToken,
        uint256 unsoldAmount,
        address buyToken,
        uint256 purchasedAmount
    );
    event WithdrawProceedsFromLongTermOrder(
        address indexed addr,
        uint256 orderId,
        address indexed proceedToken,
        uint256 proceeds,
        bool orderExpired
    );

    function fee() external view returns (uint256);

    function longTermSwapFrom0To1(uint256 amount0In, uint256 numberOfTimeIntervals) external returns (uint256 orderId);
    function longTermSwapFrom1To0(uint256 amount1In, uint256 numberOfTimeIntervals) external returns (uint256 orderId);
    function cancelLongTermSwap(uint256 orderId) external;
    function withdrawProceedsFromLongTermSwap(
        uint256 orderId
    ) external returns (bool is_expired, address rewardTkn, uint256 totalReward);
    function executeVirtualOrders(uint256 blockTimestamp) external;

    function getAmountOut(uint256 amountIn, address tokenIn) external view returns (uint256);
    function getAmountIn(uint256 amountOut, address tokenOut) external view returns (uint256);

    function orderTimeInterval() external returns (uint256);
    function getTWAPHistoryLength() external view returns (uint256);
    function getTwammReserves()
        external
        view
        returns (
            uint112 _reserve0,
            uint112 _reserve1,
            uint32 _blockTimestampLast,
            uint112 _twammReserve0,
            uint112 _twammReserve1,
            uint256 _fee
        );
    function getReserveAfterTwamm(
        uint256 blockTimestamp
    )
        external
        view
        returns (
            uint112 _reserve0,
            uint112 _reserve1,
            uint256 lastVirtualOrderTimestamp,
            uint112 _twammReserve0,
            uint112 _twammReserve1
        );
    function getNextOrderID() external view returns (uint256);
    function getOrderIDsForUser(address user) external view returns (uint256[] memory);
    function getOrderIDsForUserLength(address user) external view returns (uint256);
    function twammUpToDate() external view returns (bool);
    function getTwammState()
        external
        view
        returns (
            uint256 token0Rate,
            uint256 token1Rate,
            uint256 lastVirtualOrderTimestamp,
            uint256 orderTimeInterval_rtn,
            uint256 rewardFactorPool0,
            uint256 rewardFactorPool1
        );
    function getTwammSalesRateEnding(
        uint256 _blockTimestamp
    ) external view returns (uint256 orderPool0SalesRateEnding, uint256 orderPool1SalesRateEnding);
    function getTwammRewardFactor(
        uint256 _blockTimestamp
    ) external view returns (uint256 rewardFactorPool0AtTimestamp, uint256 rewardFactorPool1AtTimestamp);
    function getTwammOrder(
        uint256 orderId
    )
        external
        view
        returns (
            uint256 id,
            uint256 creationTimestamp,
            uint256 expirationTimestamp,
            uint256 saleRate,
            address owner,
            address sellTokenAddr,
            address buyTokenAddr
        );
    function getTwammOrderProceedsView(
        uint256 orderId,
        uint256 blockTimestamp
    ) external view returns (bool orderExpired, uint256 totalReward);
    function getTwammOrderProceeds(uint256 orderId) external returns (bool orderExpired, uint256 totalReward);

    function togglePauseNewSwaps() external;
}

File 5 of 10 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }
}

pragma solidity ^0.8.0;

import { IFraxswapPair } from "dev-fraxswap/src/contracts/core/interfaces/IFraxswapPair.sol";

interface IFraxswapOracle {
    function getPrice(
        IFraxswapPair pool,
        uint256 period,
        uint256 rounds,
        uint256 maxDiffPerc
    ) external view returns (uint256 result0, uint256 result1);

    function getPrice0(
        IFraxswapPair pool,
        uint256 period,
        uint256 rounds,
        uint256 maxDiffPerc
    ) external view returns (uint256 result0);

    function getPrice1(
        IFraxswapPair pool,
        uint256 period,
        uint256 rounds,
        uint256 maxDiffPerc
    ) external view returns (uint256 result1);

    function mulDecode(uint224 value) external pure returns (uint256 result);
}

// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;

/// @notice Math library that facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision.
/// @author Adapted from https://github.com/Uniswap/uniswap-v3-core/blob/main/contracts/libraries/FullMath.sol.
/// @dev Handles "phantom overflow", i.e., allows multiplication and division where an intermediate value overflows 256 bits.
library FullMath {
    /// @notice Calculates floor(a×b÷denominator) with full precision - throws if result overflows an uint256 or denominator == 0.
    /// @param a The multiplicand.
    /// @param b The multiplier.
    /// @param denominator The divisor.
    /// @return result The 256-bit result.
    /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv.
    function mulDiv(uint256 a, uint256 b, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = a * b.
            // Compute the product mod 2**256 and mod 2**256 - 1,
            // then use the Chinese Remainder Theorem to reconstruct
            // the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2**256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product.
            uint256 prod1; // Most significant 256 bits of the product.
            assembly {
                let mm := mulmod(a, b, not(0))
                prod0 := mul(a, b)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }
            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                require(denominator > 0);
                assembly {
                    result := div(prod0, denominator)
                }
                return result;
            }
            // Make sure the result is less than 2**256 -
            // also prevents denominator == 0.
            require(denominator > prod1);
            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////
            // Make division exact by subtracting the remainder from [prod1 prod0] -
            // compute remainder using mulmod.
            uint256 remainder;
            assembly {
                remainder := mulmod(a, b, denominator)
            }
            // Subtract 256 bit number from 512 bit number.
            assembly {
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }
            // Factor powers of two out of denominator -
            // compute largest power of two divisor of denominator
            // (always >= 1).
            uint256 twos = uint256(-int256(denominator)) & denominator;
            // Divide denominator by power of two.
            assembly {
                denominator := div(denominator, twos)
            }
            // Divide [prod1 prod0] by the factors of two.
            assembly {
                prod0 := div(prod0, twos)
            }
            // Shift in bits from prod1 into prod0. For this we need
            // to flip `twos` such that it is 2**256 / twos -
            // if twos is zero, then it becomes one.
            assembly {
                twos := add(div(sub(0, twos), twos), 1)
            }
            prod0 |= prod1 * twos;
            // Invert denominator mod 2**256 -
            // now that denominator is an odd number, it has an inverse
            // modulo 2**256 such that denominator * inv = 1 mod 2**256.
            // Compute the inverse by starting with a seed that is correct
            // for four bits. That is, denominator * inv = 1 mod 2**4.
            uint256 inv = (3 * denominator) ^ 2;
            // Now use Newton-Raphson iteration to improve the precision.
            // Thanks to Hensel's lifting lemma, this also works in modular
            // arithmetic, doubling the correct bits in each step.
            inv *= 2 - denominator * inv; // Inverse mod 2**8.
            inv *= 2 - denominator * inv; // Inverse mod 2**16.
            inv *= 2 - denominator * inv; // Inverse mod 2**32.
            inv *= 2 - denominator * inv; // Inverse mod 2**64.
            inv *= 2 - denominator * inv; // Inverse mod 2**128.
            inv *= 2 - denominator * inv; // Inverse mod 2**256.
            // Because the division is now exact we can divide by multiplying
            // with the modular inverse of denominator. This will give us the
            // correct result modulo 2**256. Since the precoditions guarantee
            // that the outcome is less than 2**256, this is the final result.
            // We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inv;
            return result;
        }
    }

    /// @notice Calculates ceil(a×b÷denominator) with full precision - throws if result overflows an uint256 or denominator == 0.
    /// @param a The multiplicand.
    /// @param b The multiplier.
    /// @param denominator The divisor.
    /// @return result The 256-bit result.
    function mulDivRoundingUp(uint256 a, uint256 b, uint256 denominator) internal pure returns (uint256 result) {
        result = mulDiv(a, b, denominator);
        unchecked {
            if (mulmod(a, b, denominator) != 0) {
                require(result < type(uint256).max);
                result++;
            }
        }
    }
}

// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.0;

library BitMath {
    // returns the 0 indexed position of the most significant bit of the input x
    // s.t. x >= 2**msb and x < 2**(msb+1)
    function mostSignificantBit(uint256 x) internal pure returns (uint8 r) {
        require(x > 0, "BitMath::mostSignificantBit: zero");

        if (x >= 0x100000000000000000000000000000000) {
            x >>= 128;
            r += 128;
        }
        if (x >= 0x10000000000000000) {
            x >>= 64;
            r += 64;
        }
        if (x >= 0x100000000) {
            x >>= 32;
            r += 32;
        }
        if (x >= 0x10000) {
            x >>= 16;
            r += 16;
        }
        if (x >= 0x100) {
            x >>= 8;
            r += 8;
        }
        if (x >= 0x10) {
            x >>= 4;
            r += 4;
        }
        if (x >= 0x4) {
            x >>= 2;
            r += 2;
        }
        if (x >= 0x2) r += 1;
    }

    // returns the 0 indexed position of the least significant bit of the input x
    // s.t. (x & 2**lsb) != 0 and (x & (2**(lsb) - 1)) == 0)
    // i.e. the bit at the index is set and the mask of all lower bits is 0
    function leastSignificantBit(uint256 x) internal pure returns (uint8 r) {
        require(x > 0, "BitMath::leastSignificantBit: zero");

        r = 255;
        if (x & type(uint128).max > 0) {
            r -= 128;
        } else {
            x >>= 128;
        }
        if (x & type(uint64).max > 0) {
            r -= 64;
        } else {
            x >>= 64;
        }
        if (x & type(uint32).max > 0) {
            r -= 32;
        } else {
            x >>= 32;
        }
        if (x & type(uint16).max > 0) {
            r -= 16;
        } else {
            x >>= 16;
        }
        if (x & type(uint8).max > 0) {
            r -= 8;
        } else {
            x >>= 8;
        }
        if (x & 0xf > 0) {
            r -= 4;
        } else {
            x >>= 4;
        }
        if (x & 0x3 > 0) {
            r -= 2;
        } else {
            x >>= 2;
        }
        if (x & 0x1 > 0) r -= 1;
    }
}

// SPDX-Licence-Identifier: MIT
pragma solidity ^0.8.0;

// a library for performing various math operations

library Math {
    function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
        z = x < y ? x : y;
    }

    // babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method)
    function sqrt(uint256 y) internal pure returns (uint256 z) {
        if (y > 3) {
            z = y;
            uint256 x = y / 2 + 1;
            while (x < z) {
                z = x;
                x = (y / x + x) / 2;
            }
        } else if (y != 0) {
            z = 1;
        }
    }
}

pragma solidity >=0.5.0;

interface IUniswapV2Pair {
    event Approval(address indexed owner, address indexed spender, uint value);
    event Transfer(address indexed from, address indexed to, uint value);

    function name() external pure returns (string memory);
    function symbol() external pure returns (string memory);
    function decimals() external pure returns (uint8);
    function totalSupply() external view returns (uint);
    function balanceOf(address owner) external view returns (uint);
    function allowance(address owner, address spender) external view returns (uint);

    function approve(address spender, uint value) external returns (bool);
    function transfer(address to, uint value) external returns (bool);
    function transferFrom(address from, address to, uint value) external returns (bool);

    function DOMAIN_SEPARATOR() external view returns (bytes32);
    function PERMIT_TYPEHASH() external pure returns (bytes32);
    function nonces(address owner) external view returns (uint);

    function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;

    event Mint(address indexed sender, uint amount0, uint amount1);
    event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
    event Swap(
        address indexed sender,
        uint amount0In,
        uint amount1In,
        uint amount0Out,
        uint amount1Out,
        address indexed to
    );
    event Sync(uint112 reserve0, uint112 reserve1);

    function MINIMUM_LIQUIDITY() external pure returns (uint);
    function factory() external view returns (address);
    function token0() external view returns (address);
    function token1() external view returns (address);
    function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
    function price0CumulativeLast() external view returns (uint);
    function price1CumulativeLast() external view returns (uint);
    function kLast() external view returns (uint);

    function mint(address to) external returns (uint liquidity);
    function burn(address to) external returns (uint amount0, uint amount1);
    function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
    function skim(address to) external;
    function sync() external;

    function initialize(address, address) external;
}

Settings
{
  "remappings": [
    "frax-std/=node_modules/frax-standard-solidity/src/",
    "@prb/test/=node_modules/@prb/test/",
    "forge-std/=node_modules/forge-std/src/",
    "ds-test/=node_modules/ds-test/src/",
    "@openzeppelin/=node_modules/@openzeppelin/",
    "@uniswap/=node_modules/@uniswap/",
    "dev-fraxswap/=node_modules/dev-fraxswap/",
    "frax-standard-solidity/=node_modules/frax-standard-solidity/",
    "solidity-bytes-utils/=node_modules/solidity-bytes-utils/",
    "solmate/=node_modules/solmate/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 10000
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "none",
    "appendCBOR": false
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "shanghai",
  "viaIR": false,
  "libraries": {}
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"uint8","name":"bits","type":"uint8"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"SafeCastOverflowedUintDowncast","type":"error"},{"inputs":[{"internalType":"contract IFraxswapPair","name":"pool","type":"address"},{"internalType":"uint256","name":"period","type":"uint256"},{"internalType":"uint256","name":"rounds","type":"uint256"},{"internalType":"uint256","name":"maxDiffPerc","type":"uint256"}],"name":"getPrice","outputs":[{"internalType":"uint256","name":"result0","type":"uint256"},{"internalType":"uint256","name":"result1","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IFraxswapPair","name":"pool","type":"address"},{"internalType":"uint256","name":"period","type":"uint256"},{"internalType":"uint256","name":"rounds","type":"uint256"},{"internalType":"uint256","name":"maxDiffPerc","type":"uint256"}],"name":"getPrice0","outputs":[{"internalType":"uint256","name":"result0","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IFraxswapPair","name":"pool","type":"address"},{"internalType":"uint256","name":"period","type":"uint256"},{"internalType":"uint256","name":"rounds","type":"uint256"},{"internalType":"uint256","name":"maxDiffPerc","type":"uint256"}],"name":"getPrice1","outputs":[{"internalType":"uint256","name":"result1","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint224","name":"value","type":"uint224"}],"name":"mulDecode","outputs":[{"internalType":"uint256","name":"result","type":"uint256"}],"stateMutability":"pure","type":"function"}]

608060405234801561000f575f80fd5b50610ddf8061001d5f395ff3fe608060405234801561000f575f80fd5b506004361061004a575f3560e01c806336968ca41461004e5780638f4bb32a1461007457806393e2ae7c1461009c5780639c59bc53146100af575b5f80fd5b61006161005c3660046109ee565b6100c2565b6040519081526020015b60405180910390f35b6100876100823660046109ee565b6100d9565b6040805192835260208301919091520161006b565b6100616100aa3660046109ee565b61063b565b6100616100bd366004610a3e565b610652565b5f6100cf858585856100d9565b9695505050505050565b5f805f60018773ffffffffffffffffffffffffffffffffffffffff16637fa2ee6e6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610127573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061014b9190610a79565b6101559190610abd565b6040517f27e73836000000000000000000000000000000000000000000000000000000008152600481018290529091505f9073ffffffffffffffffffffffffffffffffffffffff8916906327e7383690602401606060405180830381865afa1580156101c3573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906101e79190610ad0565b905042815f01511015610334575f808973ffffffffffffffffffffffffffffffffffffffff16630902f1ac6040518163ffffffff1660e01b8152600401606060405180830381865afa15801561023f573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906102639190610b6c565b5090925090505f61027964010000000042610be5565b8451909150810363ffffffff81166102b88561029486610872565b7bffffffffffffffffffffffffffffffffffffffffffffffffffffffff169061089c565b7bffffffffffffffffffffffffffffffffffffffffffffffffffffffff16028560200181815101915081815250508063ffffffff166102fa8461029487610872565b6040870180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff92909216929092020190525063ffffffff16835250505b5f61035660405180606001604052805f81526020015f81526020015f81525090565b5f610362896002610d16565b90505f81610371876002610d21565b1161037c575f610392565b81610388876002610d21565b6103929190610abd565b90505b600182111561047857600191821c915f906103b08484610d21565b6103ba9190610abd565b9050868111610472576040517f27e73836000000000000000000000000000000000000000000000000000000008152600481018290525f9073ffffffffffffffffffffffffffffffffffffffff8f16906327e7383690602401606060405180830381865afa15801561042e573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906104529190610ad0565b8051885191925090038d101561047057600195508094508160010192505b505b50610395565b836104e4576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600f60248201527f506572696f6420746f6f206c6f6e67000000000000000000000000000000000060448201526064015b60405180910390fd5b5f80845f0151875f01510363ffffffff1685602001518860200151038161050d5761050d610bb8565b049150845f0151875f01510363ffffffff1685604001518860400151038161053757610537610bb8565b0490506105466100bd836108be565b99506105546100bd826108be565b98505f61057e8a7c03b58e88c75313ec9d329eaaa18fb92f75215b17100000000000000000610d34565b90505f8b821161059757610592828d610abd565b6105a1565b6105a18c83610abd565b90505f8c6105b183612710610d47565b6105bb9190610d34565b90508d811115610627576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600860248201527f4d6178206469666600000000000000000000000000000000000000000000000060448201526064016104db565b505050505050505050505094509492505050565b5f610648858585856100d9565b5095945050505050565b5f6106886e01ed09bead87c0378d8e64000000007bffffffffffffffffffffffffffffffffffffffffffffffffffffffff610d5e565b7bffffffffffffffffffffffffffffffffffffffffffffffffffffffff16827bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1610156107355760408051602081019091527bffffffffffffffffffffffffffffffffffffffffffffffffffffffff8316815261071b90610714906e01ed09bead87c0378d8e6400000000610923565b5160701c90565b71ffffffffffffffffffffffffffffffffffff1692915050565b61076367016345785d8a00007bffffffffffffffffffffffffffffffffffffffffffffffffffffffff610d5e565b7bffffffffffffffffffffffffffffffffffffffffffffffffffffffff16827bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1610156108145760408051602081019091527bffffffffffffffffffffffffffffffffffffffffffffffffffffffff831681526107e8906107149067016345785d8a0000610923565b61080e9071ffffffffffffffffffffffffffffffffffff1667016345785d8a0000610d47565b92915050565b60408051602081019091527bffffffffffffffffffffffffffffffffffffffffffffffffffffffff8316905261080e6dffffffffffffffffffffffffffff607084901c166e01ed09bead87c0378d8e6400000000610d47565b919050565b5f61080e6e0100000000000000000000000000006dffffffffffffffffffffffffffff8416610d98565b5f6108b76dffffffffffffffffffffffffffff831684610d5e565b9392505050565b5f7bffffffffffffffffffffffffffffffffffffffffffffffffffffffff82111561091f576040517f6dfcc65000000000000000000000000000000000000000000000000000000000815260e06004820152602481018390526044016104db565b5090565b60408051602081019091525f81525f821580610973575083517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff16836109658183610d47565b92506109719083610d34565b145b6109d9576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601960248201527f4669786564506f696e743a3a6d756c3a206f766572666c6f770000000000000060448201526064016104db565b60408051602081019091529081529392505050565b5f805f8060808587031215610a01575f80fd5b843573ffffffffffffffffffffffffffffffffffffffff81168114610a24575f80fd5b966020860135965060408601359560600135945092505050565b5f60208284031215610a4e575f80fd5b81357bffffffffffffffffffffffffffffffffffffffffffffffffffffffff811681146108b7575f80fd5b5f60208284031215610a89575f80fd5b5051919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b8181038181111561080e5761080e610a90565b5f60608284031215610ae0575f80fd5b6040516060810181811067ffffffffffffffff82111715610b28577f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b80604052508251815260208301516020820152604083015160408201528091505092915050565b80516dffffffffffffffffffffffffffff8116811461086d575f80fd5b5f805f60608486031215610b7e575f80fd5b610b8784610b4f565b9250610b9560208501610b4f565b9150604084015163ffffffff81168114610bad575f80fd5b809150509250925092565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f82610bf357610bf3610bb8565b500690565b600181815b80851115610c5157817fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff04821115610c3757610c37610a90565b80851615610c4457918102915b93841c9390800290610bfd565b509250929050565b5f82610c675750600161080e565b81610c7357505f61080e565b8160018114610c895760028114610c9357610caf565b600191505061080e565b60ff841115610ca457610ca4610a90565b50506001821b61080e565b5060208310610133831016604e8410600b8410161715610cd2575081810a61080e565b610cdc8383610bf8565b807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff04821115610d0e57610d0e610a90565b029392505050565b5f6108b78383610c59565b8082018082111561080e5761080e610a90565b5f82610d4257610d42610bb8565b500490565b808202811582820484141761080e5761080e610a90565b5f7bffffffffffffffffffffffffffffffffffffffffffffffffffffffff80841680610d8c57610d8c610bb8565b92169190910492915050565b7bffffffffffffffffffffffffffffffffffffffffffffffffffffffff828116828216818102831692918115828504821417610dd657610dd6610a90565b5050509291505056

Deployed Bytecode

0x608060405234801561000f575f80fd5b506004361061004a575f3560e01c806336968ca41461004e5780638f4bb32a1461007457806393e2ae7c1461009c5780639c59bc53146100af575b5f80fd5b61006161005c3660046109ee565b6100c2565b6040519081526020015b60405180910390f35b6100876100823660046109ee565b6100d9565b6040805192835260208301919091520161006b565b6100616100aa3660046109ee565b61063b565b6100616100bd366004610a3e565b610652565b5f6100cf858585856100d9565b9695505050505050565b5f805f60018773ffffffffffffffffffffffffffffffffffffffff16637fa2ee6e6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610127573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061014b9190610a79565b6101559190610abd565b6040517f27e73836000000000000000000000000000000000000000000000000000000008152600481018290529091505f9073ffffffffffffffffffffffffffffffffffffffff8916906327e7383690602401606060405180830381865afa1580156101c3573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906101e79190610ad0565b905042815f01511015610334575f808973ffffffffffffffffffffffffffffffffffffffff16630902f1ac6040518163ffffffff1660e01b8152600401606060405180830381865afa15801561023f573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906102639190610b6c565b5090925090505f61027964010000000042610be5565b8451909150810363ffffffff81166102b88561029486610872565b7bffffffffffffffffffffffffffffffffffffffffffffffffffffffff169061089c565b7bffffffffffffffffffffffffffffffffffffffffffffffffffffffff16028560200181815101915081815250508063ffffffff166102fa8461029487610872565b6040870180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff92909216929092020190525063ffffffff16835250505b5f61035660405180606001604052805f81526020015f81526020015f81525090565b5f610362896002610d16565b90505f81610371876002610d21565b1161037c575f610392565b81610388876002610d21565b6103929190610abd565b90505b600182111561047857600191821c915f906103b08484610d21565b6103ba9190610abd565b9050868111610472576040517f27e73836000000000000000000000000000000000000000000000000000000008152600481018290525f9073ffffffffffffffffffffffffffffffffffffffff8f16906327e7383690602401606060405180830381865afa15801561042e573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906104529190610ad0565b8051885191925090038d101561047057600195508094508160010192505b505b50610395565b836104e4576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600f60248201527f506572696f6420746f6f206c6f6e67000000000000000000000000000000000060448201526064015b60405180910390fd5b5f80845f0151875f01510363ffffffff1685602001518860200151038161050d5761050d610bb8565b049150845f0151875f01510363ffffffff1685604001518860400151038161053757610537610bb8565b0490506105466100bd836108be565b99506105546100bd826108be565b98505f61057e8a7c03b58e88c75313ec9d329eaaa18fb92f75215b17100000000000000000610d34565b90505f8b821161059757610592828d610abd565b6105a1565b6105a18c83610abd565b90505f8c6105b183612710610d47565b6105bb9190610d34565b90508d811115610627576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600860248201527f4d6178206469666600000000000000000000000000000000000000000000000060448201526064016104db565b505050505050505050505094509492505050565b5f610648858585856100d9565b5095945050505050565b5f6106886e01ed09bead87c0378d8e64000000007bffffffffffffffffffffffffffffffffffffffffffffffffffffffff610d5e565b7bffffffffffffffffffffffffffffffffffffffffffffffffffffffff16827bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1610156107355760408051602081019091527bffffffffffffffffffffffffffffffffffffffffffffffffffffffff8316815261071b90610714906e01ed09bead87c0378d8e6400000000610923565b5160701c90565b71ffffffffffffffffffffffffffffffffffff1692915050565b61076367016345785d8a00007bffffffffffffffffffffffffffffffffffffffffffffffffffffffff610d5e565b7bffffffffffffffffffffffffffffffffffffffffffffffffffffffff16827bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1610156108145760408051602081019091527bffffffffffffffffffffffffffffffffffffffffffffffffffffffff831681526107e8906107149067016345785d8a0000610923565b61080e9071ffffffffffffffffffffffffffffffffffff1667016345785d8a0000610d47565b92915050565b60408051602081019091527bffffffffffffffffffffffffffffffffffffffffffffffffffffffff8316905261080e6dffffffffffffffffffffffffffff607084901c166e01ed09bead87c0378d8e6400000000610d47565b919050565b5f61080e6e0100000000000000000000000000006dffffffffffffffffffffffffffff8416610d98565b5f6108b76dffffffffffffffffffffffffffff831684610d5e565b9392505050565b5f7bffffffffffffffffffffffffffffffffffffffffffffffffffffffff82111561091f576040517f6dfcc65000000000000000000000000000000000000000000000000000000000815260e06004820152602481018390526044016104db565b5090565b60408051602081019091525f81525f821580610973575083517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff16836109658183610d47565b92506109719083610d34565b145b6109d9576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601960248201527f4669786564506f696e743a3a6d756c3a206f766572666c6f770000000000000060448201526064016104db565b60408051602081019091529081529392505050565b5f805f8060808587031215610a01575f80fd5b843573ffffffffffffffffffffffffffffffffffffffff81168114610a24575f80fd5b966020860135965060408601359560600135945092505050565b5f60208284031215610a4e575f80fd5b81357bffffffffffffffffffffffffffffffffffffffffffffffffffffffff811681146108b7575f80fd5b5f60208284031215610a89575f80fd5b5051919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b8181038181111561080e5761080e610a90565b5f60608284031215610ae0575f80fd5b6040516060810181811067ffffffffffffffff82111715610b28577f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b80604052508251815260208301516020820152604083015160408201528091505092915050565b80516dffffffffffffffffffffffffffff8116811461086d575f80fd5b5f805f60608486031215610b7e575f80fd5b610b8784610b4f565b9250610b9560208501610b4f565b9150604084015163ffffffff81168114610bad575f80fd5b809150509250925092565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f82610bf357610bf3610bb8565b500690565b600181815b80851115610c5157817fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff04821115610c3757610c37610a90565b80851615610c4457918102915b93841c9390800290610bfd565b509250929050565b5f82610c675750600161080e565b81610c7357505f61080e565b8160018114610c895760028114610c9357610caf565b600191505061080e565b60ff841115610ca457610ca4610a90565b50506001821b61080e565b5060208310610133831016604e8410600b8410161715610cd2575081810a61080e565b610cdc8383610bf8565b807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff04821115610d0e57610d0e610a90565b029392505050565b5f6108b78383610c59565b8082018082111561080e5761080e610a90565b5f82610d4257610d42610bb8565b500490565b808202811582820484141761080e5761080e610a90565b5f7bffffffffffffffffffffffffffffffffffffffffffffffffffffffff80841680610d8c57610d8c610bb8565b92169190910492915050565b7bffffffffffffffffffffffffffffffffffffffffffffffffffffffff828116828216818102831692918115828504821417610dd657610dd6610a90565b5050509291505056

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.