Source Code
| Transaction Hash |
|
Block
|
From
|
To
|
|||||
|---|---|---|---|---|---|---|---|---|---|
Cross-Chain Transactions
Loading...
Loading
Contract Name:
LiquidityManager
Compiler Version
v0.8.25+commit.b61c2a91
Optimization Enabled:
Yes with 1000 runs
Other Settings:
shanghai EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: UNLICENSED
pragma solidity >=0.8.25;
import { IERC20 } from "@openzeppelin/contracts/interfaces/IERC20.sol";
import { IFraxswapPair } from "dev-fraxswap/src/contracts/core/interfaces/IFraxswapPair.sol";
import { IFraxswapFactory } from "dev-fraxswap/src/contracts/core/interfaces/IFraxswapFactory.sol";
import { Math } from "dev-fraxswap/src/contracts/core/libraries/Math.sol";
import { BootstrapPool } from "./BootstrapPool.sol";
import { AgentFactory } from "./AgentFactory.sol";
interface IBAMMFactory {
function pairToBamm(address pair) external view returns (address);
function createBamm(address pair) external returns (address);
}
interface IBAMM {
function mint(address to, uint256 lpIn) external returns (uint256 bammOut);
}
contract LiquidityManager {
address public immutable agent;
address public immutable owner;
bool public initialized = false;
IERC20 public immutable agentToken;
IERC20 public immutable currencyToken;
BootstrapPool public bootstrapPool;
uint256 public immutable initialPrice;
uint256 public immutable targetCCYLiquidity;
uint256 public immutable initialLiquidity;
uint256 public immutable fee;
IFraxswapFactory public constant fraxswapFactory = IFraxswapFactory(0xE30521fe7f3bEB6Ad556887b50739d6C7CA667E6);
IBAMMFactory public constant bammFactory = IBAMMFactory(0x19928170D739139bfbBb6614007F8EEeD17DB0Ba);
constructor(
IERC20 _currencyToken,
IERC20 _agentToken,
address _owner,
address _agent,
uint256 _initialPrice,
uint256 _targetCCYLiquidity,
uint256 _initialLiquidity,
uint256 _fee
) {
owner = _owner;
agent = _agent;
currencyToken = _currencyToken;
agentToken = _agentToken;
initialPrice = _initialPrice;
targetCCYLiquidity = _targetCCYLiquidity;
initialLiquidity = _initialLiquidity;
fee = _fee;
}
function initializeBootstrapPool() external {
require(!initialized, "BootstrapPool already initialized");
initialized = true;
bootstrapPool = new BootstrapPool(currencyToken, agentToken, initialPrice, initialLiquidity, fee);
agentToken.transfer(address(bootstrapPool), initialLiquidity);
}
function moveLiquidity() external {
require(!bootstrapPool.killed(), "BootstrapPool already killed");
uint256 price = bootstrapPool.getPrice();
(uint256 _reserveCurrencyToken,) = bootstrapPool.getReserves();
_reserveCurrencyToken = _reserveCurrencyToken - bootstrapPool.phantomAmount();
uint256 factoryTargetCCYLiquidity = AgentFactory(owner).targetCCYLiquidity();
require(_reserveCurrencyToken >= targetCCYLiquidity || _reserveCurrencyToken >= factoryTargetCCYLiquidity, "Bootstrap end-criterion not reached");
bootstrapPool.kill();
// Determine liquidity amount to add
uint256 currencyAmount = currencyToken.balanceOf(address(this));
uint256 liquidityAmount = currencyAmount * 1e18 / price;
// Add liquidity to Fraxswap
addLiquidityToFraxswap(liquidityAmount, currencyAmount);
// Send all remaining tokens to the agent.
agentToken.transfer(address(agent), agentToken.balanceOf(address(this)));
currencyToken.transfer(address(agent), currencyToken.balanceOf(address(this)));
// TODO: think about reward for creator
}
function addLiquidityToFraxswap(
uint256 liquidityAmount,
uint256 currencyAmount
)
internal
returns (IFraxswapPair fraxswapPair)
{
fraxswapPair = IFraxswapPair(fraxswapFactory.getPair(address(currencyToken), address(agentToken)));
if (fraxswapPair == IFraxswapPair(address(0))) {
fraxswapPair = IFraxswapPair(fraxswapFactory.createPair(address(currencyToken), address(agentToken), fee));
agentToken.transfer(address(fraxswapPair), liquidityAmount);
currencyToken.transfer(address(fraxswapPair), currencyAmount);
fraxswapPair.mint(address(this));
} else {
// Fraxswappair was already created, make sure the price in the Fraxswap pair is correct before we add
// liquidity
// Do mini mint, to make sure there are enough tokens in the pair to swap
agentToken.transfer(address(fraxswapPair), liquidityAmount / 1_000_000);
currencyToken.transfer(address(fraxswapPair), currencyAmount / 1_000_000);
fraxswapPair.mint(address(this));
liquidityAmount = liquidityAmount - liquidityAmount / 1_000_000;
currencyAmount = currencyAmount - currencyAmount / 1_000_000;
// Do three rounds of swaps to get close to the correct price.
for (uint256 i = 0; i < 3; ++i) {
uint256 reserveCurrency;
uint256 reserveAgentTokens;
{
(uint112 reserve0, uint112 reserve1,) = fraxswapPair.getReserves();
if (fraxswapPair.token0() == address(currencyToken)) {
reserveCurrency = reserve0;
reserveAgentTokens = reserve1;
} else {
reserveCurrency = reserve1;
reserveAgentTokens = reserve0;
}
}
if (currencyAmount * uint256(reserveAgentTokens) / uint256(reserveCurrency) > liquidityAmount) {
// Swap currencyToken to agentToken
uint256 amountIn = getMaxSell(currencyAmount, liquidityAmount, reserveCurrency, reserveAgentTokens);
if (amountIn > 0) {
uint256 amountOut = fraxswapPair.getAmountOut(amountIn, address(currencyToken));
if (amountOut > 0) {
currencyToken.transfer(address(fraxswapPair), amountIn);
if (fraxswapPair.token0() == address(currencyToken)) {
fraxswapPair.swap(0, amountOut, address(this), "");
} else {
fraxswapPair.swap(amountOut, 0, address(this), "");
}
currencyAmount -= amountIn;
liquidityAmount += amountOut;
}
}
} else {
// Swap agentToken to the currencyToken
uint256 amountIn = getMaxSell(liquidityAmount, currencyAmount, reserveAgentTokens, reserveCurrency);
if (amountIn > 0) {
uint256 amountOut = fraxswapPair.getAmountOut(amountIn, address(agentToken));
if (amountOut > 0) {
agentToken.transfer(address(fraxswapPair), amountIn);
if (fraxswapPair.token0() == address(currencyToken)) {
fraxswapPair.swap(amountOut, 0, address(this), "");
} else {
fraxswapPair.swap(0, amountOut, address(this), "");
}
liquidityAmount -= amountIn;
currencyAmount += amountOut;
}
}
}
}
// Do the final mint
agentToken.transfer(address(fraxswapPair), liquidityAmount);
currencyToken.transfer(address(fraxswapPair), currencyAmount);
fraxswapPair.mint(address(this));
}
uint256 amountToBamm = fraxswapPair.balanceOf(address(this))*AgentFactory(owner).shareToBamm()/10_000;
if (amountToBamm>0) {
IBAMM bamm = IBAMM(bammFactory.pairToBamm(address(fraxswapPair)));
if (bamm==IBAMM(address(0))) bamm = IBAMM(bammFactory.createBamm(address(fraxswapPair)));
fraxswapPair.approve(address(bamm),amountToBamm);
bamm.mint(agent,amountToBamm);
}
fraxswapPair.transfer(agent,fraxswapPair.balanceOf(address(this)));
}
// Approximates how much of a token must be sold for the users ratio to be the same as the ratio in the AMM.
// Note that this calculation ignores swap fees, so the amount is slightly lower than the correct amount.
function getMaxSell(
uint256 tokenIn,
uint256 tokenOut,
uint256 reserveIn,
uint256 reserveOut
)
public
pure
returns (uint256 maxSell)
{
// Solve x for: (reserveOut-y)/(reserveIn+x) = (tokenOut+y)/(tokenIn-x),
// (reserveOut-y)*(reserveIn+x)=reserveIn*reserveOut
uint256 prod = Math.sqrt(reserveOut * reserveIn) * Math.sqrt((reserveOut + tokenOut) * (reserveIn + tokenIn));
uint256 minus = reserveIn * tokenOut + reserveOut * reserveIn;
if (prod > minus) maxSell = (prod - minus) / (reserveOut + tokenOut);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../token/ERC20/IERC20.sol";// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;
import { IUniswapV2Pair } from "@uniswap/v2-core/contracts/interfaces/IUniswapV2Pair.sol";
/// @dev Fraxswap LP Pair Interface
interface IFraxswapPair is IUniswapV2Pair {
// TWAMM
struct TWAPObservation {
uint256 timestamp;
uint256 price0CumulativeLast;
uint256 price1CumulativeLast;
}
function TWAPObservationHistory(uint256 index) external view returns (TWAPObservation memory);
event LongTermSwap0To1(address indexed addr, uint256 orderId, uint256 amount0In, uint256 numberOfTimeIntervals);
event LongTermSwap1To0(address indexed addr, uint256 orderId, uint256 amount1In, uint256 numberOfTimeIntervals);
event CancelLongTermOrder(
address indexed addr,
uint256 orderId,
address sellToken,
uint256 unsoldAmount,
address buyToken,
uint256 purchasedAmount
);
event WithdrawProceedsFromLongTermOrder(
address indexed addr,
uint256 orderId,
address indexed proceedToken,
uint256 proceeds,
bool orderExpired
);
function fee() external view returns (uint256);
function longTermSwapFrom0To1(uint256 amount0In, uint256 numberOfTimeIntervals) external returns (uint256 orderId);
function longTermSwapFrom1To0(uint256 amount1In, uint256 numberOfTimeIntervals) external returns (uint256 orderId);
function cancelLongTermSwap(uint256 orderId) external;
function withdrawProceedsFromLongTermSwap(
uint256 orderId
) external returns (bool is_expired, address rewardTkn, uint256 totalReward);
function executeVirtualOrders(uint256 blockTimestamp) external;
function getAmountOut(uint256 amountIn, address tokenIn) external view returns (uint256);
function getAmountIn(uint256 amountOut, address tokenOut) external view returns (uint256);
function orderTimeInterval() external returns (uint256);
function getTWAPHistoryLength() external view returns (uint256);
function getTwammReserves()
external
view
returns (
uint112 _reserve0,
uint112 _reserve1,
uint32 _blockTimestampLast,
uint112 _twammReserve0,
uint112 _twammReserve1,
uint256 _fee
);
function getReserveAfterTwamm(
uint256 blockTimestamp
)
external
view
returns (
uint112 _reserve0,
uint112 _reserve1,
uint256 lastVirtualOrderTimestamp,
uint112 _twammReserve0,
uint112 _twammReserve1
);
function getNextOrderID() external view returns (uint256);
function getOrderIDsForUser(address user) external view returns (uint256[] memory);
function getOrderIDsForUserLength(address user) external view returns (uint256);
function twammUpToDate() external view returns (bool);
function getTwammState()
external
view
returns (
uint256 token0Rate,
uint256 token1Rate,
uint256 lastVirtualOrderTimestamp,
uint256 orderTimeInterval_rtn,
uint256 rewardFactorPool0,
uint256 rewardFactorPool1
);
function getTwammSalesRateEnding(
uint256 _blockTimestamp
) external view returns (uint256 orderPool0SalesRateEnding, uint256 orderPool1SalesRateEnding);
function getTwammRewardFactor(
uint256 _blockTimestamp
) external view returns (uint256 rewardFactorPool0AtTimestamp, uint256 rewardFactorPool1AtTimestamp);
function getTwammOrder(
uint256 orderId
)
external
view
returns (
uint256 id,
uint256 creationTimestamp,
uint256 expirationTimestamp,
uint256 saleRate,
address owner,
address sellTokenAddr,
address buyTokenAddr
);
function getTwammOrderProceedsView(
uint256 orderId,
uint256 blockTimestamp
) external view returns (bool orderExpired, uint256 totalReward);
function getTwammOrderProceeds(uint256 orderId) external returns (bool orderExpired, uint256 totalReward);
function togglePauseNewSwaps() external;
}pragma solidity ^0.8.0;
import { IUniswapV2Factory } from "@uniswap/v2-core/contracts/interfaces/IUniswapV2Factory.sol";
interface IFraxswapFactory is IUniswapV2Factory {
function createPair(address tokenA, address tokenB, uint256 fee) external returns (address pair);
function globalPause() external view returns (bool);
function toggleGlobalPause() external;
}// SPDX-Licence-Identifier: MIT
pragma solidity ^0.8.0;
// a library for performing various math operations
library Math {
function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
z = x < y ? x : y;
}
// babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method)
function sqrt(uint256 y) internal pure returns (uint256 z) {
if (y > 3) {
z = y;
uint256 x = y / 2 + 1;
while (x < z) {
z = x;
x = (y / x + x) / 2;
}
} else if (y != 0) {
z = 1;
}
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity >=0.8.25;
import { IERC20 } from "@openzeppelin/contracts/interfaces/IERC20.sol";
import { ReentrancyGuard } from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
interface ILiquidityManager {
function owner() external view returns (address);
}
contract BootstrapPool is ReentrancyGuard {
address public immutable owner;
uint256 public immutable fee;
IERC20 public immutable agentToken;
IERC20 public immutable currencyToken;
uint256 public phantomAmount;
uint256 public currencyTokenFeeEarned;
uint256 public agentTokenFeeEarned;
bool public killed;
modifier notKilled() {
if (killed) revert BootstrapPoolKilled();
_;
}
modifier onlyOwner() {
if (msg.sender != owner) revert NotOwner();
_;
}
constructor(
IERC20 _currencyToken,
IERC20 _agentToken,
uint256 _initialPrice,
uint256 _bootstrapAmount,
uint256 _fee
) {
owner = msg.sender;
fee = 10_000 - _fee; // TODO: why?
currencyToken = _currencyToken;
agentToken = _agentToken;
phantomAmount = _initialPrice * _bootstrapAmount / 1e18;
}
function buy(uint256 _amountIn) external returns (uint256) {
return buy(_amountIn, msg.sender);
}
function buy(uint256 _amountIn, address _recipient) public nonReentrant notKilled returns (uint256) {
uint256 _amountOut = getAmountOut(_amountIn, address(currencyToken));
currencyTokenFeeEarned += _amountIn - (_amountIn * fee) / 10_000;
currencyToken.transferFrom(msg.sender, address(this), _amountIn);
agentToken.transfer(_recipient, _amountOut);
emit Swap(msg.sender, _amountIn, 0, 0, _amountOut, _recipient);
return _amountOut;
}
function sell(uint256 _amountIn) external returns (uint256) {
return sell(_amountIn, msg.sender);
}
function sell(uint256 _amountIn, address _recipient) public nonReentrant notKilled returns (uint256) {
uint256 _amountOut = getAmountOut(_amountIn, address(agentToken));
agentTokenFeeEarned += _amountIn - (_amountIn * fee) / 10_000;
agentToken.transferFrom(msg.sender, address(this), _amountIn);
currencyToken.transfer(_recipient, _amountOut);
require(currencyToken.balanceOf(address(this)) >= currencyTokenFeeEarned, "INSUFFICIENT_LIQUIDITY");
emit Swap(msg.sender, 0, _amountIn, _amountOut, 0, _recipient);
return _amountOut;
}
function kill() external nonReentrant onlyOwner {
_sweepFees();
killed = true;
agentToken.transfer(owner, agentToken.balanceOf(address(this)));
currencyToken.transfer(owner, currencyToken.balanceOf(address(this)));
}
function getPrice() external view notKilled returns (uint256 _price) {
(uint256 _reserveCurrencyToken, uint256 _reserveAgentToken) = getReserves();
_price = _reserveCurrencyToken * 1e18 / _reserveAgentToken;
}
function getReserves() public view returns (uint256 _reserveCurrencyToken, uint256 _reserveAgentToken) {
_reserveCurrencyToken = phantomAmount + currencyToken.balanceOf(address(this)) - currencyTokenFeeEarned;
_reserveAgentToken = agentToken.balanceOf(address(this)) - agentTokenFeeEarned;
}
function getAmountOut(uint256 _amountIn, address _tokenIn) public view notKilled returns (uint256 _amountOut) {
uint256 _reserveIn;
uint256 _reserveOut;
if (_tokenIn == address(currencyToken)) {
(_reserveIn, _reserveOut) = getReserves();
} else if (_tokenIn == address(agentToken)) {
(_reserveOut, _reserveIn) = getReserves();
}
require(_amountIn > 0 && _reserveIn > 0 && _reserveOut > 0); // INSUFFICIENT_INPUT_AMOUNT/INSUFFICIENT_LIQUIDITY
uint256 _amountInWithFee = _amountIn * fee;
uint256 _numerator = _amountInWithFee * _reserveOut;
uint256 _denominator = (_reserveIn * 10_000) + _amountInWithFee;
_amountOut = _numerator / _denominator;
}
function getAmountIn(uint256 _amountOut, address _tokenOut) public view notKilled returns (uint256 _amountIn) {
uint256 _reserveIn;
uint256 _reserveOut;
if (_tokenOut == address(agentToken)) {
(_reserveIn, _reserveOut) = getReserves();
} else if (_tokenOut == address(currencyToken)) {
(_reserveOut, _reserveIn) = getReserves();
}
require(_amountOut > 0 && _reserveIn > 0 && _reserveOut > 0); // INSUFFICIENT_INPUT_AMOUNT/INSUFFICIENT_LIQUIDITY
uint256 _numerator = _amountOut * _reserveIn * 10_000;
uint256 _denominator = (_reserveOut - _amountOut) * fee;
_amountIn = _numerator / _denominator;
}
function maxSwapAmount(address _tokenIn) public view returns (uint256 _amountIn) {
if (_tokenIn==address(currencyToken)) _amountIn = type(uint256).max;
else if (_tokenIn==address(agentToken)) _amountIn = getAmountIn(currencyToken.balanceOf(address(this)) - currencyTokenFeeEarned, address(currencyToken));
}
function sweepFees() public nonReentrant {
_sweepFees();
}
function _sweepFees() internal {
address feeTo = ILiquidityManager(owner).owner();
currencyToken.transfer(feeTo, currencyTokenFeeEarned);
agentToken.transfer(feeTo, agentTokenFeeEarned);
currencyTokenFeeEarned = 0;
agentTokenFeeEarned = 0;
}
function token0() external view returns (address) {
return address(currencyToken);
}
function token1() external view returns (address) {
return address(agentToken);
}
error BootstrapPoolKilled();
error NotOwner();
/// @notice Emitted when there is a swap in the pool
event Swap(
address indexed sender,
uint256 amount0In,
uint256 amount1In,
uint256 amount0Out,
uint256 amount1Out,
address indexed to
);
}// SPDX-License-Identifier: UNLICENSED
pragma solidity >=0.8.25;
import { IERC20 } from "@openzeppelin/contracts/interfaces/IERC20.sol";
import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
import { Agent } from "./Agent.sol";
import { AIToken } from "./Token.sol";
import { LiquidityManager } from "./LiquidityManager.sol";
interface IPoolFactory {
function createPool(address _agent, address _token, uint256 _mintTODAO) external returns (address);
}
interface IGovernorFactory {
function createGovern(string memory _name, address _token) external returns (address);
}
contract AgentFactory is Ownable {
/// #### Globals
IERC20 public currencyToken;
uint256 public creationFee;
uint256 public tradingFee = 100; // 1%
uint256 public initialPrice;
uint256 public targetCCYLiquidity;
uint256 public shareToBamm;
uint256 public mintToDAO;
uint256 public mintToAgent;
Agent[] public agents;
mapping(address => address) public agentManager;
mapping(address => address) public tokenAgent;
bytes public agentBytecode;
bytes public governorBytecode;
bytes public liquidityManagerBytecode;
address public defaultProxyImplementation;
mapping(address => bool) public allowedProxyImplementation;
/// #### Errors
error MintTODAOTooHigh();
error MintToAgentTooHigh();
/// #### Events
/// @notice Emitted when a new AIAgent is created
event AgentCreated(
address indexed agent, address indexed token, address indexed governor, address manager, address pool
);
event CreationFeeSet(uint256 fee);
event AgentInitialized(address agent, address token);
event CurrencyTokenSet(address currencyToken);
event MintToDAOSet(uint256 mintToDAO);
event MintToAgentSet(uint256 mintToAgnet);
event DefaultProxyImplementationSet(address defaultProxyImplementation);
event ProxyImplementationAllowed(address proxyImplementation, bool allowed);
event AgentBytecodeUpdated(bytes newBytecode);
event GovernorBytecodeUpdated(bytes newBytecode);
event LiquidityManagerBytecodeUpdated(bytes newBytecode);
/// #### Constructor
constructor(
IERC20 _currencyToken,
uint256 _creationFee
)
Ownable(msg.sender)
{
currencyToken = _currencyToken;
creationFee = _creationFee;
}
/// @notice Deploy new Agent contract
function createAgent(
string memory _name,
string memory _symbol,
string memory _url,
uint256 _amountToBuy
)
external
returns (Agent agent)
{
if (creationFee > 0) {
currencyToken.transferFrom(msg.sender, address(this), creationFee);
}
agent = Agent(deployAgent(_name, _symbol, _url));
AIToken token = new AIToken(_name, _symbol, address(agent), address(this));
agent.initializeToken(token);
tokenAgent[address(token)] = address(agent);
address governance = deployGovernor(_name, address(token));
agent.transferOwnership(address(governance));
agent.transferFrom(address(this), address(governance), 0);
uint256 mintToDAOAmount = token.totalSupply() * mintToDAO / 10_000;
uint256 mintToAgentAmount = token.totalSupply() * mintToAgent / 10_000;
uint256 initialLiquidity = token.totalSupply() - mintToDAOAmount - mintToAgentAmount;
LiquidityManager manager = deployLiquidityManager(currencyToken, token, address(agent), initialPrice, targetCCYLiquidity, initialLiquidity, tradingFee, shareToBamm);
if (mintToDAOAmount > 0) token.transfer(address(this), mintToDAOAmount);
if (mintToAgentAmount > 0) token.transfer(address(agent), mintToAgentAmount);
token.transfer(address(manager), initialLiquidity);
manager.initializeBootstrapPool();
if (_amountToBuy > 0) {
// Do the initial buy in name of the creator.
currencyToken.transferFrom(msg.sender, address(this), _amountToBuy);
currencyToken.approve(address(manager.bootstrapPool()), _amountToBuy);
manager.bootstrapPool().buy(_amountToBuy, msg.sender);
}
agents.push(agent);
emit AgentCreated(
address(agent), address(token), address(agent.owner()), address(manager), address(manager.bootstrapPool())
);
}
/// #### Deployers
function deployLiquidityManager(
IERC20 _currencyToken,
IERC20 _agentToken,
address _agent,
uint256 _initialPrice,
uint256 _targetCCYLiquidity,
uint256 _initialLiquidity,
uint256 _fee,
uint256 _shareToBamm) internal returns (LiquidityManager _manager) {
uint256 salt = agents.length;
bytes memory bytecodeWithArgs = abi.encodePacked(liquidityManagerBytecode,
abi.encode(_currencyToken,_agentToken, address(this), _agent, _initialPrice, _targetCCYLiquidity, _initialLiquidity, _fee,_shareToBamm));
assembly {
_manager := create2(0, add(bytecodeWithArgs, 0x20), mload(bytecodeWithArgs), salt)
if iszero(extcodesize(_manager)) {
revert(0, 0)
}
}
agentManager[_agent] = address(_manager);
}
function deployGovernor(string memory _name, address _token) internal returns (address _governor) {
uint256 salt = agents.length;
bytes memory bytecodeWithArgs = abi.encodePacked(governorBytecode,abi.encode(_name, _token));
assembly {
_governor := create2(0, add(bytecodeWithArgs, 0x20), mload(bytecodeWithArgs), salt)
if iszero(extcodesize(_governor)) {
revert(0, 0)
}
}
}
function deployAgent(
string memory name,
string memory symbol,
string memory url
) internal returns (Agent agentAddress) {
uint256 salt = agents.length;
bytes memory bytecodeWithArgs = abi.encodePacked(agentBytecode,abi.encode(name, symbol, url, address(this)));
assembly {
agentAddress := create2(0, add(bytecodeWithArgs, 0x20), mload(bytecodeWithArgs), salt)
if iszero(extcodesize(agentAddress)) {
revert(0, 0)
}
}
}
/// #### Setters
/// @notice Allows the owner to update the governor bytecode
function setGovenerBytecode(bytes memory _newBytecode) external onlyOwner {
governorBytecode = _newBytecode;
emit GovernorBytecodeUpdated(_newBytecode);
}
/// @notice Allows the owner to update the agent bytecode
function setAgentBytecode(bytes memory _newBytecode) external onlyOwner {
agentBytecode = _newBytecode;
emit AgentBytecodeUpdated(_newBytecode);
}
/// @notice Allows the owner to update the liquidity manager bytecode
function setLiquidityManagerBytecode(bytes memory _newBytecode) external onlyOwner {
liquidityManagerBytecode = _newBytecode;
emit LiquidityManagerBytecodeUpdated(_newBytecode);
}
function setCreationFee(uint256 _creationFee) external onlyOwner {
creationFee = _creationFee;
emit CreationFeeSet(_creationFee);
}
function setCurrencyToken(IERC20 _currencyToken) external onlyOwner {
currencyToken = _currencyToken;
emit CurrencyTokenSet(address(_currencyToken));
}
function setTradingFee(uint256 _tradingFee) external onlyOwner {
tradingFee = _tradingFee;
}
function setTargetCCYLiquidity(uint256 _targetCCYLiquidity) external onlyOwner {
targetCCYLiquidity = _targetCCYLiquidity;
}
function setInitialPrice(uint256 _initialPrice) external onlyOwner {
initialPrice = _initialPrice;
}
function setShareToBamm(uint256 _shareToBamm) external onlyOwner {
shareToBamm = _shareToBamm;
}
function setMintToDAO(uint256 _mintToDAO) external onlyOwner {
if (_mintToDAO > 100) { // Max 1%
revert MintTODAOTooHigh();
}
mintToDAO = _mintToDAO;
emit MintToDAOSet(_mintToDAO);
}
function setMintToAgent(uint256 _mintToAgent) external onlyOwner {
if (_mintToAgent > 2000) { // Max 20%
revert MintToAgentTooHigh();
}
mintToAgent = _mintToAgent;
emit MintToAgentSet(_mintToAgent);
}
function setDefaultProxyImplementation(address _defaultProxyImplementation) external onlyOwner {
defaultProxyImplementation = _defaultProxyImplementation;
emit DefaultProxyImplementationSet(_defaultProxyImplementation);
}
function setAllowedProxyImplementation(address _proxyImplementation, bool _allowed) external onlyOwner {
allowedProxyImplementation[_proxyImplementation] = _allowed;
emit ProxyImplementationAllowed(_proxyImplementation, _allowed);
}
/// #### Admin
function transfer(address currency, address recipient, uint256 amount) external onlyOwner returns (bool) {
return IERC20(currency).transfer(recipient, amount);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}pragma solidity >=0.5.0;
interface IUniswapV2Pair {
event Approval(address indexed owner, address indexed spender, uint value);
event Transfer(address indexed from, address indexed to, uint value);
function name() external pure returns (string memory);
function symbol() external pure returns (string memory);
function decimals() external pure returns (uint8);
function totalSupply() external view returns (uint);
function balanceOf(address owner) external view returns (uint);
function allowance(address owner, address spender) external view returns (uint);
function approve(address spender, uint value) external returns (bool);
function transfer(address to, uint value) external returns (bool);
function transferFrom(address from, address to, uint value) external returns (bool);
function DOMAIN_SEPARATOR() external view returns (bytes32);
function PERMIT_TYPEHASH() external pure returns (bytes32);
function nonces(address owner) external view returns (uint);
function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
event Mint(address indexed sender, uint amount0, uint amount1);
event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
event Swap(
address indexed sender,
uint amount0In,
uint amount1In,
uint amount0Out,
uint amount1Out,
address indexed to
);
event Sync(uint112 reserve0, uint112 reserve1);
function MINIMUM_LIQUIDITY() external pure returns (uint);
function factory() external view returns (address);
function token0() external view returns (address);
function token1() external view returns (address);
function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
function price0CumulativeLast() external view returns (uint);
function price1CumulativeLast() external view returns (uint);
function kLast() external view returns (uint);
function mint(address to) external returns (uint liquidity);
function burn(address to) external returns (uint amount0, uint amount1);
function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
function skim(address to) external;
function sync() external;
function initialize(address, address) external;
}pragma solidity >=0.5.0;
interface IUniswapV2Factory {
event PairCreated(address indexed token0, address indexed token1, address pair, uint);
function feeTo() external view returns (address);
function feeToSetter() external view returns (address);
function getPair(address tokenA, address tokenB) external view returns (address pair);
function allPairs(uint) external view returns (address pair);
function allPairsLength() external view returns (uint);
function createPair(address tokenA, address tokenB) external returns (address pair);
function setFeeTo(address) external;
function setFeeToSetter(address) external;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
* consider using {ReentrancyGuardTransient} instead.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
uint256 private _status;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
constructor() {
_status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
if (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == ENTERED;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity >=0.8.25;
import { ERC721URIStorage, ERC721 } from "@openzeppelin/contracts/token/ERC721/extensions/ERC721URIStorage.sol";
import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
import { Proxy } from "@openzeppelin/contracts/proxy/Proxy.sol";
import { AIToken } from "./Token.sol";
import { AgentFactory } from "./AgentFactory.sol";
contract Agent is ERC721URIStorage, Ownable, Proxy {
AIToken public token;
AgentFactory public immutable factory;
address public proxyImplementation;
error InvalidTargetAddress();
error InvalidProxyImplementation();
error ExecutionFailed();
constructor(
string memory name,
string memory symbol,
string memory url,
address _factory
)
ERC721(name, symbol)
Ownable(_factory)
{
factory = AgentFactory(_factory);
_mint(_factory, 0);
_setTokenURI(0, url);
}
function _implementation() internal view override returns (address) {
if (proxyImplementation!=address(0)) return proxyImplementation;
else return factory.defaultProxyImplementation();
}
function setProxyImplementation(address _proxyImplementation) public onlyOwner {
if (_proxyImplementation!=address(0) && !factory.allowedProxyImplementation(_proxyImplementation)) revert InvalidProxyImplementation();
proxyImplementation = _proxyImplementation;
}
receive() external payable {
}
function setTokenURI(uint256 tokenId, string memory _tokenURI) public onlyOwner {
_setTokenURI(tokenId, _tokenURI);
emit TokenURISet(tokenId, _tokenURI);
}
function initializeToken(AIToken _token) public onlyOwner {
if (token == AIToken(address(0))) token = _token;
}
event TokenURISet(uint256 indexed tokenId, string _tokenURI);
}// SPDX-License-Identifier: UNLICENSED
pragma solidity >=0.8.25;
import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
import { ERC20Permit } from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol";
import { ERC20Votes } from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Votes.sol";
import { Nonces } from "@openzeppelin/contracts/utils/Nonces.sol";
uint256 constant MAX_SUPPLY = 100_000_000 * 10 ** 18;
contract AIToken is ERC20, ERC20Permit, ERC20Votes, Ownable {
constructor(
string memory name,
string memory symbol,
address agent,
address factory
)
ERC20(name, symbol)
ERC20Permit(name)
Ownable(agent)
{
_mint(factory, MAX_SUPPLY);
}
function _update(address from, address to, uint256 amount) internal override(ERC20, ERC20Votes) {
super._update(from, to, amount);
}
function nonces(address owner) public view virtual override(ERC20Permit, Nonces) returns (uint256) {
return super.nonces(owner);
}
function mint(address to, uint256 amount) external onlyOwner {
_mint(to, amount);
}
function burn(address from, uint256 amount) external onlyOwner {
_burn(from, amount);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/extensions/ERC721URIStorage.sol)
pragma solidity ^0.8.20;
import {ERC721} from "../ERC721.sol";
import {Strings} from "../../../utils/Strings.sol";
import {IERC4906} from "../../../interfaces/IERC4906.sol";
import {IERC165} from "../../../interfaces/IERC165.sol";
/**
* @dev ERC-721 token with storage based token URI management.
*/
abstract contract ERC721URIStorage is IERC4906, ERC721 {
using Strings for uint256;
// Interface ID as defined in ERC-4906. This does not correspond to a traditional interface ID as ERC-4906 only
// defines events and does not include any external function.
bytes4 private constant ERC4906_INTERFACE_ID = bytes4(0x49064906);
// Optional mapping for token URIs
mapping(uint256 tokenId => string) private _tokenURIs;
/**
* @dev See {IERC165-supportsInterface}
*/
function supportsInterface(bytes4 interfaceId) public view virtual override(ERC721, IERC165) returns (bool) {
return interfaceId == ERC4906_INTERFACE_ID || super.supportsInterface(interfaceId);
}
/**
* @dev See {IERC721Metadata-tokenURI}.
*/
function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
_requireOwned(tokenId);
string memory _tokenURI = _tokenURIs[tokenId];
string memory base = _baseURI();
// If there is no base URI, return the token URI.
if (bytes(base).length == 0) {
return _tokenURI;
}
// If both are set, concatenate the baseURI and tokenURI (via string.concat).
if (bytes(_tokenURI).length > 0) {
return string.concat(base, _tokenURI);
}
return super.tokenURI(tokenId);
}
/**
* @dev Sets `_tokenURI` as the tokenURI of `tokenId`.
*
* Emits {MetadataUpdate}.
*/
function _setTokenURI(uint256 tokenId, string memory _tokenURI) internal virtual {
_tokenURIs[tokenId] = _tokenURI;
emit MetadataUpdate(tokenId);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/Proxy.sol)
pragma solidity ^0.8.20;
/**
* @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
* instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
* be specified by overriding the virtual {_implementation} function.
*
* Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
* different contract through the {_delegate} function.
*
* The success and return data of the delegated call will be returned back to the caller of the proxy.
*/
abstract contract Proxy {
/**
* @dev Delegates the current call to `implementation`.
*
* This function does not return to its internal call site, it will return directly to the external caller.
*/
function _delegate(address implementation) internal virtual {
assembly {
// Copy msg.data. We take full control of memory in this inline assembly
// block because it will not return to Solidity code. We overwrite the
// Solidity scratch pad at memory position 0.
calldatacopy(0, 0, calldatasize())
// Call the implementation.
// out and outsize are 0 because we don't know the size yet.
let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
// Copy the returned data.
returndatacopy(0, 0, returndatasize())
switch result
// delegatecall returns 0 on error.
case 0 {
revert(0, returndatasize())
}
default {
return(0, returndatasize())
}
}
}
/**
* @dev This is a virtual function that should be overridden so it returns the address to which the fallback
* function and {_fallback} should delegate.
*/
function _implementation() internal view virtual returns (address);
/**
* @dev Delegates the current call to the address returned by `_implementation()`.
*
* This function does not return to its internal call site, it will return directly to the external caller.
*/
function _fallback() internal virtual {
_delegate(_implementation());
}
/**
* @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
* function in the contract matches the call data.
*/
fallback() external payable virtual {
_fallback();
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC-20
* applications.
*/
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
mapping(address account => uint256) private _balances;
mapping(address account => mapping(address spender => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `value`.
*/
function transfer(address to, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_transfer(owner, to, value);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, value);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Skips emitting an {Approval} event indicating an allowance update. This is not
* required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `value`.
* - the caller must have allowance for ``from``'s tokens of at least
* `value`.
*/
function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, value);
_transfer(from, to, value);
return true;
}
/**
* @dev Moves a `value` amount of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _transfer(address from, address to, uint256 value) internal {
if (from == address(0)) {
revert ERC20InvalidSender(address(0));
}
if (to == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(from, to, value);
}
/**
* @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
* (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
* this function.
*
* Emits a {Transfer} event.
*/
function _update(address from, address to, uint256 value) internal virtual {
if (from == address(0)) {
// Overflow check required: The rest of the code assumes that totalSupply never overflows
_totalSupply += value;
} else {
uint256 fromBalance = _balances[from];
if (fromBalance < value) {
revert ERC20InsufficientBalance(from, fromBalance, value);
}
unchecked {
// Overflow not possible: value <= fromBalance <= totalSupply.
_balances[from] = fromBalance - value;
}
}
if (to == address(0)) {
unchecked {
// Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
_totalSupply -= value;
}
} else {
unchecked {
// Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
_balances[to] += value;
}
}
emit Transfer(from, to, value);
}
/**
* @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
* Relies on the `_update` mechanism
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _mint(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(address(0), account, value);
}
/**
* @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
* Relies on the `_update` mechanism.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead
*/
function _burn(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidSender(address(0));
}
_update(account, address(0), value);
}
/**
* @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*
* Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
*/
function _approve(address owner, address spender, uint256 value) internal {
_approve(owner, spender, value, true);
}
/**
* @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
*
* By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
* `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
* `Approval` event during `transferFrom` operations.
*
* Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
* true using the following override:
*
* ```solidity
* function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
* super._approve(owner, spender, value, true);
* }
* ```
*
* Requirements are the same as {_approve}.
*/
function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
if (owner == address(0)) {
revert ERC20InvalidApprover(address(0));
}
if (spender == address(0)) {
revert ERC20InvalidSpender(address(0));
}
_allowances[owner][spender] = value;
if (emitEvent) {
emit Approval(owner, spender, value);
}
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `value`.
*
* Does not update the allowance value in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Does not emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
if (currentAllowance < value) {
revert ERC20InsufficientAllowance(spender, currentAllowance, value);
}
unchecked {
_approve(owner, spender, currentAllowance - value, false);
}
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/ERC20Permit.sol)
pragma solidity ^0.8.20;
import {IERC20Permit} from "./IERC20Permit.sol";
import {ERC20} from "../ERC20.sol";
import {ECDSA} from "../../../utils/cryptography/ECDSA.sol";
import {EIP712} from "../../../utils/cryptography/EIP712.sol";
import {Nonces} from "../../../utils/Nonces.sol";
/**
* @dev Implementation of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712, Nonces {
bytes32 private constant PERMIT_TYPEHASH =
keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
/**
* @dev Permit deadline has expired.
*/
error ERC2612ExpiredSignature(uint256 deadline);
/**
* @dev Mismatched signature.
*/
error ERC2612InvalidSigner(address signer, address owner);
/**
* @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
*
* It's a good idea to use the same `name` that is defined as the ERC-20 token name.
*/
constructor(string memory name) EIP712(name, "1") {}
/**
* @inheritdoc IERC20Permit
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) public virtual {
if (block.timestamp > deadline) {
revert ERC2612ExpiredSignature(deadline);
}
bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));
bytes32 hash = _hashTypedDataV4(structHash);
address signer = ECDSA.recover(hash, v, r, s);
if (signer != owner) {
revert ERC2612InvalidSigner(signer, owner);
}
_approve(owner, spender, value);
}
/**
* @inheritdoc IERC20Permit
*/
function nonces(address owner) public view virtual override(IERC20Permit, Nonces) returns (uint256) {
return super.nonces(owner);
}
/**
* @inheritdoc IERC20Permit
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view virtual returns (bytes32) {
return _domainSeparatorV4();
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/ERC20Votes.sol)
pragma solidity ^0.8.20;
import {ERC20} from "../ERC20.sol";
import {Votes} from "../../../governance/utils/Votes.sol";
import {Checkpoints} from "../../../utils/structs/Checkpoints.sol";
/**
* @dev Extension of ERC-20 to support Compound-like voting and delegation. This version is more generic than Compound's,
* and supports token supply up to 2^208^ - 1, while COMP is limited to 2^96^ - 1.
*
* NOTE: This contract does not provide interface compatibility with Compound's COMP token.
*
* This extension keeps a history (checkpoints) of each account's vote power. Vote power can be delegated either
* by calling the {Votes-delegate} function directly, or by providing a signature to be used with {Votes-delegateBySig}. Voting
* power can be queried through the public accessors {Votes-getVotes} and {Votes-getPastVotes}.
*
* By default, token balance does not account for voting power. This makes transfers cheaper. The downside is that it
* requires users to delegate to themselves in order to activate checkpoints and have their voting power tracked.
*/
abstract contract ERC20Votes is ERC20, Votes {
/**
* @dev Total supply cap has been exceeded, introducing a risk of votes overflowing.
*/
error ERC20ExceededSafeSupply(uint256 increasedSupply, uint256 cap);
/**
* @dev Maximum token supply. Defaults to `type(uint208).max` (2^208^ - 1).
*
* This maximum is enforced in {_update}. It limits the total supply of the token, which is otherwise a uint256,
* so that checkpoints can be stored in the Trace208 structure used by {Votes}. Increasing this value will not
* remove the underlying limitation, and will cause {_update} to fail because of a math overflow in
* {Votes-_transferVotingUnits}. An override could be used to further restrict the total supply (to a lower value) if
* additional logic requires it. When resolving override conflicts on this function, the minimum should be
* returned.
*/
function _maxSupply() internal view virtual returns (uint256) {
return type(uint208).max;
}
/**
* @dev Move voting power when tokens are transferred.
*
* Emits a {IVotes-DelegateVotesChanged} event.
*/
function _update(address from, address to, uint256 value) internal virtual override {
super._update(from, to, value);
if (from == address(0)) {
uint256 supply = totalSupply();
uint256 cap = _maxSupply();
if (supply > cap) {
revert ERC20ExceededSafeSupply(supply, cap);
}
}
_transferVotingUnits(from, to, value);
}
/**
* @dev Returns the voting units of an `account`.
*
* WARNING: Overriding this function may compromise the internal vote accounting.
* `ERC20Votes` assumes tokens map to voting units 1:1 and this is not easy to change.
*/
function _getVotingUnits(address account) internal view virtual override returns (uint256) {
return balanceOf(account);
}
/**
* @dev Get number of checkpoints for `account`.
*/
function numCheckpoints(address account) public view virtual returns (uint32) {
return _numCheckpoints(account);
}
/**
* @dev Get the `pos`-th checkpoint for `account`.
*/
function checkpoints(address account, uint32 pos) public view virtual returns (Checkpoints.Checkpoint208 memory) {
return _checkpoints(account, pos);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides tracking nonces for addresses. Nonces will only increment.
*/
abstract contract Nonces {
/**
* @dev The nonce used for an `account` is not the expected current nonce.
*/
error InvalidAccountNonce(address account, uint256 currentNonce);
mapping(address account => uint256) private _nonces;
/**
* @dev Returns the next unused nonce for an address.
*/
function nonces(address owner) public view virtual returns (uint256) {
return _nonces[owner];
}
/**
* @dev Consumes a nonce.
*
* Returns the current value and increments nonce.
*/
function _useNonce(address owner) internal virtual returns (uint256) {
// For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
// decremented or reset. This guarantees that the nonce never overflows.
unchecked {
// It is important to do x++ and not ++x here.
return _nonces[owner]++;
}
}
/**
* @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
*/
function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
uint256 current = _useNonce(owner);
if (nonce != current) {
revert InvalidAccountNonce(owner, current);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/ERC721.sol)
pragma solidity ^0.8.20;
import {IERC721} from "./IERC721.sol";
import {IERC721Metadata} from "./extensions/IERC721Metadata.sol";
import {ERC721Utils} from "./utils/ERC721Utils.sol";
import {Context} from "../../utils/Context.sol";
import {Strings} from "../../utils/Strings.sol";
import {IERC165, ERC165} from "../../utils/introspection/ERC165.sol";
import {IERC721Errors} from "../../interfaces/draft-IERC6093.sol";
/**
* @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC-721] Non-Fungible Token Standard, including
* the Metadata extension, but not including the Enumerable extension, which is available separately as
* {ERC721Enumerable}.
*/
abstract contract ERC721 is Context, ERC165, IERC721, IERC721Metadata, IERC721Errors {
using Strings for uint256;
// Token name
string private _name;
// Token symbol
string private _symbol;
mapping(uint256 tokenId => address) private _owners;
mapping(address owner => uint256) private _balances;
mapping(uint256 tokenId => address) private _tokenApprovals;
mapping(address owner => mapping(address operator => bool)) private _operatorApprovals;
/**
* @dev Initializes the contract by setting a `name` and a `symbol` to the token collection.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
return
interfaceId == type(IERC721).interfaceId ||
interfaceId == type(IERC721Metadata).interfaceId ||
super.supportsInterface(interfaceId);
}
/**
* @dev See {IERC721-balanceOf}.
*/
function balanceOf(address owner) public view virtual returns (uint256) {
if (owner == address(0)) {
revert ERC721InvalidOwner(address(0));
}
return _balances[owner];
}
/**
* @dev See {IERC721-ownerOf}.
*/
function ownerOf(uint256 tokenId) public view virtual returns (address) {
return _requireOwned(tokenId);
}
/**
* @dev See {IERC721Metadata-name}.
*/
function name() public view virtual returns (string memory) {
return _name;
}
/**
* @dev See {IERC721Metadata-symbol}.
*/
function symbol() public view virtual returns (string memory) {
return _symbol;
}
/**
* @dev See {IERC721Metadata-tokenURI}.
*/
function tokenURI(uint256 tokenId) public view virtual returns (string memory) {
_requireOwned(tokenId);
string memory baseURI = _baseURI();
return bytes(baseURI).length > 0 ? string.concat(baseURI, tokenId.toString()) : "";
}
/**
* @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
* token will be the concatenation of the `baseURI` and the `tokenId`. Empty
* by default, can be overridden in child contracts.
*/
function _baseURI() internal view virtual returns (string memory) {
return "";
}
/**
* @dev See {IERC721-approve}.
*/
function approve(address to, uint256 tokenId) public virtual {
_approve(to, tokenId, _msgSender());
}
/**
* @dev See {IERC721-getApproved}.
*/
function getApproved(uint256 tokenId) public view virtual returns (address) {
_requireOwned(tokenId);
return _getApproved(tokenId);
}
/**
* @dev See {IERC721-setApprovalForAll}.
*/
function setApprovalForAll(address operator, bool approved) public virtual {
_setApprovalForAll(_msgSender(), operator, approved);
}
/**
* @dev See {IERC721-isApprovedForAll}.
*/
function isApprovedForAll(address owner, address operator) public view virtual returns (bool) {
return _operatorApprovals[owner][operator];
}
/**
* @dev See {IERC721-transferFrom}.
*/
function transferFrom(address from, address to, uint256 tokenId) public virtual {
if (to == address(0)) {
revert ERC721InvalidReceiver(address(0));
}
// Setting an "auth" arguments enables the `_isAuthorized` check which verifies that the token exists
// (from != 0). Therefore, it is not needed to verify that the return value is not 0 here.
address previousOwner = _update(to, tokenId, _msgSender());
if (previousOwner != from) {
revert ERC721IncorrectOwner(from, tokenId, previousOwner);
}
}
/**
* @dev See {IERC721-safeTransferFrom}.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) public {
safeTransferFrom(from, to, tokenId, "");
}
/**
* @dev See {IERC721-safeTransferFrom}.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public virtual {
transferFrom(from, to, tokenId);
ERC721Utils.checkOnERC721Received(_msgSender(), from, to, tokenId, data);
}
/**
* @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist
*
* IMPORTANT: Any overrides to this function that add ownership of tokens not tracked by the
* core ERC-721 logic MUST be matched with the use of {_increaseBalance} to keep balances
* consistent with ownership. The invariant to preserve is that for any address `a` the value returned by
* `balanceOf(a)` must be equal to the number of tokens such that `_ownerOf(tokenId)` is `a`.
*/
function _ownerOf(uint256 tokenId) internal view virtual returns (address) {
return _owners[tokenId];
}
/**
* @dev Returns the approved address for `tokenId`. Returns 0 if `tokenId` is not minted.
*/
function _getApproved(uint256 tokenId) internal view virtual returns (address) {
return _tokenApprovals[tokenId];
}
/**
* @dev Returns whether `spender` is allowed to manage `owner`'s tokens, or `tokenId` in
* particular (ignoring whether it is owned by `owner`).
*
* WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this
* assumption.
*/
function _isAuthorized(address owner, address spender, uint256 tokenId) internal view virtual returns (bool) {
return
spender != address(0) &&
(owner == spender || isApprovedForAll(owner, spender) || _getApproved(tokenId) == spender);
}
/**
* @dev Checks if `spender` can operate on `tokenId`, assuming the provided `owner` is the actual owner.
* Reverts if:
* - `spender` does not have approval from `owner` for `tokenId`.
* - `spender` does not have approval to manage all of `owner`'s assets.
*
* WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this
* assumption.
*/
function _checkAuthorized(address owner, address spender, uint256 tokenId) internal view virtual {
if (!_isAuthorized(owner, spender, tokenId)) {
if (owner == address(0)) {
revert ERC721NonexistentToken(tokenId);
} else {
revert ERC721InsufficientApproval(spender, tokenId);
}
}
}
/**
* @dev Unsafe write access to the balances, used by extensions that "mint" tokens using an {ownerOf} override.
*
* NOTE: the value is limited to type(uint128).max. This protect against _balance overflow. It is unrealistic that
* a uint256 would ever overflow from increments when these increments are bounded to uint128 values.
*
* WARNING: Increasing an account's balance using this function tends to be paired with an override of the
* {_ownerOf} function to resolve the ownership of the corresponding tokens so that balances and ownership
* remain consistent with one another.
*/
function _increaseBalance(address account, uint128 value) internal virtual {
unchecked {
_balances[account] += value;
}
}
/**
* @dev Transfers `tokenId` from its current owner to `to`, or alternatively mints (or burns) if the current owner
* (or `to`) is the zero address. Returns the owner of the `tokenId` before the update.
*
* The `auth` argument is optional. If the value passed is non 0, then this function will check that
* `auth` is either the owner of the token, or approved to operate on the token (by the owner).
*
* Emits a {Transfer} event.
*
* NOTE: If overriding this function in a way that tracks balances, see also {_increaseBalance}.
*/
function _update(address to, uint256 tokenId, address auth) internal virtual returns (address) {
address from = _ownerOf(tokenId);
// Perform (optional) operator check
if (auth != address(0)) {
_checkAuthorized(from, auth, tokenId);
}
// Execute the update
if (from != address(0)) {
// Clear approval. No need to re-authorize or emit the Approval event
_approve(address(0), tokenId, address(0), false);
unchecked {
_balances[from] -= 1;
}
}
if (to != address(0)) {
unchecked {
_balances[to] += 1;
}
}
_owners[tokenId] = to;
emit Transfer(from, to, tokenId);
return from;
}
/**
* @dev Mints `tokenId` and transfers it to `to`.
*
* WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible
*
* Requirements:
*
* - `tokenId` must not exist.
* - `to` cannot be the zero address.
*
* Emits a {Transfer} event.
*/
function _mint(address to, uint256 tokenId) internal {
if (to == address(0)) {
revert ERC721InvalidReceiver(address(0));
}
address previousOwner = _update(to, tokenId, address(0));
if (previousOwner != address(0)) {
revert ERC721InvalidSender(address(0));
}
}
/**
* @dev Mints `tokenId`, transfers it to `to` and checks for `to` acceptance.
*
* Requirements:
*
* - `tokenId` must not exist.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function _safeMint(address to, uint256 tokenId) internal {
_safeMint(to, tokenId, "");
}
/**
* @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is
* forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
*/
function _safeMint(address to, uint256 tokenId, bytes memory data) internal virtual {
_mint(to, tokenId);
ERC721Utils.checkOnERC721Received(_msgSender(), address(0), to, tokenId, data);
}
/**
* @dev Destroys `tokenId`.
* The approval is cleared when the token is burned.
* This is an internal function that does not check if the sender is authorized to operate on the token.
*
* Requirements:
*
* - `tokenId` must exist.
*
* Emits a {Transfer} event.
*/
function _burn(uint256 tokenId) internal {
address previousOwner = _update(address(0), tokenId, address(0));
if (previousOwner == address(0)) {
revert ERC721NonexistentToken(tokenId);
}
}
/**
* @dev Transfers `tokenId` from `from` to `to`.
* As opposed to {transferFrom}, this imposes no restrictions on msg.sender.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
*
* Emits a {Transfer} event.
*/
function _transfer(address from, address to, uint256 tokenId) internal {
if (to == address(0)) {
revert ERC721InvalidReceiver(address(0));
}
address previousOwner = _update(to, tokenId, address(0));
if (previousOwner == address(0)) {
revert ERC721NonexistentToken(tokenId);
} else if (previousOwner != from) {
revert ERC721IncorrectOwner(from, tokenId, previousOwner);
}
}
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking that contract recipients
* are aware of the ERC-721 standard to prevent tokens from being forever locked.
*
* `data` is additional data, it has no specified format and it is sent in call to `to`.
*
* This internal function is like {safeTransferFrom} in the sense that it invokes
* {IERC721Receiver-onERC721Received} on the receiver, and can be used to e.g.
* implement alternative mechanisms to perform token transfer, such as signature-based.
*
* Requirements:
*
* - `tokenId` token must exist and be owned by `from`.
* - `to` cannot be the zero address.
* - `from` cannot be the zero address.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function _safeTransfer(address from, address to, uint256 tokenId) internal {
_safeTransfer(from, to, tokenId, "");
}
/**
* @dev Same as {xref-ERC721-_safeTransfer-address-address-uint256-}[`_safeTransfer`], with an additional `data` parameter which is
* forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
*/
function _safeTransfer(address from, address to, uint256 tokenId, bytes memory data) internal virtual {
_transfer(from, to, tokenId);
ERC721Utils.checkOnERC721Received(_msgSender(), from, to, tokenId, data);
}
/**
* @dev Approve `to` to operate on `tokenId`
*
* The `auth` argument is optional. If the value passed is non 0, then this function will check that `auth` is
* either the owner of the token, or approved to operate on all tokens held by this owner.
*
* Emits an {Approval} event.
*
* Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
*/
function _approve(address to, uint256 tokenId, address auth) internal {
_approve(to, tokenId, auth, true);
}
/**
* @dev Variant of `_approve` with an optional flag to enable or disable the {Approval} event. The event is not
* emitted in the context of transfers.
*/
function _approve(address to, uint256 tokenId, address auth, bool emitEvent) internal virtual {
// Avoid reading the owner unless necessary
if (emitEvent || auth != address(0)) {
address owner = _requireOwned(tokenId);
// We do not use _isAuthorized because single-token approvals should not be able to call approve
if (auth != address(0) && owner != auth && !isApprovedForAll(owner, auth)) {
revert ERC721InvalidApprover(auth);
}
if (emitEvent) {
emit Approval(owner, to, tokenId);
}
}
_tokenApprovals[tokenId] = to;
}
/**
* @dev Approve `operator` to operate on all of `owner` tokens
*
* Requirements:
* - operator can't be the address zero.
*
* Emits an {ApprovalForAll} event.
*/
function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
if (operator == address(0)) {
revert ERC721InvalidOperator(operator);
}
_operatorApprovals[owner][operator] = approved;
emit ApprovalForAll(owner, operator, approved);
}
/**
* @dev Reverts if the `tokenId` doesn't have a current owner (it hasn't been minted, or it has been burned).
* Returns the owner.
*
* Overrides to ownership logic should be done to {_ownerOf}.
*/
function _requireOwned(uint256 tokenId) internal view returns (address) {
address owner = _ownerOf(tokenId);
if (owner == address(0)) {
revert ERC721NonexistentToken(tokenId);
}
return owner;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
assembly ("memory-safe") {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
assembly ("memory-safe") {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
* representation, according to EIP-55.
*/
function toChecksumHexString(address addr) internal pure returns (string memory) {
bytes memory buffer = bytes(toHexString(addr));
// hash the hex part of buffer (skip length + 2 bytes, length 40)
uint256 hashValue;
assembly ("memory-safe") {
hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
}
for (uint256 i = 41; i > 1; --i) {
// possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
// case shift by xoring with 0x20
buffer[i] ^= 0x20;
}
hashValue >>= 4;
}
return string(buffer);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC4906.sol)
pragma solidity ^0.8.20;
import {IERC165} from "./IERC165.sol";
import {IERC721} from "./IERC721.sol";
/// @title ERC-721 Metadata Update Extension
interface IERC4906 is IERC165, IERC721 {
/// @dev This event emits when the metadata of a token is changed.
/// So that the third-party platforms such as NFT market could
/// timely update the images and related attributes of the NFT.
event MetadataUpdate(uint256 _tokenId);
/// @dev This event emits when the metadata of a range of tokens is changed.
/// So that the third-party platforms such as NFT market could
/// timely update the images and related attributes of the NFTs.
event BatchMetadataUpdate(uint256 _fromTokenId, uint256 _toTokenId);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../utils/introspection/IERC165.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC-20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard ERC-20 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
*/
interface IERC20Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC20InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC20InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
* @param spender Address that may be allowed to operate on tokens without being their owner.
* @param allowance Amount of tokens a `spender` is allowed to operate with.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC20InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `spender` to be approved. Used in approvals.
* @param spender Address that may be allowed to operate on tokens without being their owner.
*/
error ERC20InvalidSpender(address spender);
}
/**
* @dev Standard ERC-721 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
*/
interface IERC721Errors {
/**
* @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
* Used in balance queries.
* @param owner Address of the current owner of a token.
*/
error ERC721InvalidOwner(address owner);
/**
* @dev Indicates a `tokenId` whose `owner` is the zero address.
* @param tokenId Identifier number of a token.
*/
error ERC721NonexistentToken(uint256 tokenId);
/**
* @dev Indicates an error related to the ownership over a particular token. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param tokenId Identifier number of a token.
* @param owner Address of the current owner of a token.
*/
error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC721InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC721InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param tokenId Identifier number of a token.
*/
error ERC721InsufficientApproval(address operator, uint256 tokenId);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC721InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC721InvalidOperator(address operator);
}
/**
* @dev Standard ERC-1155 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
*/
interface IERC1155Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
* @param tokenId Identifier number of a token.
*/
error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC1155InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC1155InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param owner Address of the current owner of a token.
*/
error ERC1155MissingApprovalForAll(address operator, address owner);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC1155InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC1155InvalidOperator(address operator);
/**
* @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
* Used in batch transfers.
* @param idsLength Length of the array of token identifiers
* @param valuesLength Length of the array of token amounts
*/
error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.20;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature derives the `address(0)`.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(
bytes32 hash,
bytes memory signature
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
assembly ("memory-safe") {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/EIP712.sol)
pragma solidity ^0.8.20;
import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
*
* The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
* encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
* does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
* produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
* separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
* separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
*
* @custom:oz-upgrades-unsafe-allow state-variable-immutable
*/
abstract contract EIP712 is IERC5267 {
using ShortStrings for *;
bytes32 private constant TYPE_HASH =
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
// Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
// invalidate the cached domain separator if the chain id changes.
bytes32 private immutable _cachedDomainSeparator;
uint256 private immutable _cachedChainId;
address private immutable _cachedThis;
bytes32 private immutable _hashedName;
bytes32 private immutable _hashedVersion;
ShortString private immutable _name;
ShortString private immutable _version;
string private _nameFallback;
string private _versionFallback;
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
constructor(string memory name, string memory version) {
_name = name.toShortStringWithFallback(_nameFallback);
_version = version.toShortStringWithFallback(_versionFallback);
_hashedName = keccak256(bytes(name));
_hashedVersion = keccak256(bytes(version));
_cachedChainId = block.chainid;
_cachedDomainSeparator = _buildDomainSeparator();
_cachedThis = address(this);
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view returns (bytes32) {
if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
return _cachedDomainSeparator;
} else {
return _buildDomainSeparator();
}
}
function _buildDomainSeparator() private view returns (bytes32) {
return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
}
/**
* @dev See {IERC-5267}.
*/
function eip712Domain()
public
view
virtual
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
)
{
return (
hex"0f", // 01111
_EIP712Name(),
_EIP712Version(),
block.chainid,
address(this),
bytes32(0),
new uint256[](0)
);
}
/**
* @dev The name parameter for the EIP712 domain.
*
* NOTE: By default this function reads _name which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Name() internal view returns (string memory) {
return _name.toStringWithFallback(_nameFallback);
}
/**
* @dev The version parameter for the EIP712 domain.
*
* NOTE: By default this function reads _version which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Version() internal view returns (string memory) {
return _version.toStringWithFallback(_versionFallback);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (governance/utils/Votes.sol)
pragma solidity ^0.8.20;
import {IERC5805} from "../../interfaces/IERC5805.sol";
import {Context} from "../../utils/Context.sol";
import {Nonces} from "../../utils/Nonces.sol";
import {EIP712} from "../../utils/cryptography/EIP712.sol";
import {Checkpoints} from "../../utils/structs/Checkpoints.sol";
import {SafeCast} from "../../utils/math/SafeCast.sol";
import {ECDSA} from "../../utils/cryptography/ECDSA.sol";
import {Time} from "../../utils/types/Time.sol";
/**
* @dev This is a base abstract contract that tracks voting units, which are a measure of voting power that can be
* transferred, and provides a system of vote delegation, where an account can delegate its voting units to a sort of
* "representative" that will pool delegated voting units from different accounts and can then use it to vote in
* decisions. In fact, voting units _must_ be delegated in order to count as actual votes, and an account has to
* delegate those votes to itself if it wishes to participate in decisions and does not have a trusted representative.
*
* This contract is often combined with a token contract such that voting units correspond to token units. For an
* example, see {ERC721Votes}.
*
* The full history of delegate votes is tracked on-chain so that governance protocols can consider votes as distributed
* at a particular block number to protect against flash loans and double voting. The opt-in delegate system makes the
* cost of this history tracking optional.
*
* When using this module the derived contract must implement {_getVotingUnits} (for example, make it return
* {ERC721-balanceOf}), and can use {_transferVotingUnits} to track a change in the distribution of those units (in the
* previous example, it would be included in {ERC721-_update}).
*/
abstract contract Votes is Context, EIP712, Nonces, IERC5805 {
using Checkpoints for Checkpoints.Trace208;
bytes32 private constant DELEGATION_TYPEHASH =
keccak256("Delegation(address delegatee,uint256 nonce,uint256 expiry)");
mapping(address account => address) private _delegatee;
mapping(address delegatee => Checkpoints.Trace208) private _delegateCheckpoints;
Checkpoints.Trace208 private _totalCheckpoints;
/**
* @dev The clock was incorrectly modified.
*/
error ERC6372InconsistentClock();
/**
* @dev Lookup to future votes is not available.
*/
error ERC5805FutureLookup(uint256 timepoint, uint48 clock);
/**
* @dev Clock used for flagging checkpoints. Can be overridden to implement timestamp based
* checkpoints (and voting), in which case {CLOCK_MODE} should be overridden as well to match.
*/
function clock() public view virtual returns (uint48) {
return Time.blockNumber();
}
/**
* @dev Machine-readable description of the clock as specified in ERC-6372.
*/
// solhint-disable-next-line func-name-mixedcase
function CLOCK_MODE() public view virtual returns (string memory) {
// Check that the clock was not modified
if (clock() != Time.blockNumber()) {
revert ERC6372InconsistentClock();
}
return "mode=blocknumber&from=default";
}
/**
* @dev Returns the current amount of votes that `account` has.
*/
function getVotes(address account) public view virtual returns (uint256) {
return _delegateCheckpoints[account].latest();
}
/**
* @dev Returns the amount of votes that `account` had at a specific moment in the past. If the `clock()` is
* configured to use block numbers, this will return the value at the end of the corresponding block.
*
* Requirements:
*
* - `timepoint` must be in the past. If operating using block numbers, the block must be already mined.
*/
function getPastVotes(address account, uint256 timepoint) public view virtual returns (uint256) {
uint48 currentTimepoint = clock();
if (timepoint >= currentTimepoint) {
revert ERC5805FutureLookup(timepoint, currentTimepoint);
}
return _delegateCheckpoints[account].upperLookupRecent(SafeCast.toUint48(timepoint));
}
/**
* @dev Returns the total supply of votes available at a specific moment in the past. If the `clock()` is
* configured to use block numbers, this will return the value at the end of the corresponding block.
*
* NOTE: This value is the sum of all available votes, which is not necessarily the sum of all delegated votes.
* Votes that have not been delegated are still part of total supply, even though they would not participate in a
* vote.
*
* Requirements:
*
* - `timepoint` must be in the past. If operating using block numbers, the block must be already mined.
*/
function getPastTotalSupply(uint256 timepoint) public view virtual returns (uint256) {
uint48 currentTimepoint = clock();
if (timepoint >= currentTimepoint) {
revert ERC5805FutureLookup(timepoint, currentTimepoint);
}
return _totalCheckpoints.upperLookupRecent(SafeCast.toUint48(timepoint));
}
/**
* @dev Returns the current total supply of votes.
*/
function _getTotalSupply() internal view virtual returns (uint256) {
return _totalCheckpoints.latest();
}
/**
* @dev Returns the delegate that `account` has chosen.
*/
function delegates(address account) public view virtual returns (address) {
return _delegatee[account];
}
/**
* @dev Delegates votes from the sender to `delegatee`.
*/
function delegate(address delegatee) public virtual {
address account = _msgSender();
_delegate(account, delegatee);
}
/**
* @dev Delegates votes from signer to `delegatee`.
*/
function delegateBySig(
address delegatee,
uint256 nonce,
uint256 expiry,
uint8 v,
bytes32 r,
bytes32 s
) public virtual {
if (block.timestamp > expiry) {
revert VotesExpiredSignature(expiry);
}
address signer = ECDSA.recover(
_hashTypedDataV4(keccak256(abi.encode(DELEGATION_TYPEHASH, delegatee, nonce, expiry))),
v,
r,
s
);
_useCheckedNonce(signer, nonce);
_delegate(signer, delegatee);
}
/**
* @dev Delegate all of `account`'s voting units to `delegatee`.
*
* Emits events {IVotes-DelegateChanged} and {IVotes-DelegateVotesChanged}.
*/
function _delegate(address account, address delegatee) internal virtual {
address oldDelegate = delegates(account);
_delegatee[account] = delegatee;
emit DelegateChanged(account, oldDelegate, delegatee);
_moveDelegateVotes(oldDelegate, delegatee, _getVotingUnits(account));
}
/**
* @dev Transfers, mints, or burns voting units. To register a mint, `from` should be zero. To register a burn, `to`
* should be zero. Total supply of voting units will be adjusted with mints and burns.
*/
function _transferVotingUnits(address from, address to, uint256 amount) internal virtual {
if (from == address(0)) {
_push(_totalCheckpoints, _add, SafeCast.toUint208(amount));
}
if (to == address(0)) {
_push(_totalCheckpoints, _subtract, SafeCast.toUint208(amount));
}
_moveDelegateVotes(delegates(from), delegates(to), amount);
}
/**
* @dev Moves delegated votes from one delegate to another.
*/
function _moveDelegateVotes(address from, address to, uint256 amount) internal virtual {
if (from != to && amount > 0) {
if (from != address(0)) {
(uint256 oldValue, uint256 newValue) = _push(
_delegateCheckpoints[from],
_subtract,
SafeCast.toUint208(amount)
);
emit DelegateVotesChanged(from, oldValue, newValue);
}
if (to != address(0)) {
(uint256 oldValue, uint256 newValue) = _push(
_delegateCheckpoints[to],
_add,
SafeCast.toUint208(amount)
);
emit DelegateVotesChanged(to, oldValue, newValue);
}
}
}
/**
* @dev Get number of checkpoints for `account`.
*/
function _numCheckpoints(address account) internal view virtual returns (uint32) {
return SafeCast.toUint32(_delegateCheckpoints[account].length());
}
/**
* @dev Get the `pos`-th checkpoint for `account`.
*/
function _checkpoints(
address account,
uint32 pos
) internal view virtual returns (Checkpoints.Checkpoint208 memory) {
return _delegateCheckpoints[account].at(pos);
}
function _push(
Checkpoints.Trace208 storage store,
function(uint208, uint208) view returns (uint208) op,
uint208 delta
) private returns (uint208 oldValue, uint208 newValue) {
return store.push(clock(), op(store.latest(), delta));
}
function _add(uint208 a, uint208 b) private pure returns (uint208) {
return a + b;
}
function _subtract(uint208 a, uint208 b) private pure returns (uint208) {
return a - b;
}
/**
* @dev Must return the voting units held by an account.
*/
function _getVotingUnits(address) internal view virtual returns (uint256);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/structs/Checkpoints.sol)
// This file was procedurally generated from scripts/generate/templates/Checkpoints.js.
pragma solidity ^0.8.20;
import {Math} from "../math/Math.sol";
/**
* @dev This library defines the `Trace*` struct, for checkpointing values as they change at different points in
* time, and later looking up past values by block number. See {Votes} as an example.
*
* To create a history of checkpoints define a variable type `Checkpoints.Trace*` in your contract, and store a new
* checkpoint for the current transaction block using the {push} function.
*/
library Checkpoints {
/**
* @dev A value was attempted to be inserted on a past checkpoint.
*/
error CheckpointUnorderedInsertion();
struct Trace224 {
Checkpoint224[] _checkpoints;
}
struct Checkpoint224 {
uint32 _key;
uint224 _value;
}
/**
* @dev Pushes a (`key`, `value`) pair into a Trace224 so that it is stored as the checkpoint.
*
* Returns previous value and new value.
*
* IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint32).max` key set will disable the
* library.
*/
function push(
Trace224 storage self,
uint32 key,
uint224 value
) internal returns (uint224 oldValue, uint224 newValue) {
return _insert(self._checkpoints, key, value);
}
/**
* @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
* there is none.
*/
function lowerLookup(Trace224 storage self, uint32 key) internal view returns (uint224) {
uint256 len = self._checkpoints.length;
uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
}
/**
* @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
* if there is none.
*/
function upperLookup(Trace224 storage self, uint32 key) internal view returns (uint224) {
uint256 len = self._checkpoints.length;
uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
* if there is none.
*
* NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
* keys).
*/
function upperLookupRecent(Trace224 storage self, uint32 key) internal view returns (uint224) {
uint256 len = self._checkpoints.length;
uint256 low = 0;
uint256 high = len;
if (len > 5) {
uint256 mid = len - Math.sqrt(len);
if (key < _unsafeAccess(self._checkpoints, mid)._key) {
high = mid;
} else {
low = mid + 1;
}
}
uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
*/
function latest(Trace224 storage self) internal view returns (uint224) {
uint256 pos = self._checkpoints.length;
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
* in the most recent checkpoint.
*/
function latestCheckpoint(Trace224 storage self) internal view returns (bool exists, uint32 _key, uint224 _value) {
uint256 pos = self._checkpoints.length;
if (pos == 0) {
return (false, 0, 0);
} else {
Checkpoint224 storage ckpt = _unsafeAccess(self._checkpoints, pos - 1);
return (true, ckpt._key, ckpt._value);
}
}
/**
* @dev Returns the number of checkpoint.
*/
function length(Trace224 storage self) internal view returns (uint256) {
return self._checkpoints.length;
}
/**
* @dev Returns checkpoint at given position.
*/
function at(Trace224 storage self, uint32 pos) internal view returns (Checkpoint224 memory) {
return self._checkpoints[pos];
}
/**
* @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
* or by updating the last one.
*/
function _insert(
Checkpoint224[] storage self,
uint32 key,
uint224 value
) private returns (uint224 oldValue, uint224 newValue) {
uint256 pos = self.length;
if (pos > 0) {
Checkpoint224 storage last = _unsafeAccess(self, pos - 1);
uint32 lastKey = last._key;
uint224 lastValue = last._value;
// Checkpoint keys must be non-decreasing.
if (lastKey > key) {
revert CheckpointUnorderedInsertion();
}
// Update or push new checkpoint
if (lastKey == key) {
last._value = value;
} else {
self.push(Checkpoint224({_key: key, _value: value}));
}
return (lastValue, value);
} else {
self.push(Checkpoint224({_key: key, _value: value}));
return (0, value);
}
}
/**
* @dev Return the index of the first (oldest) checkpoint with key strictly bigger than the search key, or `high`
* if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
* `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _upperBinaryLookup(
Checkpoint224[] storage self,
uint32 key,
uint256 low,
uint256 high
) private view returns (uint256) {
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._key > key) {
high = mid;
} else {
low = mid + 1;
}
}
return high;
}
/**
* @dev Return the index of the first (oldest) checkpoint with key greater or equal than the search key, or `high`
* if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
* `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _lowerBinaryLookup(
Checkpoint224[] storage self,
uint32 key,
uint256 low,
uint256 high
) private view returns (uint256) {
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._key < key) {
low = mid + 1;
} else {
high = mid;
}
}
return high;
}
/**
* @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
*/
function _unsafeAccess(
Checkpoint224[] storage self,
uint256 pos
) private pure returns (Checkpoint224 storage result) {
assembly {
mstore(0, self.slot)
result.slot := add(keccak256(0, 0x20), pos)
}
}
struct Trace208 {
Checkpoint208[] _checkpoints;
}
struct Checkpoint208 {
uint48 _key;
uint208 _value;
}
/**
* @dev Pushes a (`key`, `value`) pair into a Trace208 so that it is stored as the checkpoint.
*
* Returns previous value and new value.
*
* IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint48).max` key set will disable the
* library.
*/
function push(
Trace208 storage self,
uint48 key,
uint208 value
) internal returns (uint208 oldValue, uint208 newValue) {
return _insert(self._checkpoints, key, value);
}
/**
* @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
* there is none.
*/
function lowerLookup(Trace208 storage self, uint48 key) internal view returns (uint208) {
uint256 len = self._checkpoints.length;
uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
}
/**
* @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
* if there is none.
*/
function upperLookup(Trace208 storage self, uint48 key) internal view returns (uint208) {
uint256 len = self._checkpoints.length;
uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
* if there is none.
*
* NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
* keys).
*/
function upperLookupRecent(Trace208 storage self, uint48 key) internal view returns (uint208) {
uint256 len = self._checkpoints.length;
uint256 low = 0;
uint256 high = len;
if (len > 5) {
uint256 mid = len - Math.sqrt(len);
if (key < _unsafeAccess(self._checkpoints, mid)._key) {
high = mid;
} else {
low = mid + 1;
}
}
uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
*/
function latest(Trace208 storage self) internal view returns (uint208) {
uint256 pos = self._checkpoints.length;
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
* in the most recent checkpoint.
*/
function latestCheckpoint(Trace208 storage self) internal view returns (bool exists, uint48 _key, uint208 _value) {
uint256 pos = self._checkpoints.length;
if (pos == 0) {
return (false, 0, 0);
} else {
Checkpoint208 storage ckpt = _unsafeAccess(self._checkpoints, pos - 1);
return (true, ckpt._key, ckpt._value);
}
}
/**
* @dev Returns the number of checkpoint.
*/
function length(Trace208 storage self) internal view returns (uint256) {
return self._checkpoints.length;
}
/**
* @dev Returns checkpoint at given position.
*/
function at(Trace208 storage self, uint32 pos) internal view returns (Checkpoint208 memory) {
return self._checkpoints[pos];
}
/**
* @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
* or by updating the last one.
*/
function _insert(
Checkpoint208[] storage self,
uint48 key,
uint208 value
) private returns (uint208 oldValue, uint208 newValue) {
uint256 pos = self.length;
if (pos > 0) {
Checkpoint208 storage last = _unsafeAccess(self, pos - 1);
uint48 lastKey = last._key;
uint208 lastValue = last._value;
// Checkpoint keys must be non-decreasing.
if (lastKey > key) {
revert CheckpointUnorderedInsertion();
}
// Update or push new checkpoint
if (lastKey == key) {
last._value = value;
} else {
self.push(Checkpoint208({_key: key, _value: value}));
}
return (lastValue, value);
} else {
self.push(Checkpoint208({_key: key, _value: value}));
return (0, value);
}
}
/**
* @dev Return the index of the first (oldest) checkpoint with key strictly bigger than the search key, or `high`
* if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
* `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _upperBinaryLookup(
Checkpoint208[] storage self,
uint48 key,
uint256 low,
uint256 high
) private view returns (uint256) {
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._key > key) {
high = mid;
} else {
low = mid + 1;
}
}
return high;
}
/**
* @dev Return the index of the first (oldest) checkpoint with key greater or equal than the search key, or `high`
* if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
* `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _lowerBinaryLookup(
Checkpoint208[] storage self,
uint48 key,
uint256 low,
uint256 high
) private view returns (uint256) {
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._key < key) {
low = mid + 1;
} else {
high = mid;
}
}
return high;
}
/**
* @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
*/
function _unsafeAccess(
Checkpoint208[] storage self,
uint256 pos
) private pure returns (Checkpoint208 storage result) {
assembly {
mstore(0, self.slot)
result.slot := add(keccak256(0, 0x20), pos)
}
}
struct Trace160 {
Checkpoint160[] _checkpoints;
}
struct Checkpoint160 {
uint96 _key;
uint160 _value;
}
/**
* @dev Pushes a (`key`, `value`) pair into a Trace160 so that it is stored as the checkpoint.
*
* Returns previous value and new value.
*
* IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint96).max` key set will disable the
* library.
*/
function push(
Trace160 storage self,
uint96 key,
uint160 value
) internal returns (uint160 oldValue, uint160 newValue) {
return _insert(self._checkpoints, key, value);
}
/**
* @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
* there is none.
*/
function lowerLookup(Trace160 storage self, uint96 key) internal view returns (uint160) {
uint256 len = self._checkpoints.length;
uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
}
/**
* @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
* if there is none.
*/
function upperLookup(Trace160 storage self, uint96 key) internal view returns (uint160) {
uint256 len = self._checkpoints.length;
uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
* if there is none.
*
* NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
* keys).
*/
function upperLookupRecent(Trace160 storage self, uint96 key) internal view returns (uint160) {
uint256 len = self._checkpoints.length;
uint256 low = 0;
uint256 high = len;
if (len > 5) {
uint256 mid = len - Math.sqrt(len);
if (key < _unsafeAccess(self._checkpoints, mid)._key) {
high = mid;
} else {
low = mid + 1;
}
}
uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
*/
function latest(Trace160 storage self) internal view returns (uint160) {
uint256 pos = self._checkpoints.length;
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
* in the most recent checkpoint.
*/
function latestCheckpoint(Trace160 storage self) internal view returns (bool exists, uint96 _key, uint160 _value) {
uint256 pos = self._checkpoints.length;
if (pos == 0) {
return (false, 0, 0);
} else {
Checkpoint160 storage ckpt = _unsafeAccess(self._checkpoints, pos - 1);
return (true, ckpt._key, ckpt._value);
}
}
/**
* @dev Returns the number of checkpoint.
*/
function length(Trace160 storage self) internal view returns (uint256) {
return self._checkpoints.length;
}
/**
* @dev Returns checkpoint at given position.
*/
function at(Trace160 storage self, uint32 pos) internal view returns (Checkpoint160 memory) {
return self._checkpoints[pos];
}
/**
* @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
* or by updating the last one.
*/
function _insert(
Checkpoint160[] storage self,
uint96 key,
uint160 value
) private returns (uint160 oldValue, uint160 newValue) {
uint256 pos = self.length;
if (pos > 0) {
Checkpoint160 storage last = _unsafeAccess(self, pos - 1);
uint96 lastKey = last._key;
uint160 lastValue = last._value;
// Checkpoint keys must be non-decreasing.
if (lastKey > key) {
revert CheckpointUnorderedInsertion();
}
// Update or push new checkpoint
if (lastKey == key) {
last._value = value;
} else {
self.push(Checkpoint160({_key: key, _value: value}));
}
return (lastValue, value);
} else {
self.push(Checkpoint160({_key: key, _value: value}));
return (0, value);
}
}
/**
* @dev Return the index of the first (oldest) checkpoint with key strictly bigger than the search key, or `high`
* if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
* `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _upperBinaryLookup(
Checkpoint160[] storage self,
uint96 key,
uint256 low,
uint256 high
) private view returns (uint256) {
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._key > key) {
high = mid;
} else {
low = mid + 1;
}
}
return high;
}
/**
* @dev Return the index of the first (oldest) checkpoint with key greater or equal than the search key, or `high`
* if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
* `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _lowerBinaryLookup(
Checkpoint160[] storage self,
uint96 key,
uint256 low,
uint256 high
) private view returns (uint256) {
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._key < key) {
low = mid + 1;
} else {
high = mid;
}
}
return high;
}
/**
* @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
*/
function _unsafeAccess(
Checkpoint160[] storage self,
uint256 pos
) private pure returns (Checkpoint160 storage result) {
assembly {
mstore(0, self.slot)
result.slot := add(keccak256(0, 0x20), pos)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC-721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC-721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
* {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC-721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the address zero.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Metadata.sol)
pragma solidity ^0.8.20;
import {IERC721} from "../IERC721.sol";
/**
* @title ERC-721 Non-Fungible Token Standard, optional metadata extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
*/
interface IERC721Metadata is IERC721 {
/**
* @dev Returns the token collection name.
*/
function name() external view returns (string memory);
/**
* @dev Returns the token collection symbol.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId) external view returns (string memory);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/utils/ERC721Utils.sol)
pragma solidity ^0.8.20;
import {IERC721Receiver} from "../IERC721Receiver.sol";
import {IERC721Errors} from "../../../interfaces/draft-IERC6093.sol";
/**
* @dev Library that provide common ERC-721 utility functions.
*
* See https://eips.ethereum.org/EIPS/eip-721[ERC-721].
*
* _Available since v5.1._
*/
library ERC721Utils {
/**
* @dev Performs an acceptance check for the provided `operator` by calling {IERC721-onERC721Received}
* on the `to` address. The `operator` is generally the address that initiated the token transfer (i.e. `msg.sender`).
*
* The acceptance call is not executed and treated as a no-op if the target address doesn't contain code (i.e. an EOA).
* Otherwise, the recipient must implement {IERC721Receiver-onERC721Received} and return the acceptance magic value to accept
* the transfer.
*/
function checkOnERC721Received(
address operator,
address from,
address to,
uint256 tokenId,
bytes memory data
) internal {
if (to.code.length > 0) {
try IERC721Receiver(to).onERC721Received(operator, from, tokenId, data) returns (bytes4 retval) {
if (retval != IERC721Receiver.onERC721Received.selector) {
// Token rejected
revert IERC721Errors.ERC721InvalidReceiver(to);
}
} catch (bytes memory reason) {
if (reason.length == 0) {
// non-IERC721Receiver implementer
revert IERC721Errors.ERC721InvalidReceiver(to);
} else {
assembly ("memory-safe") {
revert(add(32, reason), mload(reason))
}
}
}
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/ERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2²⁵⁶ + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= prod1) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 exp;
unchecked {
exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
value >>= exp;
result += exp;
exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
value >>= exp;
result += exp;
exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
value >>= exp;
result += exp;
exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
value >>= exp;
result += exp;
exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
value >>= exp;
result += exp;
exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
value >>= exp;
result += exp;
exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
value >>= exp;
result += exp;
result += SafeCast.toUint(value > 1);
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 isGt;
unchecked {
isGt = SafeCast.toUint(value > (1 << 128) - 1);
value >>= isGt * 128;
result += isGt * 16;
isGt = SafeCast.toUint(value > (1 << 64) - 1);
value >>= isGt * 64;
result += isGt * 8;
isGt = SafeCast.toUint(value > (1 << 32) - 1);
value >>= isGt * 32;
result += isGt * 4;
isGt = SafeCast.toUint(value > (1 << 16) - 1);
value >>= isGt * 16;
result += isGt * 2;
result += SafeCast.toUint(value > (1 << 8) - 1);
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
}
}
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
// Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
// taking advantage of the most significant (or "sign" bit) in two's complement representation.
// This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
// the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
int256 mask = n >> 255;
// A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
return uint256((n + mask) ^ mask);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC721.sol)
pragma solidity ^0.8.20;
import {IERC721} from "../token/ERC721/IERC721.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol)
pragma solidity ^0.8.20;
import {Strings} from "../Strings.sol";
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing a bytes32 `messageHash` with
* `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
* keccak256, although any bytes32 value can be safely used because the final digest will
* be re-hashed.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
}
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing an arbitrary `message` with
* `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
return
keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x00` (data with intended validator).
*
* The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
* `validator` address. Then hashing the result.
*
* See {ECDSA-recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(hex"19_00", validator, data));
}
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\x19\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* See {ECDSA-recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
let ptr := mload(0x40)
mstore(ptr, hex"19_01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ShortStrings.sol)
pragma solidity ^0.8.20;
import {StorageSlot} from "./StorageSlot.sol";
// | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
// | length | 0x BB |
type ShortString is bytes32;
/**
* @dev This library provides functions to convert short memory strings
* into a `ShortString` type that can be used as an immutable variable.
*
* Strings of arbitrary length can be optimized using this library if
* they are short enough (up to 31 bytes) by packing them with their
* length (1 byte) in a single EVM word (32 bytes). Additionally, a
* fallback mechanism can be used for every other case.
*
* Usage example:
*
* ```solidity
* contract Named {
* using ShortStrings for *;
*
* ShortString private immutable _name;
* string private _nameFallback;
*
* constructor(string memory contractName) {
* _name = contractName.toShortStringWithFallback(_nameFallback);
* }
*
* function name() external view returns (string memory) {
* return _name.toStringWithFallback(_nameFallback);
* }
* }
* ```
*/
library ShortStrings {
// Used as an identifier for strings longer than 31 bytes.
bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
error StringTooLong(string str);
error InvalidShortString();
/**
* @dev Encode a string of at most 31 chars into a `ShortString`.
*
* This will trigger a `StringTooLong` error is the input string is too long.
*/
function toShortString(string memory str) internal pure returns (ShortString) {
bytes memory bstr = bytes(str);
if (bstr.length > 31) {
revert StringTooLong(str);
}
return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
}
/**
* @dev Decode a `ShortString` back to a "normal" string.
*/
function toString(ShortString sstr) internal pure returns (string memory) {
uint256 len = byteLength(sstr);
// using `new string(len)` would work locally but is not memory safe.
string memory str = new string(32);
assembly ("memory-safe") {
mstore(str, len)
mstore(add(str, 0x20), sstr)
}
return str;
}
/**
* @dev Return the length of a `ShortString`.
*/
function byteLength(ShortString sstr) internal pure returns (uint256) {
uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
if (result > 31) {
revert InvalidShortString();
}
return result;
}
/**
* @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
*/
function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
if (bytes(value).length < 32) {
return toShortString(value);
} else {
StorageSlot.getStringSlot(store).value = value;
return ShortString.wrap(FALLBACK_SENTINEL);
}
}
/**
* @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
*/
function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return toString(value);
} else {
return store;
}
}
/**
* @dev Return the length of a string that was encoded to `ShortString` or written to storage using
* {setWithFallback}.
*
* WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
* actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
*/
function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return byteLength(value);
} else {
return bytes(store).length;
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)
pragma solidity ^0.8.20;
interface IERC5267 {
/**
* @dev MAY be emitted to signal that the domain could have changed.
*/
event EIP712DomainChanged();
/**
* @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
* signature.
*/
function eip712Domain()
external
view
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5805.sol)
pragma solidity ^0.8.20;
import {IVotes} from "../governance/utils/IVotes.sol";
import {IERC6372} from "./IERC6372.sol";
interface IERC5805 is IERC6372, IVotes {}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/types/Time.sol)
pragma solidity ^0.8.20;
import {Math} from "../math/Math.sol";
import {SafeCast} from "../math/SafeCast.sol";
/**
* @dev This library provides helpers for manipulating time-related objects.
*
* It uses the following types:
* - `uint48` for timepoints
* - `uint32` for durations
*
* While the library doesn't provide specific types for timepoints and duration, it does provide:
* - a `Delay` type to represent duration that can be programmed to change value automatically at a given point
* - additional helper functions
*/
library Time {
using Time for *;
/**
* @dev Get the block timestamp as a Timepoint.
*/
function timestamp() internal view returns (uint48) {
return SafeCast.toUint48(block.timestamp);
}
/**
* @dev Get the block number as a Timepoint.
*/
function blockNumber() internal view returns (uint48) {
return SafeCast.toUint48(block.number);
}
// ==================================================== Delay =====================================================
/**
* @dev A `Delay` is a uint32 duration that can be programmed to change value automatically at a given point in the
* future. The "effect" timepoint describes when the transitions happens from the "old" value to the "new" value.
* This allows updating the delay applied to some operation while keeping some guarantees.
*
* In particular, the {update} function guarantees that if the delay is reduced, the old delay still applies for
* some time. For example if the delay is currently 7 days to do an upgrade, the admin should not be able to set
* the delay to 0 and upgrade immediately. If the admin wants to reduce the delay, the old delay (7 days) should
* still apply for some time.
*
*
* The `Delay` type is 112 bits long, and packs the following:
*
* ```
* | [uint48]: effect date (timepoint)
* | | [uint32]: value before (duration)
* ↓ ↓ ↓ [uint32]: value after (duration)
* 0xAAAAAAAAAAAABBBBBBBBCCCCCCCC
* ```
*
* NOTE: The {get} and {withUpdate} functions operate using timestamps. Block number based delays are not currently
* supported.
*/
type Delay is uint112;
/**
* @dev Wrap a duration into a Delay to add the one-step "update in the future" feature
*/
function toDelay(uint32 duration) internal pure returns (Delay) {
return Delay.wrap(duration);
}
/**
* @dev Get the value at a given timepoint plus the pending value and effect timepoint if there is a scheduled
* change after this timepoint. If the effect timepoint is 0, then the pending value should not be considered.
*/
function _getFullAt(
Delay self,
uint48 timepoint
) private pure returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) {
(valueBefore, valueAfter, effect) = self.unpack();
return effect <= timepoint ? (valueAfter, 0, 0) : (valueBefore, valueAfter, effect);
}
/**
* @dev Get the current value plus the pending value and effect timepoint if there is a scheduled change. If the
* effect timepoint is 0, then the pending value should not be considered.
*/
function getFull(Delay self) internal view returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) {
return _getFullAt(self, timestamp());
}
/**
* @dev Get the current value.
*/
function get(Delay self) internal view returns (uint32) {
(uint32 delay, , ) = self.getFull();
return delay;
}
/**
* @dev Update a Delay object so that it takes a new duration after a timepoint that is automatically computed to
* enforce the old delay at the moment of the update. Returns the updated Delay object and the timestamp when the
* new delay becomes effective.
*/
function withUpdate(
Delay self,
uint32 newValue,
uint32 minSetback
) internal view returns (Delay updatedDelay, uint48 effect) {
uint32 value = self.get();
uint32 setback = uint32(Math.max(minSetback, value > newValue ? value - newValue : 0));
effect = timestamp() + setback;
return (pack(value, newValue, effect), effect);
}
/**
* @dev Split a delay into its components: valueBefore, valueAfter and effect (transition timepoint).
*/
function unpack(Delay self) internal pure returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) {
uint112 raw = Delay.unwrap(self);
valueAfter = uint32(raw);
valueBefore = uint32(raw >> 32);
effect = uint48(raw >> 64);
return (valueBefore, valueAfter, effect);
}
/**
* @dev pack the components into a Delay object.
*/
function pack(uint32 valueBefore, uint32 valueAfter, uint48 effect) internal pure returns (Delay) {
return Delay.wrap((uint112(effect) << 64) | (uint112(valueBefore) << 32) | uint112(valueAfter));
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/IERC721Receiver.sol)
pragma solidity ^0.8.20;
/**
* @title ERC-721 token receiver interface
* @dev Interface for any contract that wants to support safeTransfers
* from ERC-721 asset contracts.
*/
interface IERC721Receiver {
/**
* @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
* by `operator` from `from`, this function is called.
*
* It must return its Solidity selector to confirm the token transfer.
* If any other value is returned or the interface is not implemented by the recipient, the transfer will be
* reverted.
*
* The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
*/
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.20;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC-1967 implementation slot:
* ```solidity
* contract ERC1967 {
* // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(newImplementation.code.length > 0);
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*
* TIP: Consider using this library along with {SlotDerivation}.
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct Int256Slot {
int256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Int256Slot` with member `value` located at `slot`.
*/
function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
/**
* @dev Returns a `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (governance/utils/IVotes.sol)
pragma solidity ^0.8.20;
/**
* @dev Common interface for {ERC20Votes}, {ERC721Votes}, and other {Votes}-enabled contracts.
*/
interface IVotes {
/**
* @dev The signature used has expired.
*/
error VotesExpiredSignature(uint256 expiry);
/**
* @dev Emitted when an account changes their delegate.
*/
event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate);
/**
* @dev Emitted when a token transfer or delegate change results in changes to a delegate's number of voting units.
*/
event DelegateVotesChanged(address indexed delegate, uint256 previousVotes, uint256 newVotes);
/**
* @dev Returns the current amount of votes that `account` has.
*/
function getVotes(address account) external view returns (uint256);
/**
* @dev Returns the amount of votes that `account` had at a specific moment in the past. If the `clock()` is
* configured to use block numbers, this will return the value at the end of the corresponding block.
*/
function getPastVotes(address account, uint256 timepoint) external view returns (uint256);
/**
* @dev Returns the total supply of votes available at a specific moment in the past. If the `clock()` is
* configured to use block numbers, this will return the value at the end of the corresponding block.
*
* NOTE: This value is the sum of all available votes, which is not necessarily the sum of all delegated votes.
* Votes that have not been delegated are still part of total supply, even though they would not participate in a
* vote.
*/
function getPastTotalSupply(uint256 timepoint) external view returns (uint256);
/**
* @dev Returns the delegate that `account` has chosen.
*/
function delegates(address account) external view returns (address);
/**
* @dev Delegates votes from the sender to `delegatee`.
*/
function delegate(address delegatee) external;
/**
* @dev Delegates votes from signer to `delegatee`.
*/
function delegateBySig(address delegatee, uint256 nonce, uint256 expiry, uint8 v, bytes32 r, bytes32 s) external;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC6372.sol)
pragma solidity ^0.8.20;
interface IERC6372 {
/**
* @dev Clock used for flagging checkpoints. Can be overridden to implement timestamp based checkpoints (and voting).
*/
function clock() external view returns (uint48);
/**
* @dev Description of the clock
*/
// solhint-disable-next-line func-name-mixedcase
function CLOCK_MODE() external view returns (string memory);
}{
"remappings": [
"@chainlink/=node_modules/@chainlink/",
"@eth-optimism/=node_modules/@eth-optimism/",
"@openzeppelin/=node_modules/@openzeppelin/",
"@prb/test/=node_modules/dev-fraxswap/node_modules/@prb/test/",
"@uniswap/=node_modules/@uniswap/",
"dev-fraxswap/=node_modules/dev-fraxswap/",
"ds-test/=node_modules/ds-test/",
"forge-std/=node_modules/forge-std/",
"frax-standard-solidity/=node_modules/frax-standard-solidity/",
"frax-std/=node_modules/dev-fraxswap/node_modules/frax-standard-solidity/src/",
"solidity-bytes-utils/=node_modules/solidity-bytes-utils/"
],
"optimizer": {
"enabled": true,
"runs": 1000
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "none",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "shanghai",
"viaIR": false,
"libraries": {}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"contract IERC20","name":"_currencyToken","type":"address"},{"internalType":"contract IERC20","name":"_agentToken","type":"address"},{"internalType":"address","name":"_owner","type":"address"},{"internalType":"address","name":"_agent","type":"address"},{"internalType":"uint256","name":"_initialPrice","type":"uint256"},{"internalType":"uint256","name":"_targetCCYLiquidity","type":"uint256"},{"internalType":"uint256","name":"_initialLiquidity","type":"uint256"},{"internalType":"uint256","name":"_fee","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"agent","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"agentToken","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"bammFactory","outputs":[{"internalType":"contract IBAMMFactory","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"bootstrapPool","outputs":[{"internalType":"contract BootstrapPool","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"currencyToken","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"fee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"fraxswapFactory","outputs":[{"internalType":"contract IFraxswapFactory","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenIn","type":"uint256"},{"internalType":"uint256","name":"tokenOut","type":"uint256"},{"internalType":"uint256","name":"reserveIn","type":"uint256"},{"internalType":"uint256","name":"reserveOut","type":"uint256"}],"name":"getMaxSell","outputs":[{"internalType":"uint256","name":"maxSell","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"initialLiquidity","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"initialPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"initializeBootstrapPool","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"initialized","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"moveLiquidity","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"targetCCYLiquidity","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"}]Contract Creation Code
6101806040525f805460ff19169055348015610019575f80fd5b50604051613ab7380380613ab78339810160408190526100389161008e565b6001600160a01b0395861660a05293851660805295841660e0529390921660c0526101009190915261012091909152610140919091526101605261010f565b6001600160a01b038116811461008b575f80fd5b50565b5f805f805f805f80610100898b0312156100a6575f80fd5b88516100b181610077565b60208a01519098506100c281610077565b60408a01519097506100d381610077565b60608a01519096506100e481610077565b60808a015160a08b015160c08c015160e0909c01519a9d999c50979a91999098919650945092505050565b60805160a05160c05160e0516101005161012051610140516101605161385961025e5f395f8181610289015281816103fb0152610dff01525f8181610176015281816103d901526104be01525f818160f9015261080701525f818161014f01526103b701525f818161019d015281816103730152818161091e01528181610aef01528181610cc301528181610db001528181610f3e015281816110ca0152818161127a015281816113b401528181611456015281816114c3015281816117a001526119f901525f818161023f01528181610395015281816104e4015281816109d201528181610ceb01528181610dd801528181610eab015281816110200152818161169101528181611733015261196801525f8181610218015281816107850152611ad301525f81816102b001528181610a0301528181610b2001528181611dc90152611e6b01526138595ff3fe608060405234801561000f575f80fd5b50600436106100f0575f3560e01c80637b9df28111610093578063d7da05ae11610063578063d7da05ae14610269578063ddca3f4314610284578063f5ff5c76146102ab578063ffcc43c7146102d2575f80fd5b80637b9df281146102095780638da5cb5b14610213578063b05707e91461023a578063b90a26ab14610261575f80fd5b806340702adc116100ce57806340702adc146101715780636b2fa374146101985780637269bdc6146101d757806375268ff7146101ee575f80fd5b806315424b1a146100f4578063158ef93e1461012e5780631d0806ae1461014a575b5f80fd5b61011b7f000000000000000000000000000000000000000000000000000000000000000081565b6040519081526020015b60405180910390f35b5f5461013a9060ff1681565b6040519015158152602001610125565b61011b7f000000000000000000000000000000000000000000000000000000000000000081565b61011b7f000000000000000000000000000000000000000000000000000000000000000081565b6101bf7f000000000000000000000000000000000000000000000000000000000000000081565b6040516001600160a01b039091168152602001610125565b5f546101bf9061010090046001600160a01b031681565b6101bf73e30521fe7f3beb6ad556887b50739d6c7ca667e681565b6102116102e5565b005b6101bf7f000000000000000000000000000000000000000000000000000000000000000081565b6101bf7f000000000000000000000000000000000000000000000000000000000000000081565b610211610553565b6101bf7319928170d739139bfbbb6614007f8eeed17db0ba81565b61011b7f000000000000000000000000000000000000000000000000000000000000000081565b6101bf7f000000000000000000000000000000000000000000000000000000000000000081565b61011b6102e0366004611fc4565b610bfe565b5f5460ff16156103625760405162461bcd60e51b815260206004820152602160248201527f426f6f747374726170506f6f6c20616c726561647920696e697469616c697a6560448201527f640000000000000000000000000000000000000000000000000000000000000060648201526084015b60405180910390fd5b5f805460ff191660011790556040517f0000000000000000000000000000000000000000000000000000000000000000907f0000000000000000000000000000000000000000000000000000000000000000907f0000000000000000000000000000000000000000000000000000000000000000907f0000000000000000000000000000000000000000000000000000000000000000907f00000000000000000000000000000000000000000000000000000000000000009061042490611fb7565b6001600160a01b03958616815294909316602085015260408401919091526060830152608082015260a001604051809103905ff080158015610468573d5f803e3d5ffd5b505f80547fffffffffffffffffffffff0000000000000000000000000000000000000000ff166101006001600160a01b039384168102919091179182905560405163a9059cbb60e01b81529104821660048201527f000000000000000000000000000000000000000000000000000000000000000060248201527f00000000000000000000000000000000000000000000000000000000000000009091169063a9059cbb906044016020604051808303815f875af115801561052c573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105509190611ff3565b50565b5f60019054906101000a90046001600160a01b03166001600160a01b0316631f3a0e416040518163ffffffff1660e01b8152600401602060405180830381865afa1580156105a3573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105c79190611ff3565b156106145760405162461bcd60e51b815260206004820152601c60248201527f426f6f747374726170506f6f6c20616c7265616479206b696c6c6564000000006044820152606401610359565b5f8060019054906101000a90046001600160a01b03166001600160a01b03166398d5fdca6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610665573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906106899190612019565b90505f8060019054906101000a90046001600160a01b03166001600160a01b0316630902f1ac6040518163ffffffff1660e01b81526004016040805180830381865afa1580156106db573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906106ff9190612030565b5090505f60019054906101000a90046001600160a01b03166001600160a01b03166395939cb16040518163ffffffff1660e01b8152600401602060405180830381865afa158015610752573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107769190612019565b6107809082612066565b90505f7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03166315424b1a6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156107df573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906108039190612019565b90507f0000000000000000000000000000000000000000000000000000000000000000821015806108345750808210155b6108a65760405162461bcd60e51b815260206004820152602360248201527f426f6f74737472617020656e642d637269746572696f6e206e6f74207265616360448201527f68656400000000000000000000000000000000000000000000000000000000006064820152608401610359565b5f60019054906101000a90046001600160a01b03166001600160a01b03166341c0e1b56040518163ffffffff1660e01b81526004015f604051808303815f87803b1580156108f2575f80fd5b505af1158015610904573d5f803e3d5ffd5b50506040516370a0823160e01b81523060048201525f92507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031691506370a0823190602401602060405180830381865afa15801561096c573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109909190612019565b90505f846109a683670de0b6b3a764000061207f565b6109b09190612096565b90506109bc8183610c93565b506040516370a0823160e01b81523060048201527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03169063a9059cbb907f00000000000000000000000000000000000000000000000000000000000000009083906370a0823190602401602060405180830381865afa158015610a49573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610a6d9190612019565b6040516001600160e01b031960e085901b1681526001600160a01b03909216600483015260248201526044016020604051808303815f875af1158015610ab5573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610ad99190611ff3565b506040516370a0823160e01b81523060048201527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03169063a9059cbb907f00000000000000000000000000000000000000000000000000000000000000009083906370a0823190602401602060405180830381865afa158015610b66573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610b8a9190612019565b6040516001600160e01b031960e085901b1681526001600160a01b03909216600483015260248201526044016020604051808303815f875af1158015610bd2573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610bf69190611ff3565b505050505050565b5f80610c26610c0d87866120b5565b610c1787866120b5565b610c21919061207f565b611f49565b610c33610c21868661207f565b610c3d919061207f565b90505f610c4a858561207f565b610c54878761207f565b610c5e91906120b5565b905080821115610c8957610c7286856120b5565b610c7c8284612066565b610c869190612096565b92505b5050949350505050565b6040517fe6a439050000000000000000000000000000000000000000000000000000000081526001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000811660048301527f00000000000000000000000000000000000000000000000000000000000000001660248201525f9073e30521fe7f3beb6ad556887b50739d6c7ca667e69063e6a4390590604401602060405180830381865afa158015610d4c573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d7091906120c8565b90506001600160a01b038116611016576040517f6b600d1c0000000000000000000000000000000000000000000000000000000081526001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000811660048301527f00000000000000000000000000000000000000000000000000000000000000001660248201527f0000000000000000000000000000000000000000000000000000000000000000604482015273e30521fe7f3beb6ad556887b50739d6c7ca667e690636b600d1c906064016020604051808303815f875af1158015610e5e573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610e8291906120c8565b60405163a9059cbb60e01b81526001600160a01b038083166004830152602482018690529192507f00000000000000000000000000000000000000000000000000000000000000009091169063a9059cbb906044016020604051808303815f875af1158015610ef3573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610f179190611ff3565b5060405163a9059cbb60e01b81526001600160a01b038281166004830152602482018490527f0000000000000000000000000000000000000000000000000000000000000000169063a9059cbb906044016020604051808303815f875af1158015610f84573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610fa89190611ff3565b506040516335313c2160e11b81523060048201526001600160a01b03821690636a627842906024016020604051808303815f875af1158015610fec573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906110109190612019565b50611acd565b6001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001663a9059cbb82611053620f424087612096565b6040516001600160e01b031960e085901b1681526001600160a01b03909216600483015260248201526044016020604051808303815f875af115801561109b573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906110bf9190611ff3565b506001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001663a9059cbb826110fd620f424086612096565b6040516001600160e01b031960e085901b1681526001600160a01b03909216600483015260248201526044016020604051808303815f875af1158015611145573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906111699190611ff3565b506040516335313c2160e11b81523060048201526001600160a01b03821690636a627842906024016020604051808303815f875af11580156111ad573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906111d19190612019565b506111df620f424084612096565b6111e99084612066565b92506111f8620f424083612096565b6112029083612066565b91505f5b6003811015611941575f805f80856001600160a01b0316630902f1ac6040518163ffffffff1660e01b8152600401606060405180830381865afa15801561124f573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611273919061210b565b50915091507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316866001600160a01b0316630dfe16816040518163ffffffff1660e01b8152600401602060405180830381865afa1580156112de573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061130291906120c8565b6001600160a01b03160361133b57816dffffffffffffffffffffffffffff169350806dffffffffffffffffffffffffffff169250611362565b806dffffffffffffffffffffffffffff169350816dffffffffffffffffffffffffffff1692505b5086905082611371838861207f565b61137b9190612096565b111561165e575f61138e86888585610bfe565b90508015611658576040516378a051ad60e11b8152600481018290526001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000811660248301525f919087169063f140a35a90604401602060405180830381865afa158015611404573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906114289190612019565b905080156116565760405163a9059cbb60e01b81526001600160a01b038781166004830152602482018490527f0000000000000000000000000000000000000000000000000000000000000000169063a9059cbb906044016020604051808303815f875af115801561149c573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906114c09190611ff3565b507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316866001600160a01b0316630dfe16816040518163ffffffff1660e01b8152600401602060405180830381865afa158015611527573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061154b91906120c8565b6001600160a01b0316036115cd5760405163022c0d9f60e01b81525f60048201819052602482018390523060448301526080606483015260848201526001600160a01b0387169063022c0d9f9060a4015f604051808303815f87803b1580156115b2575f80fd5b505af11580156115c4573d5f803e3d5ffd5b5050505061163d565b60405163022c0d9f60e01b8152600481018290525f602482018190523060448301526080606483015260848201526001600160a01b0387169063022c0d9f9060a4015f604051808303815f87803b158015611626575f80fd5b505af1158015611638573d5f803e3d5ffd5b505050505b6116478288612066565b965061165381896120b5565b97505b505b50611937565b5f61166b87878486610bfe565b90508015611935576040516378a051ad60e11b8152600481018290526001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000811660248301525f919087169063f140a35a90604401602060405180830381865afa1580156116e1573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906117059190612019565b905080156119335760405163a9059cbb60e01b81526001600160a01b038781166004830152602482018490527f0000000000000000000000000000000000000000000000000000000000000000169063a9059cbb906044016020604051808303815f875af1158015611779573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061179d9190611ff3565b507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316866001600160a01b0316630dfe16816040518163ffffffff1660e01b8152600401602060405180830381865afa158015611804573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061182891906120c8565b6001600160a01b0316036118aa5760405163022c0d9f60e01b8152600481018290525f602482018190523060448301526080606483015260848201526001600160a01b0387169063022c0d9f9060a4015f604051808303815f87803b15801561188f575f80fd5b505af11580156118a1573d5f803e3d5ffd5b5050505061191a565b60405163022c0d9f60e01b81525f60048201819052602482018390523060448301526080606483015260848201526001600160a01b0387169063022c0d9f9060a4015f604051808303815f87803b158015611903575f80fd5b505af1158015611915573d5f803e3d5ffd5b505050505b6119248289612066565b975061193081886120b5565b96505b505b505b5050600101611206565b5060405163a9059cbb60e01b81526001600160a01b038281166004830152602482018590527f0000000000000000000000000000000000000000000000000000000000000000169063a9059cbb906044016020604051808303815f875af11580156119ae573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906119d29190611ff3565b5060405163a9059cbb60e01b81526001600160a01b038281166004830152602482018490527f0000000000000000000000000000000000000000000000000000000000000000169063a9059cbb906044016020604051808303815f875af1158015611a3f573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611a639190611ff3565b506040516335313c2160e11b81523060048201526001600160a01b03821690636a627842906024016020604051808303815f875af1158015611aa7573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611acb9190612019565b505b5f6127107f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316636ba9ba2c6040518163ffffffff1660e01b8152600401602060405180830381865afa158015611b2d573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611b519190612019565b6040516370a0823160e01b81523060048201526001600160a01b038516906370a0823190602401602060405180830381865afa158015611b93573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611bb79190612019565b611bc1919061207f565b611bcb9190612096565b90508015611e45576040517f07be75f70000000000000000000000000000000000000000000000000000000081526001600160a01b03831660048201525f907319928170d739139bfbbb6614007f8eeed17db0ba906307be75f790602401602060405180830381865afa158015611c44573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611c6891906120c8565b90506001600160a01b038116611d0f576040517fef3bd7660000000000000000000000000000000000000000000000000000000081526001600160a01b03841660048201527319928170d739139bfbbb6614007f8eeed17db0ba9063ef3bd766906024016020604051808303815f875af1158015611ce8573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611d0c91906120c8565b90505b6040517f095ea7b30000000000000000000000000000000000000000000000000000000081526001600160a01b0382811660048301526024820184905284169063095ea7b3906044016020604051808303815f875af1158015611d74573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611d989190611ff3565b506040517f40c10f190000000000000000000000000000000000000000000000000000000081526001600160a01b037f000000000000000000000000000000000000000000000000000000000000000081166004830152602482018490528216906340c10f19906044016020604051808303815f875af1158015611e1e573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611e429190612019565b50505b6040516370a0823160e01b81523060048201526001600160a01b0383169063a9059cbb907f00000000000000000000000000000000000000000000000000000000000000009083906370a0823190602401602060405180830381865afa158015611eb1573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611ed59190612019565b6040516001600160e01b031960e085901b1681526001600160a01b03909216600483015260248201526044016020604051808303815f875af1158015611f1d573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611f419190611ff3565b505092915050565b5f6003821115611fa85750805f611f61600283612096565b611f6c9060016120b5565b90505b81811015611fa257905080600281611f878186612096565b611f9191906120b5565b611f9b9190612096565b9050611f6f565b50919050565b8115611fb2575060015b919050565b6116f58061215883390190565b5f805f8060808587031215611fd7575f80fd5b5050823594602084013594506040840135936060013592509050565b5f60208284031215612003575f80fd5b81518015158114612012575f80fd5b9392505050565b5f60208284031215612029575f80fd5b5051919050565b5f8060408385031215612041575f80fd5b505080516020909101519092909150565b634e487b7160e01b5f52601160045260245ffd5b8181038181111561207957612079612052565b92915050565b808202811582820484141761207957612079612052565b5f826120b057634e487b7160e01b5f52601260045260245ffd5b500490565b8082018082111561207957612079612052565b5f602082840312156120d8575f80fd5b81516001600160a01b0381168114612012575f80fd5b80516dffffffffffffffffffffffffffff81168114611fb2575f80fd5b5f805f6060848603121561211d575f80fd5b612126846120ee565b9250612134602085016120ee565b9150604084015163ffffffff8116811461214c575f80fd5b80915050925092509256fe610100604052348015610010575f80fd5b506040516116f53803806116f583398101604081905261002f9161009f565b60015f5533608052610043816127106100fd565b60a0526001600160a01b0380861660e052841660c052670de0b6b3a764000061006c8385610116565b610076919061012d565b6001555061014c9350505050565b80516001600160a01b038116811461009a575f80fd5b919050565b5f805f805f60a086880312156100b3575f80fd5b6100bc86610084565b94506100ca60208701610084565b6040870151606088015160809098015196999198509695945092505050565b634e487b7160e01b5f52601160045260245ffd5b81810381811115610110576101106100e9565b92915050565b8082028115828204841417610110576101106100e9565b5f8261014757634e487b7160e01b5f52601260045260245ffd5b500490565b60805160a05160c05160e05161149d6102585f395f818161019601528181610237015281816103990152818161052b01528181610761015281816107e401528181610af501528181610c5401528181610cf201528181610ed501528181610f7201528181610fe70152818161103a015261124301525f81816102b2015281816102de0152818161043d015281816104e00152818161062a015281816106c8015281816109c801528181610d8b01528181610f160152818161108501526112d801525f818161031a015281816105ac0152818161065801528181610c8201526110f001525f818161027a0152818161093d015281816109f101528181610b260152611198015261149d5ff3fe608060405234801561000f575f80fd5b506004361061016e575f3560e01c80638da5cb5b116100d2578063d21220a711610088578063e4849b3211610063578063e4849b321461033c578063e78810111461034f578063f140a35a14610362575f80fd5b8063d21220a7146102dc578063d96a094a14610302578063ddca3f4314610315575f80fd5b806398d5fdca116100b857806398d5fdca146102a5578063b05707e9146102ad578063d113b95c146102d4575f80fd5b80638da5cb5b1461027557806395939cb11461029c575f80fd5b80634189a68e116101275780636b2fa3741161010d5780636b2fa374146102325780636f691c9d146102595780637deb602514610262575f80fd5b80634189a68e1461021557806341c0e1b514610228575f80fd5b80631125f13f116101575780631125f13f146101ce5780631f3a0e41146101ef578063353b8f6d1461020c575f80fd5b80630902f1ac146101725780630dfe168114610194575b5f80fd5b61017a610375565b604080519283526020830191909152015b60405180910390f35b7f00000000000000000000000000000000000000000000000000000000000000005b6040516001600160a01b03909116815260200161018b565b6101e16101dc366004611368565b6104b6565b60405190815260200161018b565b6004546101fc9060ff1681565b604051901515815260200161018b565b6101e160025481565b6101e1610223366004611368565b6105f6565b61023061092a565b005b6101b67f000000000000000000000000000000000000000000000000000000000000000081565b6101e160035481565b6101e1610270366004611368565b610c20565b6101b67f000000000000000000000000000000000000000000000000000000000000000081565b6101e160015481565b6101e1610e4a565b6101b67f000000000000000000000000000000000000000000000000000000000000000081565b610230610ea3565b7f00000000000000000000000000000000000000000000000000000000000000006101b6565b6101e1610310366004611396565b610ebc565b6101e17f000000000000000000000000000000000000000000000000000000000000000081565b6101e161034a366004611396565b610ec7565b6101e161035d3660046113ad565b610ed2565b6101e1610370366004611368565b611010565b6002546040516370a0823160e01b81523060048201525f9182916001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016906370a0823190602401602060405180830381865afa1580156103de573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061040291906113cf565b60015461040f91906113fa565b610419919061140d565b6003546040516370a0823160e01b8152306004820152919350906001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016906370a0823190602401602060405180830381865afa158015610482573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906104a691906113cf565b6104b0919061140d565b90509091565b6004545f9060ff16156104dc576040516310e630fb60e31b815260040160405180910390fd5b5f807f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316846001600160a01b0316036105295761051f610375565b909250905061056f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316846001600160a01b03160361056f5761056a610375565b925090505b5f8511801561057d57505f82115b801561058857505f81115b610590575f80fd5b5f61059b8387611420565b6105a790612710611420565b90505f7f00000000000000000000000000000000000000000000000000000000000000006105d5888561140d565b6105df9190611420565b90506105eb8183611437565b979650505050505050565b5f6105ff611154565b60045460ff1615610623576040516310e630fb60e31b815260040160405180910390fd5b5f61064e847f0000000000000000000000000000000000000000000000000000000000000000611010565b905061271061067d7f000000000000000000000000000000000000000000000000000000000000000086611420565b6106879190611437565b610691908561140d565b60035f8282546106a191906113fa565b90915550506040516323b872dd60e01b8152336004820152306024820152604481018590527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316906323b872dd906064016020604051808303815f875af1158015610716573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061073a9190611456565b5060405163a9059cbb60e01b81526001600160a01b038481166004830152602482018390527f0000000000000000000000000000000000000000000000000000000000000000169063a9059cbb906044016020604051808303815f875af11580156107a7573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107cb9190611456565b506002546040516370a0823160e01b81523060048201527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316906370a0823190602401602060405180830381865afa158015610831573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061085591906113cf565b10156108c1576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601660248201527f494e53554646494349454e545f4c495155494449545900000000000000000000604482015260640160405180910390fd5b604080515f8082526020820187905291810183905260608101919091526001600160a01b0384169033907fd78ad95fa46c994b6551d0da85fc275fe613ce37657fb8d5e3d130840159d822906080015b60405180910390a3905061092460015f55565b92915050565b610932611154565b336001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001614610994576040517f30cd747100000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61099c611195565b6004805460ff191660011781556040516370a0823160e01b815230918101919091526001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000169063a9059cbb907f00000000000000000000000000000000000000000000000000000000000000009083906370a0823190602401602060405180830381865afa158015610a37573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610a5b91906113cf565b6040517fffffffff0000000000000000000000000000000000000000000000000000000060e085901b1681526001600160a01b03909216600483015260248201526044016020604051808303815f875af1158015610abb573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610adf9190611456565b506040516370a0823160e01b81523060048201527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03169063a9059cbb907f00000000000000000000000000000000000000000000000000000000000000009083906370a0823190602401602060405180830381865afa158015610b6c573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610b9091906113cf565b6040517fffffffff0000000000000000000000000000000000000000000000000000000060e085901b1681526001600160a01b03909216600483015260248201526044016020604051808303815f875af1158015610bf0573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610c149190611456565b50610c1e60015f55565b565b5f610c29611154565b60045460ff1615610c4d576040516310e630fb60e31b815260040160405180910390fd5b5f610c78847f0000000000000000000000000000000000000000000000000000000000000000611010565b9050612710610ca77f000000000000000000000000000000000000000000000000000000000000000086611420565b610cb19190611437565b610cbb908561140d565b60025f828254610ccb91906113fa565b90915550506040516323b872dd60e01b8152336004820152306024820152604481018590527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316906323b872dd906064016020604051808303815f875af1158015610d40573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d649190611456565b5060405163a9059cbb60e01b81526001600160a01b038481166004830152602482018390527f0000000000000000000000000000000000000000000000000000000000000000169063a9059cbb906044016020604051808303815f875af1158015610dd1573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610df59190611456565b50604080518581525f6020820181905291810191909152606081018290526001600160a01b0384169033907fd78ad95fa46c994b6551d0da85fc275fe613ce37657fb8d5e3d130840159d82290608001610911565b6004545f9060ff1615610e70576040516310e630fb60e31b815260040160405180910390fd5b5f80610e7a610375565b909250905080610e9283670de0b6b3a7640000611420565b610e9c9190611437565b9250505090565b610eab611154565b610eb3611195565b610c1e60015f55565b5f6109248233610c20565b5f61092482336105f6565b5f7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b031603610f1457505f19919050565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03160361100b576002546040516370a0823160e01b815230600482015261092491906001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016906370a0823190602401602060405180830381865afa158015610fb7573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610fdb91906113cf565b610fe5919061140d565b7f00000000000000000000000000000000000000000000000000000000000000006104b6565b919050565b6004545f9060ff1615611036576040516310e630fb60e31b815260040160405180910390fd5b5f807f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316846001600160a01b03160361108357611079610375565b90925090506110c9565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316846001600160a01b0316036110c9576110c4610375565b925090505b5f851180156110d757505f82115b80156110e257505f81115b6110ea575f80fd5b5f6111157f000000000000000000000000000000000000000000000000000000000000000087611420565b90505f6111228383611420565b90505f8261113286612710611420565b61113c91906113fa565b90506111488183611437565b98975050505050505050565b60025f540361118f576040517f3ee5aeb500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60025f55565b5f7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316638da5cb5b6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156111f2573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906112169190611475565b60025460405163a9059cbb60e01b81526001600160a01b03808416600483015260248201929092529192507f0000000000000000000000000000000000000000000000000000000000000000169063a9059cbb906044016020604051808303815f875af1158015611289573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906112ad9190611456565b5060035460405163a9059cbb60e01b81526001600160a01b03838116600483015260248201929092527f00000000000000000000000000000000000000000000000000000000000000009091169063a9059cbb906044016020604051808303815f875af1158015611320573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906113449190611456565b50505f6002819055600355565b6001600160a01b0381168114611365575f80fd5b50565b5f8060408385031215611379575f80fd5b82359150602083013561138b81611351565b809150509250929050565b5f602082840312156113a6575f80fd5b5035919050565b5f602082840312156113bd575f80fd5b81356113c881611351565b9392505050565b5f602082840312156113df575f80fd5b5051919050565b634e487b7160e01b5f52601160045260245ffd5b80820180821115610924576109246113e6565b81810381811115610924576109246113e6565b8082028115828204841417610924576109246113e6565b5f8261145157634e487b7160e01b5f52601260045260245ffd5b500490565b5f60208284031215611466575f80fd5b815180151581146113c8575f80fd5b5f60208284031215611485575f80fd5b81516113c88161135156fea164736f6c6343000819000aa164736f6c6343000819000a0000000000000000000000006efb84bda519726fa1c65558e520b92b51712101000000000000000000000000cc3023635df54fc0e43f47bc4beb90c3d1fbda9f0000000000000000000000009feab70f3c4a944b97b7565bac4991df5b7a69ff0000000000000000000000009feab70f3c4a944b97b7565bac4991df5b7a69ff000000000000000000000000000000000000000000000000016345785d8a00000000000000000000000000000000000000000000000000000000000000000064000000000000000000000000000000000000000000000000002386f26fc100000000000000000000000000000000000000000000000000056bc75e2d63100000
Deployed Bytecode
0x608060405234801561000f575f80fd5b50600436106100f0575f3560e01c80637b9df28111610093578063d7da05ae11610063578063d7da05ae14610269578063ddca3f4314610284578063f5ff5c76146102ab578063ffcc43c7146102d2575f80fd5b80637b9df281146102095780638da5cb5b14610213578063b05707e91461023a578063b90a26ab14610261575f80fd5b806340702adc116100ce57806340702adc146101715780636b2fa374146101985780637269bdc6146101d757806375268ff7146101ee575f80fd5b806315424b1a146100f4578063158ef93e1461012e5780631d0806ae1461014a575b5f80fd5b61011b7f000000000000000000000000000000000000000000000000000000000000006481565b6040519081526020015b60405180910390f35b5f5461013a9060ff1681565b6040519015158152602001610125565b61011b7f000000000000000000000000000000000000000000000000016345785d8a000081565b61011b7f000000000000000000000000000000000000000000000000002386f26fc1000081565b6101bf7f0000000000000000000000006efb84bda519726fa1c65558e520b92b5171210181565b6040516001600160a01b039091168152602001610125565b5f546101bf9061010090046001600160a01b031681565b6101bf73e30521fe7f3beb6ad556887b50739d6c7ca667e681565b6102116102e5565b005b6101bf7f0000000000000000000000009feab70f3c4a944b97b7565bac4991df5b7a69ff81565b6101bf7f000000000000000000000000cc3023635df54fc0e43f47bc4beb90c3d1fbda9f81565b610211610553565b6101bf7319928170d739139bfbbb6614007f8eeed17db0ba81565b61011b7f0000000000000000000000000000000000000000000000056bc75e2d6310000081565b6101bf7f0000000000000000000000009feab70f3c4a944b97b7565bac4991df5b7a69ff81565b61011b6102e0366004611fc4565b610bfe565b5f5460ff16156103625760405162461bcd60e51b815260206004820152602160248201527f426f6f747374726170506f6f6c20616c726561647920696e697469616c697a6560448201527f640000000000000000000000000000000000000000000000000000000000000060648201526084015b60405180910390fd5b5f805460ff191660011790556040517f0000000000000000000000006efb84bda519726fa1c65558e520b92b51712101907f000000000000000000000000cc3023635df54fc0e43f47bc4beb90c3d1fbda9f907f000000000000000000000000000000000000000000000000016345785d8a0000907f000000000000000000000000000000000000000000000000002386f26fc10000907f0000000000000000000000000000000000000000000000056bc75e2d631000009061042490611fb7565b6001600160a01b03958616815294909316602085015260408401919091526060830152608082015260a001604051809103905ff080158015610468573d5f803e3d5ffd5b505f80547fffffffffffffffffffffff0000000000000000000000000000000000000000ff166101006001600160a01b039384168102919091179182905560405163a9059cbb60e01b81529104821660048201527f000000000000000000000000000000000000000000000000002386f26fc1000060248201527f000000000000000000000000cc3023635df54fc0e43f47bc4beb90c3d1fbda9f9091169063a9059cbb906044016020604051808303815f875af115801561052c573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105509190611ff3565b50565b5f60019054906101000a90046001600160a01b03166001600160a01b0316631f3a0e416040518163ffffffff1660e01b8152600401602060405180830381865afa1580156105a3573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105c79190611ff3565b156106145760405162461bcd60e51b815260206004820152601c60248201527f426f6f747374726170506f6f6c20616c7265616479206b696c6c6564000000006044820152606401610359565b5f8060019054906101000a90046001600160a01b03166001600160a01b03166398d5fdca6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610665573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906106899190612019565b90505f8060019054906101000a90046001600160a01b03166001600160a01b0316630902f1ac6040518163ffffffff1660e01b81526004016040805180830381865afa1580156106db573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906106ff9190612030565b5090505f60019054906101000a90046001600160a01b03166001600160a01b03166395939cb16040518163ffffffff1660e01b8152600401602060405180830381865afa158015610752573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107769190612019565b6107809082612066565b90505f7f0000000000000000000000009feab70f3c4a944b97b7565bac4991df5b7a69ff6001600160a01b03166315424b1a6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156107df573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906108039190612019565b90507f0000000000000000000000000000000000000000000000000000000000000064821015806108345750808210155b6108a65760405162461bcd60e51b815260206004820152602360248201527f426f6f74737472617020656e642d637269746572696f6e206e6f74207265616360448201527f68656400000000000000000000000000000000000000000000000000000000006064820152608401610359565b5f60019054906101000a90046001600160a01b03166001600160a01b03166341c0e1b56040518163ffffffff1660e01b81526004015f604051808303815f87803b1580156108f2575f80fd5b505af1158015610904573d5f803e3d5ffd5b50506040516370a0823160e01b81523060048201525f92507f0000000000000000000000006efb84bda519726fa1c65558e520b92b517121016001600160a01b031691506370a0823190602401602060405180830381865afa15801561096c573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109909190612019565b90505f846109a683670de0b6b3a764000061207f565b6109b09190612096565b90506109bc8183610c93565b506040516370a0823160e01b81523060048201527f000000000000000000000000cc3023635df54fc0e43f47bc4beb90c3d1fbda9f6001600160a01b03169063a9059cbb907f0000000000000000000000009feab70f3c4a944b97b7565bac4991df5b7a69ff9083906370a0823190602401602060405180830381865afa158015610a49573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610a6d9190612019565b6040516001600160e01b031960e085901b1681526001600160a01b03909216600483015260248201526044016020604051808303815f875af1158015610ab5573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610ad99190611ff3565b506040516370a0823160e01b81523060048201527f0000000000000000000000006efb84bda519726fa1c65558e520b92b517121016001600160a01b03169063a9059cbb907f0000000000000000000000009feab70f3c4a944b97b7565bac4991df5b7a69ff9083906370a0823190602401602060405180830381865afa158015610b66573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610b8a9190612019565b6040516001600160e01b031960e085901b1681526001600160a01b03909216600483015260248201526044016020604051808303815f875af1158015610bd2573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610bf69190611ff3565b505050505050565b5f80610c26610c0d87866120b5565b610c1787866120b5565b610c21919061207f565b611f49565b610c33610c21868661207f565b610c3d919061207f565b90505f610c4a858561207f565b610c54878761207f565b610c5e91906120b5565b905080821115610c8957610c7286856120b5565b610c7c8284612066565b610c869190612096565b92505b5050949350505050565b6040517fe6a439050000000000000000000000000000000000000000000000000000000081526001600160a01b037f0000000000000000000000006efb84bda519726fa1c65558e520b92b51712101811660048301527f000000000000000000000000cc3023635df54fc0e43f47bc4beb90c3d1fbda9f1660248201525f9073e30521fe7f3beb6ad556887b50739d6c7ca667e69063e6a4390590604401602060405180830381865afa158015610d4c573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d7091906120c8565b90506001600160a01b038116611016576040517f6b600d1c0000000000000000000000000000000000000000000000000000000081526001600160a01b037f0000000000000000000000006efb84bda519726fa1c65558e520b92b51712101811660048301527f000000000000000000000000cc3023635df54fc0e43f47bc4beb90c3d1fbda9f1660248201527f0000000000000000000000000000000000000000000000056bc75e2d63100000604482015273e30521fe7f3beb6ad556887b50739d6c7ca667e690636b600d1c906064016020604051808303815f875af1158015610e5e573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610e8291906120c8565b60405163a9059cbb60e01b81526001600160a01b038083166004830152602482018690529192507f000000000000000000000000cc3023635df54fc0e43f47bc4beb90c3d1fbda9f9091169063a9059cbb906044016020604051808303815f875af1158015610ef3573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610f179190611ff3565b5060405163a9059cbb60e01b81526001600160a01b038281166004830152602482018490527f0000000000000000000000006efb84bda519726fa1c65558e520b92b51712101169063a9059cbb906044016020604051808303815f875af1158015610f84573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610fa89190611ff3565b506040516335313c2160e11b81523060048201526001600160a01b03821690636a627842906024016020604051808303815f875af1158015610fec573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906110109190612019565b50611acd565b6001600160a01b037f000000000000000000000000cc3023635df54fc0e43f47bc4beb90c3d1fbda9f1663a9059cbb82611053620f424087612096565b6040516001600160e01b031960e085901b1681526001600160a01b03909216600483015260248201526044016020604051808303815f875af115801561109b573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906110bf9190611ff3565b506001600160a01b037f0000000000000000000000006efb84bda519726fa1c65558e520b92b517121011663a9059cbb826110fd620f424086612096565b6040516001600160e01b031960e085901b1681526001600160a01b03909216600483015260248201526044016020604051808303815f875af1158015611145573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906111699190611ff3565b506040516335313c2160e11b81523060048201526001600160a01b03821690636a627842906024016020604051808303815f875af11580156111ad573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906111d19190612019565b506111df620f424084612096565b6111e99084612066565b92506111f8620f424083612096565b6112029083612066565b91505f5b6003811015611941575f805f80856001600160a01b0316630902f1ac6040518163ffffffff1660e01b8152600401606060405180830381865afa15801561124f573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611273919061210b565b50915091507f0000000000000000000000006efb84bda519726fa1c65558e520b92b517121016001600160a01b0316866001600160a01b0316630dfe16816040518163ffffffff1660e01b8152600401602060405180830381865afa1580156112de573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061130291906120c8565b6001600160a01b03160361133b57816dffffffffffffffffffffffffffff169350806dffffffffffffffffffffffffffff169250611362565b806dffffffffffffffffffffffffffff169350816dffffffffffffffffffffffffffff1692505b5086905082611371838861207f565b61137b9190612096565b111561165e575f61138e86888585610bfe565b90508015611658576040516378a051ad60e11b8152600481018290526001600160a01b037f0000000000000000000000006efb84bda519726fa1c65558e520b92b51712101811660248301525f919087169063f140a35a90604401602060405180830381865afa158015611404573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906114289190612019565b905080156116565760405163a9059cbb60e01b81526001600160a01b038781166004830152602482018490527f0000000000000000000000006efb84bda519726fa1c65558e520b92b51712101169063a9059cbb906044016020604051808303815f875af115801561149c573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906114c09190611ff3565b507f0000000000000000000000006efb84bda519726fa1c65558e520b92b517121016001600160a01b0316866001600160a01b0316630dfe16816040518163ffffffff1660e01b8152600401602060405180830381865afa158015611527573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061154b91906120c8565b6001600160a01b0316036115cd5760405163022c0d9f60e01b81525f60048201819052602482018390523060448301526080606483015260848201526001600160a01b0387169063022c0d9f9060a4015f604051808303815f87803b1580156115b2575f80fd5b505af11580156115c4573d5f803e3d5ffd5b5050505061163d565b60405163022c0d9f60e01b8152600481018290525f602482018190523060448301526080606483015260848201526001600160a01b0387169063022c0d9f9060a4015f604051808303815f87803b158015611626575f80fd5b505af1158015611638573d5f803e3d5ffd5b505050505b6116478288612066565b965061165381896120b5565b97505b505b50611937565b5f61166b87878486610bfe565b90508015611935576040516378a051ad60e11b8152600481018290526001600160a01b037f000000000000000000000000cc3023635df54fc0e43f47bc4beb90c3d1fbda9f811660248301525f919087169063f140a35a90604401602060405180830381865afa1580156116e1573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906117059190612019565b905080156119335760405163a9059cbb60e01b81526001600160a01b038781166004830152602482018490527f000000000000000000000000cc3023635df54fc0e43f47bc4beb90c3d1fbda9f169063a9059cbb906044016020604051808303815f875af1158015611779573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061179d9190611ff3565b507f0000000000000000000000006efb84bda519726fa1c65558e520b92b517121016001600160a01b0316866001600160a01b0316630dfe16816040518163ffffffff1660e01b8152600401602060405180830381865afa158015611804573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061182891906120c8565b6001600160a01b0316036118aa5760405163022c0d9f60e01b8152600481018290525f602482018190523060448301526080606483015260848201526001600160a01b0387169063022c0d9f9060a4015f604051808303815f87803b15801561188f575f80fd5b505af11580156118a1573d5f803e3d5ffd5b5050505061191a565b60405163022c0d9f60e01b81525f60048201819052602482018390523060448301526080606483015260848201526001600160a01b0387169063022c0d9f9060a4015f604051808303815f87803b158015611903575f80fd5b505af1158015611915573d5f803e3d5ffd5b505050505b6119248289612066565b975061193081886120b5565b96505b505b505b5050600101611206565b5060405163a9059cbb60e01b81526001600160a01b038281166004830152602482018590527f000000000000000000000000cc3023635df54fc0e43f47bc4beb90c3d1fbda9f169063a9059cbb906044016020604051808303815f875af11580156119ae573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906119d29190611ff3565b5060405163a9059cbb60e01b81526001600160a01b038281166004830152602482018490527f0000000000000000000000006efb84bda519726fa1c65558e520b92b51712101169063a9059cbb906044016020604051808303815f875af1158015611a3f573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611a639190611ff3565b506040516335313c2160e11b81523060048201526001600160a01b03821690636a627842906024016020604051808303815f875af1158015611aa7573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611acb9190612019565b505b5f6127107f0000000000000000000000009feab70f3c4a944b97b7565bac4991df5b7a69ff6001600160a01b0316636ba9ba2c6040518163ffffffff1660e01b8152600401602060405180830381865afa158015611b2d573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611b519190612019565b6040516370a0823160e01b81523060048201526001600160a01b038516906370a0823190602401602060405180830381865afa158015611b93573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611bb79190612019565b611bc1919061207f565b611bcb9190612096565b90508015611e45576040517f07be75f70000000000000000000000000000000000000000000000000000000081526001600160a01b03831660048201525f907319928170d739139bfbbb6614007f8eeed17db0ba906307be75f790602401602060405180830381865afa158015611c44573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611c6891906120c8565b90506001600160a01b038116611d0f576040517fef3bd7660000000000000000000000000000000000000000000000000000000081526001600160a01b03841660048201527319928170d739139bfbbb6614007f8eeed17db0ba9063ef3bd766906024016020604051808303815f875af1158015611ce8573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611d0c91906120c8565b90505b6040517f095ea7b30000000000000000000000000000000000000000000000000000000081526001600160a01b0382811660048301526024820184905284169063095ea7b3906044016020604051808303815f875af1158015611d74573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611d989190611ff3565b506040517f40c10f190000000000000000000000000000000000000000000000000000000081526001600160a01b037f0000000000000000000000009feab70f3c4a944b97b7565bac4991df5b7a69ff81166004830152602482018490528216906340c10f19906044016020604051808303815f875af1158015611e1e573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611e429190612019565b50505b6040516370a0823160e01b81523060048201526001600160a01b0383169063a9059cbb907f0000000000000000000000009feab70f3c4a944b97b7565bac4991df5b7a69ff9083906370a0823190602401602060405180830381865afa158015611eb1573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611ed59190612019565b6040516001600160e01b031960e085901b1681526001600160a01b03909216600483015260248201526044016020604051808303815f875af1158015611f1d573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611f419190611ff3565b505092915050565b5f6003821115611fa85750805f611f61600283612096565b611f6c9060016120b5565b90505b81811015611fa257905080600281611f878186612096565b611f9191906120b5565b611f9b9190612096565b9050611f6f565b50919050565b8115611fb2575060015b919050565b6116f58061215883390190565b5f805f8060808587031215611fd7575f80fd5b5050823594602084013594506040840135936060013592509050565b5f60208284031215612003575f80fd5b81518015158114612012575f80fd5b9392505050565b5f60208284031215612029575f80fd5b5051919050565b5f8060408385031215612041575f80fd5b505080516020909101519092909150565b634e487b7160e01b5f52601160045260245ffd5b8181038181111561207957612079612052565b92915050565b808202811582820484141761207957612079612052565b5f826120b057634e487b7160e01b5f52601260045260245ffd5b500490565b8082018082111561207957612079612052565b5f602082840312156120d8575f80fd5b81516001600160a01b0381168114612012575f80fd5b80516dffffffffffffffffffffffffffff81168114611fb2575f80fd5b5f805f6060848603121561211d575f80fd5b612126846120ee565b9250612134602085016120ee565b9150604084015163ffffffff8116811461214c575f80fd5b80915050925092509256fe610100604052348015610010575f80fd5b506040516116f53803806116f583398101604081905261002f9161009f565b60015f5533608052610043816127106100fd565b60a0526001600160a01b0380861660e052841660c052670de0b6b3a764000061006c8385610116565b610076919061012d565b6001555061014c9350505050565b80516001600160a01b038116811461009a575f80fd5b919050565b5f805f805f60a086880312156100b3575f80fd5b6100bc86610084565b94506100ca60208701610084565b6040870151606088015160809098015196999198509695945092505050565b634e487b7160e01b5f52601160045260245ffd5b81810381811115610110576101106100e9565b92915050565b8082028115828204841417610110576101106100e9565b5f8261014757634e487b7160e01b5f52601260045260245ffd5b500490565b60805160a05160c05160e05161149d6102585f395f818161019601528181610237015281816103990152818161052b01528181610761015281816107e401528181610af501528181610c5401528181610cf201528181610ed501528181610f7201528181610fe70152818161103a015261124301525f81816102b2015281816102de0152818161043d015281816104e00152818161062a015281816106c8015281816109c801528181610d8b01528181610f160152818161108501526112d801525f818161031a015281816105ac0152818161065801528181610c8201526110f001525f818161027a0152818161093d015281816109f101528181610b260152611198015261149d5ff3fe608060405234801561000f575f80fd5b506004361061016e575f3560e01c80638da5cb5b116100d2578063d21220a711610088578063e4849b3211610063578063e4849b321461033c578063e78810111461034f578063f140a35a14610362575f80fd5b8063d21220a7146102dc578063d96a094a14610302578063ddca3f4314610315575f80fd5b806398d5fdca116100b857806398d5fdca146102a5578063b05707e9146102ad578063d113b95c146102d4575f80fd5b80638da5cb5b1461027557806395939cb11461029c575f80fd5b80634189a68e116101275780636b2fa3741161010d5780636b2fa374146102325780636f691c9d146102595780637deb602514610262575f80fd5b80634189a68e1461021557806341c0e1b514610228575f80fd5b80631125f13f116101575780631125f13f146101ce5780631f3a0e41146101ef578063353b8f6d1461020c575f80fd5b80630902f1ac146101725780630dfe168114610194575b5f80fd5b61017a610375565b604080519283526020830191909152015b60405180910390f35b7f00000000000000000000000000000000000000000000000000000000000000005b6040516001600160a01b03909116815260200161018b565b6101e16101dc366004611368565b6104b6565b60405190815260200161018b565b6004546101fc9060ff1681565b604051901515815260200161018b565b6101e160025481565b6101e1610223366004611368565b6105f6565b61023061092a565b005b6101b67f000000000000000000000000000000000000000000000000000000000000000081565b6101e160035481565b6101e1610270366004611368565b610c20565b6101b67f000000000000000000000000000000000000000000000000000000000000000081565b6101e160015481565b6101e1610e4a565b6101b67f000000000000000000000000000000000000000000000000000000000000000081565b610230610ea3565b7f00000000000000000000000000000000000000000000000000000000000000006101b6565b6101e1610310366004611396565b610ebc565b6101e17f000000000000000000000000000000000000000000000000000000000000000081565b6101e161034a366004611396565b610ec7565b6101e161035d3660046113ad565b610ed2565b6101e1610370366004611368565b611010565b6002546040516370a0823160e01b81523060048201525f9182916001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016906370a0823190602401602060405180830381865afa1580156103de573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061040291906113cf565b60015461040f91906113fa565b610419919061140d565b6003546040516370a0823160e01b8152306004820152919350906001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016906370a0823190602401602060405180830381865afa158015610482573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906104a691906113cf565b6104b0919061140d565b90509091565b6004545f9060ff16156104dc576040516310e630fb60e31b815260040160405180910390fd5b5f807f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316846001600160a01b0316036105295761051f610375565b909250905061056f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316846001600160a01b03160361056f5761056a610375565b925090505b5f8511801561057d57505f82115b801561058857505f81115b610590575f80fd5b5f61059b8387611420565b6105a790612710611420565b90505f7f00000000000000000000000000000000000000000000000000000000000000006105d5888561140d565b6105df9190611420565b90506105eb8183611437565b979650505050505050565b5f6105ff611154565b60045460ff1615610623576040516310e630fb60e31b815260040160405180910390fd5b5f61064e847f0000000000000000000000000000000000000000000000000000000000000000611010565b905061271061067d7f000000000000000000000000000000000000000000000000000000000000000086611420565b6106879190611437565b610691908561140d565b60035f8282546106a191906113fa565b90915550506040516323b872dd60e01b8152336004820152306024820152604481018590527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316906323b872dd906064016020604051808303815f875af1158015610716573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061073a9190611456565b5060405163a9059cbb60e01b81526001600160a01b038481166004830152602482018390527f0000000000000000000000000000000000000000000000000000000000000000169063a9059cbb906044016020604051808303815f875af11580156107a7573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107cb9190611456565b506002546040516370a0823160e01b81523060048201527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316906370a0823190602401602060405180830381865afa158015610831573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061085591906113cf565b10156108c1576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601660248201527f494e53554646494349454e545f4c495155494449545900000000000000000000604482015260640160405180910390fd5b604080515f8082526020820187905291810183905260608101919091526001600160a01b0384169033907fd78ad95fa46c994b6551d0da85fc275fe613ce37657fb8d5e3d130840159d822906080015b60405180910390a3905061092460015f55565b92915050565b610932611154565b336001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001614610994576040517f30cd747100000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61099c611195565b6004805460ff191660011781556040516370a0823160e01b815230918101919091526001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000169063a9059cbb907f00000000000000000000000000000000000000000000000000000000000000009083906370a0823190602401602060405180830381865afa158015610a37573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610a5b91906113cf565b6040517fffffffff0000000000000000000000000000000000000000000000000000000060e085901b1681526001600160a01b03909216600483015260248201526044016020604051808303815f875af1158015610abb573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610adf9190611456565b506040516370a0823160e01b81523060048201527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03169063a9059cbb907f00000000000000000000000000000000000000000000000000000000000000009083906370a0823190602401602060405180830381865afa158015610b6c573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610b9091906113cf565b6040517fffffffff0000000000000000000000000000000000000000000000000000000060e085901b1681526001600160a01b03909216600483015260248201526044016020604051808303815f875af1158015610bf0573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610c149190611456565b50610c1e60015f55565b565b5f610c29611154565b60045460ff1615610c4d576040516310e630fb60e31b815260040160405180910390fd5b5f610c78847f0000000000000000000000000000000000000000000000000000000000000000611010565b9050612710610ca77f000000000000000000000000000000000000000000000000000000000000000086611420565b610cb19190611437565b610cbb908561140d565b60025f828254610ccb91906113fa565b90915550506040516323b872dd60e01b8152336004820152306024820152604481018590527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316906323b872dd906064016020604051808303815f875af1158015610d40573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d649190611456565b5060405163a9059cbb60e01b81526001600160a01b038481166004830152602482018390527f0000000000000000000000000000000000000000000000000000000000000000169063a9059cbb906044016020604051808303815f875af1158015610dd1573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610df59190611456565b50604080518581525f6020820181905291810191909152606081018290526001600160a01b0384169033907fd78ad95fa46c994b6551d0da85fc275fe613ce37657fb8d5e3d130840159d82290608001610911565b6004545f9060ff1615610e70576040516310e630fb60e31b815260040160405180910390fd5b5f80610e7a610375565b909250905080610e9283670de0b6b3a7640000611420565b610e9c9190611437565b9250505090565b610eab611154565b610eb3611195565b610c1e60015f55565b5f6109248233610c20565b5f61092482336105f6565b5f7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b031603610f1457505f19919050565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03160361100b576002546040516370a0823160e01b815230600482015261092491906001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016906370a0823190602401602060405180830381865afa158015610fb7573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610fdb91906113cf565b610fe5919061140d565b7f00000000000000000000000000000000000000000000000000000000000000006104b6565b919050565b6004545f9060ff1615611036576040516310e630fb60e31b815260040160405180910390fd5b5f807f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316846001600160a01b03160361108357611079610375565b90925090506110c9565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316846001600160a01b0316036110c9576110c4610375565b925090505b5f851180156110d757505f82115b80156110e257505f81115b6110ea575f80fd5b5f6111157f000000000000000000000000000000000000000000000000000000000000000087611420565b90505f6111228383611420565b90505f8261113286612710611420565b61113c91906113fa565b90506111488183611437565b98975050505050505050565b60025f540361118f576040517f3ee5aeb500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60025f55565b5f7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316638da5cb5b6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156111f2573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906112169190611475565b60025460405163a9059cbb60e01b81526001600160a01b03808416600483015260248201929092529192507f0000000000000000000000000000000000000000000000000000000000000000169063a9059cbb906044016020604051808303815f875af1158015611289573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906112ad9190611456565b5060035460405163a9059cbb60e01b81526001600160a01b03838116600483015260248201929092527f00000000000000000000000000000000000000000000000000000000000000009091169063a9059cbb906044016020604051808303815f875af1158015611320573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906113449190611456565b50505f6002819055600355565b6001600160a01b0381168114611365575f80fd5b50565b5f8060408385031215611379575f80fd5b82359150602083013561138b81611351565b809150509250929050565b5f602082840312156113a6575f80fd5b5035919050565b5f602082840312156113bd575f80fd5b81356113c881611351565b9392505050565b5f602082840312156113df575f80fd5b5051919050565b634e487b7160e01b5f52601160045260245ffd5b80820180821115610924576109246113e6565b81810381811115610924576109246113e6565b8082028115828204841417610924576109246113e6565b5f8261145157634e487b7160e01b5f52601260045260245ffd5b500490565b5f60208284031215611466575f80fd5b815180151581146113c8575f80fd5b5f60208284031215611485575f80fd5b81516113c88161135156fea164736f6c6343000819000aa164736f6c6343000819000a
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
0000000000000000000000006efb84bda519726fa1c65558e520b92b51712101000000000000000000000000cc3023635df54fc0e43f47bc4beb90c3d1fbda9f0000000000000000000000009feab70f3c4a944b97b7565bac4991df5b7a69ff0000000000000000000000009feab70f3c4a944b97b7565bac4991df5b7a69ff000000000000000000000000000000000000000000000000016345785d8a00000000000000000000000000000000000000000000000000000000000000000064000000000000000000000000000000000000000000000000002386f26fc100000000000000000000000000000000000000000000000000056bc75e2d63100000
-----Decoded View---------------
Arg [0] : _currencyToken (address): 0x6EFB84bda519726Fa1c65558e520B92b51712101
Arg [1] : _agentToken (address): 0xCc3023635dF54FC0e43F47bc4BeB90c3d1fbDa9f
Arg [2] : _owner (address): 0x9fEAB70f3c4a944B97b7565BAc4991dF5B7A69ff
Arg [3] : _agent (address): 0x9fEAB70f3c4a944B97b7565BAc4991dF5B7A69ff
Arg [4] : _initialPrice (uint256): 100000000000000000
Arg [5] : _targetCCYLiquidity (uint256): 100
Arg [6] : _initialLiquidity (uint256): 10000000000000000
Arg [7] : _fee (uint256): 100000000000000000000
-----Encoded View---------------
8 Constructor Arguments found :
Arg [0] : 0000000000000000000000006efb84bda519726fa1c65558e520b92b51712101
Arg [1] : 000000000000000000000000cc3023635df54fc0e43f47bc4beb90c3d1fbda9f
Arg [2] : 0000000000000000000000009feab70f3c4a944b97b7565bac4991df5b7a69ff
Arg [3] : 0000000000000000000000009feab70f3c4a944b97b7565bac4991df5b7a69ff
Arg [4] : 000000000000000000000000000000000000000000000000016345785d8a0000
Arg [5] : 0000000000000000000000000000000000000000000000000000000000000064
Arg [6] : 000000000000000000000000000000000000000000000000002386f26fc10000
Arg [7] : 0000000000000000000000000000000000000000000000056bc75e2d63100000
Loading...
Loading
Loading...
Loading
Loading...
Loading
Net Worth in USD
$0.00
Net Worth in FRAX
0
Multichain Portfolio | 35 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.