FRAX Price: $0.84 (-8.14%)

Contract

0x4e8DA27Fa7F109565De6FdB813D5AA1A6F73c75f

Overview

FRAX Balance | FXTL Balance

0 FRAX | 24 FXTL

FRAX Value

$0.00

Token Holdings

More Info

Private Name Tags

Multichain Info

No addresses found
Transaction Hash
Block
From
To
0x60a06040292013332025-12-08 17:02:5751 days ago1765213377IN
 Create: RouterModuleERC20Manager
0 FRAX0.000319390.00100025
VIEW ADVANCED FILTER

View more zero value Internal Transactions in Advanced View mode

Advanced mode:

Cross-Chain Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
RouterModuleERC20Manager

Compiler Version
v0.8.28+commit.7893614a

Optimization Enabled:
Yes with 200 runs

Other Settings:
cancun EvmVersion
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;

import {SafeERC20, IERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {Permit2} from "@shared/src/permit2/Permit2.sol";
import {RouterModuleBase} from "src/router/modules/RouterModuleBase.sol";

/// @title RouterModuleERC20Manager
/// @notice A module that allows for the management of ERC20 tokens
/// @dev    This module is expected to be used in composition with the other modules of the router.
contract RouterModuleERC20Manager is RouterModuleBase {
    using Permit2 for IERC20;
    using SafeERC20 for IERC20;

    string public constant name = type(RouterModuleERC20Manager).name;
    string public constant version = "2.2.0";

    function transferFromPermit2(
        IERC20 token,
        uint256 amount,
        uint256 nonce,
        uint256 deadline,
        bytes calldata signature
    ) public onlyDelegateCall {
        token.permitTransferFrom(msg.sender, address(this), amount, nonce, deadline, signature);
    }

    /// @notice Sweeps the tokens held by the router to the caller.
    /// @param tokens The tokens to sweep. If the router does not hold the token, the function does not throw.
    /// @dev This function should be called at the end of a composition flow.
    ///      Any unswept tokens may be considered lost, as someone else is likely to monitor
    ///      the router and automatically sweep any forgotten tokens.
    ///      Use the composition with caution to avoid losing tokens.
    function sweep(address[] calldata tokens) external onlyDelegateCall {
        for (uint256 i; i < tokens.length; i++) {
            uint256 balance = IERC20(tokens[i]).balanceOf(address(this));
            if (balance > 0) IERC20(tokens[i]).safeTransfer(msg.sender, balance);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     *
     * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
     * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
     * set here.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(
        IERC1363 token,
        address from,
        address to,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            // bubble errors
            if iszero(success) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }
        return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
    }
}

/// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity 0.8.28;

import {IERC20, IERC20Metadata, IERC4626} from "@openzeppelin/contracts/interfaces/IERC4626.sol";
import {IPermit2, ISignatureTransfer} from "@interfaces/IPermit2.sol";
import {CommonUniversal} from "@address-book/src/CommonUniversal.sol";

/// @title Permit2 Library
/// @custom:contact [email protected]
library Permit2 {
    function permitTransferFrom(
        address token,
        address owner,
        address to,
        uint256 amount,
        uint256 nonce,
        uint256 deadline,
        bytes calldata signature
    ) internal {
        IPermit2(CommonUniversal.PERMIT2)
            .permitTransferFrom(
                ISignatureTransfer.PermitTransferFrom({
                    permitted: ISignatureTransfer.TokenPermissions({token: token, amount: amount}),
                    nonce: nonce,
                    deadline: deadline
                }),
                ISignatureTransfer.SignatureTransferDetails({to: to, requestedAmount: amount}),
                owner,
                signature
            );
    }

    function permitTransferFrom(
        IERC20 token,
        address owner,
        address to,
        uint256 amount,
        uint256 nonce,
        uint256 deadline,
        bytes calldata signature
    ) internal {
        permitTransferFrom(address(token), owner, to, amount, nonce, deadline, signature);
    }

    function permitTransferFrom(
        IERC20Metadata token,
        address owner,
        address to,
        uint256 amount,
        uint256 nonce,
        uint256 deadline,
        bytes calldata signature
    ) internal {
        permitTransferFrom(address(token), owner, to, amount, nonce, deadline, signature);
    }

    function permitTransferFrom(
        IERC4626 token,
        address owner,
        address to,
        uint256 amount,
        uint256 nonce,
        uint256 deadline,
        bytes calldata signature
    ) internal {
        permitTransferFrom(address(token), owner, to, amount, nonce, deadline, signature);
    }
}

File 4 of 14 : RouterModuleBase.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;

import {IRouterModule} from "src/router/interfaces/IRouterModule.sol";

/// @title RouterModuleBase
/// @notice An abstract contract that serves as the base for all router modules
/// @dev Exposes the onlyDelegateCall modifier to restrict functions to be called only by delegatecall
abstract contract RouterModuleBase is IRouterModule {
    address private immutable THIS;

    error OnlyDelegateCall();

    constructor() {
        THIS = address(this);
    }

    modifier onlyDelegateCall() {
        require(address(this) != THIS, OnlyDelegateCall());
        _;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";

/**
 * @title IERC1363
 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
 *
 * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
 * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
 */
interface IERC1363 is IERC20, IERC165 {
    /*
     * Note: the ERC-165 identifier for this interface is 0xb0202a11.
     * 0xb0202a11 ===
     *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
     *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
     */

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @param data Additional data with no specified format, sent in call to `spender`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC4626.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";
import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol";

/**
 * @dev Interface of the ERC-4626 "Tokenized Vault Standard", as defined in
 * https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
 */
interface IERC4626 is IERC20, IERC20Metadata {
    event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);

    event Withdraw(
        address indexed sender,
        address indexed receiver,
        address indexed owner,
        uint256 assets,
        uint256 shares
    );

    /**
     * @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
     *
     * - MUST be an ERC-20 token contract.
     * - MUST NOT revert.
     */
    function asset() external view returns (address assetTokenAddress);

    /**
     * @dev Returns the total amount of the underlying asset that is “managed” by Vault.
     *
     * - SHOULD include any compounding that occurs from yield.
     * - MUST be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT revert.
     */
    function totalAssets() external view returns (uint256 totalManagedAssets);

    /**
     * @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
     * scenario where all the conditions are met.
     *
     * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
     * - MUST NOT revert.
     *
     * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
     * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
     * from.
     */
    function convertToShares(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
     * scenario where all the conditions are met.
     *
     * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
     * - MUST NOT revert.
     *
     * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
     * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
     * from.
     */
    function convertToAssets(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
     * through a deposit call.
     *
     * - MUST return a limited value if receiver is subject to some deposit limit.
     * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.
     * - MUST NOT revert.
     */
    function maxDeposit(address receiver) external view returns (uint256 maxAssets);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given
     * current on-chain conditions.
     *
     * - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit
     *   call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called
     *   in the same transaction.
     * - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the
     *   deposit would be accepted, regardless if the user has enough tokens approved, etc.
     * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by depositing.
     */
    function previewDeposit(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
     *
     * - MUST emit the Deposit event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   deposit execution, and are accounted for during deposit.
     * - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
     *   approving enough underlying tokens to the Vault contract, etc).
     *
     * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
     */
    function deposit(uint256 assets, address receiver) external returns (uint256 shares);

    /**
     * @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.
     * - MUST return a limited value if receiver is subject to some mint limit.
     * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.
     * - MUST NOT revert.
     */
    function maxMint(address receiver) external view returns (uint256 maxShares);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given
     * current on-chain conditions.
     *
     * - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call
     *   in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the
     *   same transaction.
     * - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint
     *   would be accepted, regardless if the user has enough tokens approved, etc.
     * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by minting.
     */
    function previewMint(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.
     *
     * - MUST emit the Deposit event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint
     *   execution, and are accounted for during mint.
     * - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not
     *   approving enough underlying tokens to the Vault contract, etc).
     *
     * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
     */
    function mint(uint256 shares, address receiver) external returns (uint256 assets);

    /**
     * @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
     * Vault, through a withdraw call.
     *
     * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
     * - MUST NOT revert.
     */
    function maxWithdraw(address owner) external view returns (uint256 maxAssets);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,
     * given current on-chain conditions.
     *
     * - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw
     *   call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if
     *   called
     *   in the same transaction.
     * - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though
     *   the withdrawal would be accepted, regardless if the user has enough shares, etc.
     * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by depositing.
     */
    function previewWithdraw(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.
     *
     * - MUST emit the Withdraw event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   withdraw execution, and are accounted for during withdraw.
     * - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner
     *   not having enough shares, etc).
     *
     * Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
     * Those methods should be performed separately.
     */
    function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares);

    /**
     * @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,
     * through a redeem call.
     *
     * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
     * - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.
     * - MUST NOT revert.
     */
    function maxRedeem(address owner) external view returns (uint256 maxShares);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block,
     * given current on-chain conditions.
     *
     * - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call
     *   in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the
     *   same transaction.
     * - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the
     *   redemption would be accepted, regardless if the user has enough shares, etc.
     * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by redeeming.
     */
    function previewRedeem(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.
     *
     * - MUST emit the Withdraw event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   redeem execution, and are accounted for during redeem.
     * - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
     *   not having enough shares, etc).
     *
     * NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
     * Those methods should be performed separately.
     */
    function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface IEIP712 {
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

/// @title AllowanceTransfer
/// @notice Handles ERC20 token permissions through signature based allowance setting and ERC20 token transfers by checking allowed amounts
/// @dev Requires user's token approval on the Permit2 contract
interface IAllowanceTransfer is IEIP712 {
    /// @notice Thrown when an allowance on a token has expired.
    /// @param deadline The timestamp at which the allowed amount is no longer valid
    error AllowanceExpired(uint256 deadline);

    /// @notice Thrown when an allowance on a token has been depleted.
    /// @param amount The maximum amount allowed
    error InsufficientAllowance(uint256 amount);

    /// @notice Thrown when too many nonces are invalidated.
    error ExcessiveInvalidation();

    /// @notice Emits an event when the owner successfully invalidates an ordered nonce.
    event NonceInvalidation(
        address indexed owner, address indexed token, address indexed spender, uint48 newNonce, uint48 oldNonce
    );

    /// @notice Emits an event when the owner successfully sets permissions on a token for the spender.
    event Approval(
        address indexed owner, address indexed token, address indexed spender, uint160 amount, uint48 expiration
    );

    /// @notice Emits an event when the owner successfully sets permissions using a permit signature on a token for the spender.
    event Permit(
        address indexed owner,
        address indexed token,
        address indexed spender,
        uint160 amount,
        uint48 expiration,
        uint48 nonce
    );

    /// @notice Emits an event when the owner sets the allowance back to 0 with the lockdown function.
    event Lockdown(address indexed owner, address token, address spender);

    /// @notice The permit data for a token
    struct PermitDetails {
        // ERC20 token address
        address token;
        // the maximum amount allowed to spend
        uint160 amount;
        // timestamp at which a spender's token allowances become invalid
        uint48 expiration;
        // an incrementing value indexed per owner,token,and spender for each signature
        uint48 nonce;
    }

    /// @notice The permit message signed for a single token allowance
    struct PermitSingle {
        // the permit data for a single token alownce
        PermitDetails details;
        // address permissioned on the allowed tokens
        address spender;
        // deadline on the permit signature
        uint256 sigDeadline;
    }

    /// @notice The permit message signed for multiple token allowances
    struct PermitBatch {
        // the permit data for multiple token allowances
        PermitDetails[] details;
        // address permissioned on the allowed tokens
        address spender;
        // deadline on the permit signature
        uint256 sigDeadline;
    }

    /// @notice The saved permissions
    /// @dev This info is saved per owner, per token, per spender and all signed over in the permit message
    /// @dev Setting amount to type(uint160).max sets an unlimited approval
    struct PackedAllowance {
        // amount allowed
        uint160 amount;
        // permission expiry
        uint48 expiration;
        // an incrementing value indexed per owner,token,and spender for each signature
        uint48 nonce;
    }

    /// @notice A token spender pair.
    struct TokenSpenderPair {
        // the token the spender is approved
        address token;
        // the spender address
        address spender;
    }

    /// @notice Details for a token transfer.
    struct AllowanceTransferDetails {
        // the owner of the token
        address from;
        // the recipient of the token
        address to;
        // the amount of the token
        uint160 amount;
        // the token to be transferred
        address token;
    }

    /// @notice A mapping from owner address to token address to spender address to PackedAllowance struct, which contains details and conditions of the approval.
    /// @notice The mapping is indexed in the above order see: allowance[ownerAddress][tokenAddress][spenderAddress]
    /// @dev The packed slot holds the allowed amount, expiration at which the allowed amount is no longer valid, and current nonce thats updated on any signature based approvals.
    function allowance(address user, address token, address spender)
        external
        view
        returns (uint160 amount, uint48 expiration, uint48 nonce);

    /// @notice Approves the spender to use up to amount of the specified token up until the expiration
    /// @param token The token to approve
    /// @param spender The spender address to approve
    /// @param amount The approved amount of the token
    /// @param expiration The timestamp at which the approval is no longer valid
    /// @dev The packed allowance also holds a nonce, which will stay unchanged in approve
    /// @dev Setting amount to type(uint160).max sets an unlimited approval
    function approve(address token, address spender, uint160 amount, uint48 expiration) external;

    /// @notice Permit a spender to a given amount of the owners token via the owner's EIP-712 signature
    /// @dev May fail if the owner's nonce was invalidated in-flight by invalidateNonce
    /// @param owner The owner of the tokens being approved
    /// @param permitSingle Data signed over by the owner specifying the terms of approval
    /// @param signature The owner's signature over the permit data
    function permit(address owner, PermitSingle memory permitSingle, bytes calldata signature) external;

    /// @notice Permit a spender to the signed amounts of the owners tokens via the owner's EIP-712 signature
    /// @dev May fail if the owner's nonce was invalidated in-flight by invalidateNonce
    /// @param owner The owner of the tokens being approved
    /// @param permitBatch Data signed over by the owner specifying the terms of approval
    /// @param signature The owner's signature over the permit data
    function permit(address owner, PermitBatch memory permitBatch, bytes calldata signature) external;

    /// @notice Transfer approved tokens from one address to another
    /// @param from The address to transfer from
    /// @param to The address of the recipient
    /// @param amount The amount of the token to transfer
    /// @param token The token address to transfer
    /// @dev Requires the from address to have approved at least the desired amount
    /// of tokens to msg.sender.
    function transferFrom(address from, address to, uint160 amount, address token) external;

    /// @notice Transfer approved tokens in a batch
    /// @param transferDetails Array of owners, recipients, amounts, and tokens for the transfers
    /// @dev Requires the from addresses to have approved at least the desired amount
    /// of tokens to msg.sender.
    function transferFrom(AllowanceTransferDetails[] calldata transferDetails) external;

    /// @notice Enables performing a "lockdown" of the sender's Permit2 identity
    /// by batch revoking approvals
    /// @param approvals Array of approvals to revoke.
    function lockdown(TokenSpenderPair[] calldata approvals) external;

    /// @notice Invalidate nonces for a given (token, spender) pair
    /// @param token The token to invalidate nonces for
    /// @param spender The spender to invalidate nonces for
    /// @param newNonce The new nonce to set. Invalidates all nonces less than it.
    /// @dev Can't invalidate more than 2**16 nonces per transaction.
    function invalidateNonces(address token, address spender, uint48 newNonce) external;
}

/// @title SignatureTransfer
/// @notice Handles ERC20 token transfers through signature based actions
/// @dev Requires user's token approval on the Permit2 contract
interface ISignatureTransfer is IEIP712 {
    /// @notice Thrown when the requested amount for a transfer is larger than the permissioned amount
    /// @param maxAmount The maximum amount a spender can request to transfer
    error InvalidAmount(uint256 maxAmount);

    /// @notice Thrown when the number of tokens permissioned to a spender does not match the number of tokens being transferred
    /// @dev If the spender does not need to transfer the number of tokens permitted, the spender can request amount 0 to be transferred
    error LengthMismatch();

    /// @notice Emits an event when the owner successfully invalidates an unordered nonce.
    event UnorderedNonceInvalidation(address indexed owner, uint256 word, uint256 mask);

    /// @notice The token and amount details for a transfer signed in the permit transfer signature
    struct TokenPermissions {
        // ERC20 token address
        address token;
        // the maximum amount that can be spent
        uint256 amount;
    }

    /// @notice The signed permit message for a single token transfer
    struct PermitTransferFrom {
        TokenPermissions permitted;
        // a unique value for every token owner's signature to prevent signature replays
        uint256 nonce;
        // deadline on the permit signature
        uint256 deadline;
    }

    /// @notice Specifies the recipient address and amount for batched transfers.
    /// @dev Recipients and amounts correspond to the index of the signed token permissions array.
    /// @dev Reverts if the requested amount is greater than the permitted signed amount.
    struct SignatureTransferDetails {
        // recipient address
        address to;
        // spender requested amount
        uint256 requestedAmount;
    }

    /// @notice Used to reconstruct the signed permit message for multiple token transfers
    /// @dev Do not need to pass in spender address as it is required that it is msg.sender
    /// @dev Note that a user still signs over a spender address
    struct PermitBatchTransferFrom {
        // the tokens and corresponding amounts permitted for a transfer
        TokenPermissions[] permitted;
        // a unique value for every token owner's signature to prevent signature replays
        uint256 nonce;
        // deadline on the permit signature
        uint256 deadline;
    }

    /// @notice A map from token owner address and a caller specified word index to a bitmap. Used to set bits in the bitmap to prevent against signature replay protection
    /// @dev Uses unordered nonces so that permit messages do not need to be spent in a certain order
    /// @dev The mapping is indexed first by the token owner, then by an index specified in the nonce
    /// @dev It returns a uint256 bitmap
    /// @dev The index, or wordPosition is capped at type(uint248).max
    function nonceBitmap(address, uint256) external view returns (uint256);

    /// @notice Transfers a token using a signed permit message
    /// @dev Reverts if the requested amount is greater than the permitted signed amount
    /// @param permit The permit data signed over by the owner
    /// @param owner The owner of the tokens to transfer
    /// @param transferDetails The spender's requested transfer details for the permitted token
    /// @param signature The signature to verify
    function permitTransferFrom(
        PermitTransferFrom memory permit,
        SignatureTransferDetails calldata transferDetails,
        address owner,
        bytes calldata signature
    ) external;

    /// @notice Transfers a token using a signed permit message
    /// @notice Includes extra data provided by the caller to verify signature over
    /// @dev The witness type string must follow EIP712 ordering of nested structs and must include the TokenPermissions type definition
    /// @dev Reverts if the requested amount is greater than the permitted signed amount
    /// @param permit The permit data signed over by the owner
    /// @param owner The owner of the tokens to transfer
    /// @param transferDetails The spender's requested transfer details for the permitted token
    /// @param witness Extra data to include when checking the user signature
    /// @param witnessTypeString The EIP-712 type definition for remaining string stub of the typehash
    /// @param signature The signature to verify
    function permitWitnessTransferFrom(
        PermitTransferFrom memory permit,
        SignatureTransferDetails calldata transferDetails,
        address owner,
        bytes32 witness,
        string calldata witnessTypeString,
        bytes calldata signature
    ) external;

    /// @notice Transfers multiple tokens using a signed permit message
    /// @param permit The permit data signed over by the owner
    /// @param owner The owner of the tokens to transfer
    /// @param transferDetails Specifies the recipient and requested amount for the token transfer
    /// @param signature The signature to verify
    function permitTransferFrom(
        PermitBatchTransferFrom memory permit,
        SignatureTransferDetails[] calldata transferDetails,
        address owner,
        bytes calldata signature
    ) external;

    /// @notice Transfers multiple tokens using a signed permit message
    /// @dev The witness type string must follow EIP712 ordering of nested structs and must include the TokenPermissions type definition
    /// @notice Includes extra data provided by the caller to verify signature over
    /// @param permit The permit data signed over by the owner
    /// @param owner The owner of the tokens to transfer
    /// @param transferDetails Specifies the recipient and requested amount for the token transfer
    /// @param witness Extra data to include when checking the user signature
    /// @param witnessTypeString The EIP-712 type definition for remaining string stub of the typehash
    /// @param signature The signature to verify
    function permitWitnessTransferFrom(
        PermitBatchTransferFrom memory permit,
        SignatureTransferDetails[] calldata transferDetails,
        address owner,
        bytes32 witness,
        string calldata witnessTypeString,
        bytes calldata signature
    ) external;

    /// @notice Invalidates the bits specified in mask for the bitmap at the word position
    /// @dev The wordPos is maxed at type(uint248).max
    /// @param wordPos A number to index the nonceBitmap at
    /// @param mask A bitmap masked against msg.sender's current bitmap at the word position
    function invalidateUnorderedNonces(uint256 wordPos, uint256 mask) external;
}

/// @notice Permit2 handles signature-based transfers in SignatureTransfer and allowance-based transfers in AllowanceTransfer.
/// @dev Users must approve Permit2 before calling any of the transfer functions.
interface IPermit2 is ISignatureTransfer, IAllowanceTransfer {}

File 9 of 14 : CommonUniversal.sol
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

library CommonUniversal {
    /// DEPLOYER
    address internal constant DEPLOYER_1 = 0x000755Fbe4A24d7478bfcFC1E561AfCE82d1ff62;

    /// GOVERNANCE
    address internal constant GOVERNANCE = 0xB0552b6860CE5C0202976Db056b5e3Cc4f9CC765;

    // FACTORY
    address internal constant CREATE2_FACTORY = 0x0000000000FFe8B47B3e2130213B802212439497;
    address internal constant CREATEX_FACTORY = 0xba5Ed099633D3B313e4D5F7bdc1305d3c28ba5Ed;

    // SAFE
    address internal constant SAFE_PROXY_FACTORY = 0x4e1DCf7AD4e460CfD30791CCC4F9c8a4f820ec67;
    address internal constant SAFE_SINGLETON = 0x41675C099F32341bf84BFc5382aF534df5C7461a;
    address internal constant SAFE_L2_SINGLETON = 0xfb1bffC9d739B8D520DaF37dF666da4C687191EA;
    address internal constant SAFE_FALLBACK_HANDLER = 0xfd0732Dc9E303f09fCEf3a7388Ad10A83459Ec99;

    // LayerZero
    address internal constant LAYERZERO_ENDPOINT = 0x1a44076050125825900e736c501f859c50fE728c;

    // Permit2
    address internal constant PERMIT2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3;

    // Enso Router
    address internal constant ENSO = 0xF75584eF6673aD213a685a1B58Cc0330B8eA22Cf;

    // StakeDAO Router
    address internal constant SD_ROUTER_V1 = 0x0f542fA75c871EB1b93Ef881b73e46acF733392f;
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;

interface IRouterModule {
    function name() external view returns (string memory name);
    function version() external view returns (string memory version);
}

File 11 of 14 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";

File 12 of 14 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../utils/introspection/IERC165.sol";

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

Settings
{
  "remappings": [
    "forge-std/=node_modules/forge-std/",
    "@shared/=node_modules/@stake-dao/shared/",
    "@openzeppelin/contracts/=node_modules/@openzeppelin/contracts/",
    "@interfaces/=node_modules/@stake-dao/interfaces/src/interfaces/",
    "@address-book/=node_modules/@stake-dao/address-book/",
    "@strategies/=node_modules/@stake-dao/strategies/",
    "@lockers/=node_modules/@stake-dao/lockers/",
    "@safe/=node_modules/@stake-dao/strategies/node_modules/@safe-global/safe-smart-account/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "cancun",
  "viaIR": false
}

Contract Security Audit

Contract ABI

API
[{"inputs":[],"name":"OnlyDelegateCall","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"tokens","type":"address[]"}],"name":"sweep","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"transferFromPermit2","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"version","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"}]

60a0604052348015600e575f5ffd5b50306080526080516106956100315f395f818160f6015261022b01526106955ff3fe608060405234801561000f575f5ffd5b506004361061004a575f3560e01c806306fdde031461004e57806354fd4d50146100a0578063780469bb146100c4578063bc6c4645146100d9575b5f5ffd5b61008a6040518060400160405260188152806020017f526f757465724d6f64756c6545524332304d616e61676572000000000000000081525081565b6040516100979190610420565b60405180910390f35b61008a604051806040016040528060058152602001640322e322e360dc1b81525081565b6100d76100d2366004610455565b6100ec565b005b6100d76100e73660046104dd565b610221565b6001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016300361013557604051633c64f99360e21b815260040160405180910390fd5b5f5b8181101561021c575f83838381811061015257610152610579565b9050602002016020810190610167919061058d565b6040516370a0823160e01b81523060048201526001600160a01b0391909116906370a0823190602401602060405180830381865afa1580156101ab573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906101cf91906105af565b905080156102135761021333828686868181106101ee576101ee610579565b9050602002016020810190610203919061058d565b6001600160a01b0316919061028b565b50600101610137565b505050565b6001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016300361026a57604051633c64f99360e21b815260040160405180910390fd5b6102836001600160a01b038716333088888888886102dd565b505050505050565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180516001600160e01b031663a9059cbb60e01b17905261021c9084906102f7565b6102ed888888888888888861036d565b5050505050505050565b5f5f60205f8451602086015f885af180610316576040513d5f823e3d81fd5b50505f513d9150811561032d57806001141561033a565b6001600160a01b0384163b155b1561036757604051635274afe760e01b81526001600160a01b038516600482015260240160405180910390fd5b50505050565b6040805160a0810182526001600160a01b038a811660608301908152608083018990528252602080830188905282840187905283518085018552918a1682528101889052915163187945bd60e11b81526e22d473030f116ddee9f6b43ac78ba3926330f28b7a926103e9929091908c90889088906004016105c6565b5f604051808303815f87803b158015610400575f5ffd5b505af1158015610412573d5f5f3e3d5ffd5b505050505050505050505050565b602081525f82518060208401528060208501604085015e5f604082850101526040601f19601f83011684010191505092915050565b5f5f60208385031215610466575f5ffd5b823567ffffffffffffffff81111561047c575f5ffd5b8301601f8101851361048c575f5ffd5b803567ffffffffffffffff8111156104a2575f5ffd5b8560208260051b84010111156104b6575f5ffd5b6020919091019590945092505050565b6001600160a01b03811681146104da575f5ffd5b50565b5f5f5f5f5f5f60a087890312156104f2575f5ffd5b86356104fd816104c6565b9550602087013594506040870135935060608701359250608087013567ffffffffffffffff81111561052d575f5ffd5b8701601f8101891361053d575f5ffd5b803567ffffffffffffffff811115610553575f5ffd5b896020828401011115610564575f5ffd5b60208201935080925050509295509295509295565b634e487b7160e01b5f52603260045260245ffd5b5f6020828403121561059d575f5ffd5b81356105a8816104c6565b9392505050565b5f602082840312156105bf575f5ffd5b5051919050565b6105e481875180516001600160a01b03168252602090810151910152565b6020860151604082015260408601516060820152610618608082018680516001600160a01b03168252602090810151910152565b6001600160a01b03841660c082015261010060e08201819052810182905281836101208301375f81830161012090810191909152601f909201601f1916010194935050505056fea2646970667358221220202e7a7020b0be176da5a6d7a60ba568fe29cace2028d57664f7dd6387cdf89764736f6c634300081c0033

Deployed Bytecode

0x608060405234801561000f575f5ffd5b506004361061004a575f3560e01c806306fdde031461004e57806354fd4d50146100a0578063780469bb146100c4578063bc6c4645146100d9575b5f5ffd5b61008a6040518060400160405260188152806020017f526f757465724d6f64756c6545524332304d616e61676572000000000000000081525081565b6040516100979190610420565b60405180910390f35b61008a604051806040016040528060058152602001640322e322e360dc1b81525081565b6100d76100d2366004610455565b6100ec565b005b6100d76100e73660046104dd565b610221565b6001600160a01b037f0000000000000000000000004e8da27fa7f109565de6fdb813d5aa1a6f73c75f16300361013557604051633c64f99360e21b815260040160405180910390fd5b5f5b8181101561021c575f83838381811061015257610152610579565b9050602002016020810190610167919061058d565b6040516370a0823160e01b81523060048201526001600160a01b0391909116906370a0823190602401602060405180830381865afa1580156101ab573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906101cf91906105af565b905080156102135761021333828686868181106101ee576101ee610579565b9050602002016020810190610203919061058d565b6001600160a01b0316919061028b565b50600101610137565b505050565b6001600160a01b037f0000000000000000000000004e8da27fa7f109565de6fdb813d5aa1a6f73c75f16300361026a57604051633c64f99360e21b815260040160405180910390fd5b6102836001600160a01b038716333088888888886102dd565b505050505050565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180516001600160e01b031663a9059cbb60e01b17905261021c9084906102f7565b6102ed888888888888888861036d565b5050505050505050565b5f5f60205f8451602086015f885af180610316576040513d5f823e3d81fd5b50505f513d9150811561032d57806001141561033a565b6001600160a01b0384163b155b1561036757604051635274afe760e01b81526001600160a01b038516600482015260240160405180910390fd5b50505050565b6040805160a0810182526001600160a01b038a811660608301908152608083018990528252602080830188905282840187905283518085018552918a1682528101889052915163187945bd60e11b81526e22d473030f116ddee9f6b43ac78ba3926330f28b7a926103e9929091908c90889088906004016105c6565b5f604051808303815f87803b158015610400575f5ffd5b505af1158015610412573d5f5f3e3d5ffd5b505050505050505050505050565b602081525f82518060208401528060208501604085015e5f604082850101526040601f19601f83011684010191505092915050565b5f5f60208385031215610466575f5ffd5b823567ffffffffffffffff81111561047c575f5ffd5b8301601f8101851361048c575f5ffd5b803567ffffffffffffffff8111156104a2575f5ffd5b8560208260051b84010111156104b6575f5ffd5b6020919091019590945092505050565b6001600160a01b03811681146104da575f5ffd5b50565b5f5f5f5f5f5f60a087890312156104f2575f5ffd5b86356104fd816104c6565b9550602087013594506040870135935060608701359250608087013567ffffffffffffffff81111561052d575f5ffd5b8701601f8101891361053d575f5ffd5b803567ffffffffffffffff811115610553575f5ffd5b896020828401011115610564575f5ffd5b60208201935080925050509295509295509295565b634e487b7160e01b5f52603260045260245ffd5b5f6020828403121561059d575f5ffd5b81356105a8816104c6565b9392505050565b5f602082840312156105bf575f5ffd5b5051919050565b6105e481875180516001600160a01b03168252602090810151910152565b6020860151604082015260408601516060820152610618608082018680516001600160a01b03168252602090810151910152565b6001600160a01b03841660c082015261010060e08201819052810182905281836101208301375f81830161012090810191909152601f909201601f1916010194935050505056fea2646970667358221220202e7a7020b0be176da5a6d7a60ba568fe29cace2028d57664f7dd6387cdf89764736f6c634300081c0033

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.