FRAX Price: $1.03 (+6.51%)

Contract

0x6400EdB95556AA99F1c09df7e92bf9227B9d19E4

Overview

FRAX Balance | FXTL Balance

0 FRAX | 1,466 FXTL

FRAX Value

$0.00

Token Holdings

More Info

Private Name Tags

Multichain Info

No addresses found
Transaction Hash
Block
From
To

There are no matching entries

1 Token Transfer found.

View more zero value Internal Transactions in Advanced View mode

Advanced mode:

Cross-Chain Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
Vault

Compiler Version
v0.8.25+commit.b61c2a91

Optimization Enabled:
Yes with 1000 runs

Other Settings:
cancun EvmVersion
// SPDX-License-Identifier: SEE LICENSE IN LICENSE
pragma solidity ^0.8.25;

import {Ownable} from "solady/src/auth/Ownable.sol";
import {ERC4626, ERC20} from "solady/src/tokens/ERC4626.sol";
import {ReentrancyGuard} from "solady/src/utils/ReentrancyGuard.sol";
import {SafeTransferLib} from "solady/src/utils/SafeTransferLib.sol";

import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {Initializable} from "@openzeppelin-upgradeable/proxy/utils/Initializable.sol";

import {Pauser} from "./entities/Pauser.sol";
import {VaultLib} from "./entities/VaultLib.sol";
import {WithdrawLib} from "./entities/Withdraw.sol";

import {ExtSloads} from "./utils/ExtSloads.sol";

import {Constants} from "./interfaces/Constants.sol";
import {IVault} from "./interfaces/IVault.sol";
import {IKarakBaseVault} from "./interfaces/IKarakBaseVault.sol";
import {ISlashingHandler} from "./interfaces/ISlashingHandler.sol";
import "./interfaces/Errors.sol";
import "./interfaces/Events.sol";

/// @title Restaking vault that can take in assets and delegate to an operator.
/// @dev The current supported token types: standard ERC20
/// @dev DO NOT SEND REWARDS TO THIS CONTRACT OR THEY MAY BE FRONTRUN. USE MERKLE DISTRIBUTIONS TO HANDLE REWARDS.
contract Vault is ERC4626, Initializable, Ownable, Pauser, ReentrancyGuard, ExtSloads, IVault {
    using VaultLib for VaultLib.State;

    string public constant VERSION = "2.0.0";

    // keccak256(abi.encode(uint256(keccak256("vault.state")) - 1)) & ~bytes32(uint256(0xff));
    bytes32 internal constant STATE_SLOT = 0x5d654853f9da5c5c659891e7f7fc564033f2724663c32c175f373318f8e1e700;
    // keccak256(abi.encode(uint256(keccak256("vault.config")) - 1)) & ~bytes32(uint256(0xff));
    bytes32 internal constant CONFIG_SLOT = 0x22a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff000;

    /* ========== MUTATIVE FUNCTIONS ========== */
    constructor() {
        _disableInitializers();
    }

    /// @notice Initializes the vault
    /// @param _owner The owner of the vault (usually the Core contract which is the caller in most cases)
    /// @param _operator The operator of the vault (usually the caller of the deployVault function on Core which triggers this)
    /// @param _depositToken The underlying token of the vault
    /// @param _name The name of the vault
    /// @param _symbol The symbol of the vault
    /// @param _extraData Serialized bytes of extra data that different implemetations can use for their own purposes
    function initialize(
        address _owner,
        address _operator,
        address _depositToken,
        string memory _name,
        string memory _symbol,
        bytes memory _extraData
    ) external initializer {
        _initializeOwner(_owner);
        __Pauser_init();

        (bool decimalsSuccess, uint8 result) = _tryGetAssetDecimals(address(_depositToken));
        VaultLib.Config storage config = _config();

        config.asset = _depositToken;
        config.name = _name;
        config.symbol = _symbol;
        config.decimals = decimalsSuccess ? result : _DEFAULT_UNDERLYING_DECIMALS;
        config.operator = _operator;
        config.extraData = _extraData;
    }

    /// @notice Deposits assets into the vault
    /// @dev checks if the amount is not 0 then passes to Solady's implementation
    /// @dev if you want slippage protection use the overload of this function with minSharesOut
    /// @param assets The amount of assets to deposit
    /// @param to The address to mint the shares to
    function deposit(uint256 assets, address to)
        public
        override(ERC4626, IVault)
        whenFunctionNotPaused(Constants.PAUSE_VAULT_DEPOSIT)
        nonReentrant
        returns (uint256 shares)
    {
        if (assets == 0) revert ZeroAmount();
        return super.deposit(assets, to);
    }

    /// @notice Deposits assets into the vault with a minimum amount of shares to mint
    /// @dev This is to prevent any malicious frontrunning in ERC4626
    /// @param assets The amount of assets to deposit
    /// @param to The address to mint the shares to
    /// @param minSharesOut The minimum amount of shares to mint else revert
    function deposit(uint256 assets, address to, uint256 minSharesOut)
        external
        nonReentrant
        whenFunctionNotPaused(Constants.PAUSE_VAULT_DEPOSIT_SLIPPAGE)
        returns (uint256 shares)
    {
        if (assets == 0) revert ZeroAmount();
        shares = super.deposit(assets, to);
        if (shares < minSharesOut) revert NotEnoughShares();
    }

    /// @notice Mints shares for a given amount of assets
    /// @dev Included to better comply with ERC4626
    /// @param shares The amount of shares to mint
    /// @param to The address to mint the shares to
    /// @return assets The amount of assets used to mint the shares
    function mint(uint256 shares, address to)
        public
        override(ERC4626, IVault)
        whenFunctionNotPaused(Constants.PAUSE_VAULT_MINT)
        nonReentrant
        returns (uint256 assets)
    {
        if (shares == 0) revert ZeroShares();
        assets = super.mint(shares, to);
    }

    /// @notice Starts a redeem process for a given amount of shares
    /// and transfers those shares from the user to the vault
    /// @param shares The amount of shares to redeem
    /// @return withdrawalKey The ID of the withdrawl. This is variable is shared across everyone's withdrawal request in the vault
    function startRedeem(uint256 shares, address beneficiary)
        external
        whenFunctionNotPaused(Constants.PAUSE_VAULT_START_REDEEM)
        nonReentrant
        returns (bytes32 withdrawalKey)
    {
        if (shares == 0) revert ZeroShares();
        if (beneficiary == address(0)) revert ZeroAddress();

        (VaultLib.State storage state, VaultLib.Config storage config) = _storage();
        address staker = msg.sender;

        uint256 assets = convertToAssets(shares);

        withdrawalKey = WithdrawLib.calculateWithdrawKey(staker, state.stakerToWithdrawNonce[staker]++);

        state.withdrawalMap[withdrawalKey].staker = staker;
        state.withdrawalMap[withdrawalKey].start = uint96(block.timestamp);
        state.withdrawalMap[withdrawalKey].shares = shares;
        state.withdrawalMap[withdrawalKey].beneficiary = beneficiary;

        this.transferFrom(msg.sender, address(this), shares);

        emit StartedRedeem(staker, config.operator, shares, withdrawalKey, assets);
    }

    /// @notice Finishes a redeem process after waiting the required delay
    /// @notice Can be called by anyone on anyone's behalf
    /// @dev Most of this logic is copied from the underlying Solady 4626 implementation's redeem function
    /// @dev To prevent someone from sitting on queuedWithdrawals to front-run a slashing, DSS shouldn't consider stakes queued in withdrawals
    /// @dev Moreover, rewards are meant to be computed off-chain and shouldn't use vault to distribute em as ERC4626 isn't designed for that.
    /// @param withdrawalKey The ID of the withdrawal request given by startRedeem tx
    function finishRedeem(bytes32 withdrawalKey)
        external
        nonReentrant
        whenFunctionNotPaused(Constants.PAUSE_VAULT_FINISH_REDEEM)
    {
        (VaultLib.State storage state, VaultLib.Config storage config) = _storage();

        WithdrawLib.QueuedWithdrawal memory startedWithdrawal = state.validateQueuedWithdrawal(withdrawalKey);

        uint256 shares = startedWithdrawal.shares;
        if (shares > maxRedeem(address(this))) revert RedeemMoreThanMax();
        uint256 redeemableAssets = convertToAssets(shares);

        delete state.withdrawalMap[withdrawalKey];

        _withdraw({
            by: address(this),
            to: startedWithdrawal.beneficiary,
            owner: address(this),
            assets: redeemableAssets,
            shares: shares
        });

        emit FinishedRedeem(
            startedWithdrawal.staker,
            startedWithdrawal.beneficiary,
            config.operator,
            startedWithdrawal.shares,
            redeemableAssets,
            withdrawalKey
        );
    }

    /// @notice Slash the assets in the vault by a certain amount portion to a slashing handler contract
    /// @param totalAssetsToSlash The amount of assets to slash in absolute amounts
    /// @param slashingHandler The address of the slashing handler
    function slashAssets(uint256 totalAssetsToSlash, address slashingHandler)
        external
        onlyCore
        returns (uint256 transferAmount)
    {
        transferAmount = Math.min(totalAssets(), totalAssetsToSlash);

        // Approve to the handler and then call the handler which will draw the funds
        SafeTransferLib.safeApproveWithRetry(asset(), slashingHandler, transferAmount);
        ISlashingHandler(slashingHandler).handleSlashing(IERC20(asset()), transferAmount);

        emit Slashed(transferAmount);
    }

    /// @notice Lets the Core contract pause the vault functions
    /// @param map: 256 bitmap for paused and unpaused functions, type(uint256).max to pause all functions
    function pause(uint256 map) external onlyCore {
        _pause(map);
    }

    /// @notice Lets the Core contract unpause the vault functions
    /// @param map: 256 bitmap for paused and unpaused functions, 0 to unpause all functions
    function unpause(uint256 map) external onlyCore {
        _unpause(map);
    }
    /* ======================================== */

    /* ============ VIEW FUNCTIONS ============ */
    /// @notice Fetches name of the vault token
    function name() public view override(ERC20, IKarakBaseVault) returns (string memory) {
        return _config().name;
    }

    /// @notice Fetches symbol of the vault token
    function symbol() public view override(ERC20, IKarakBaseVault) returns (string memory) {
        return _config().symbol;
    }

    /// @notice Fetches underlying asset of the vault
    function asset() public view override(ERC4626, IKarakBaseVault) returns (address) {
        return _config().asset;
    }

    /// @notice Fetches vault config
    function vaultConfig() public pure returns (VaultLib.Config memory) {
        return _config();
    }

    /// @notice Fetches the next withdrawal nonce of the staker
    /// @param staker the address of the staker
    function getNextWithdrawNonce(address staker) public view returns (uint256) {
        return _state().stakerToWithdrawNonce[staker];
    }

    /// @notice Checks if the withdrawal is pending for given nonce
    /// @param staker address of the staker
    /// @param _withdrawNonce withdrawal nonce of the staker at the time of withdrawal
    function isWithdrawalPending(address staker, uint256 _withdrawNonce) public view returns (bool) {
        return _state().withdrawalMap[WithdrawLib.calculateWithdrawKey(staker, _withdrawNonce)].start > 0;
    }

    /// @notice Fetches queued withdrawal metadata for given nonce
    /// @param staker address of the staker
    /// @param _withdrawNonce withdrawal nonce of the staker at the time of withdrawal
    /// @return QueuedWithdrawal params
    function getQueuedWithdrawal(address staker, uint256 _withdrawNonce)
        public
        view
        returns (WithdrawLib.QueuedWithdrawal memory)
    {
        return _state().withdrawalMap[WithdrawLib.calculateWithdrawKey(staker, _withdrawNonce)];
    }

    /// @notice Total underlying assets deposited in vault
    function totalAssets() public view override(ERC4626, IKarakBaseVault) returns (uint256) {
        return super.totalAssets();
    }

    /// @notice owner of the vault
    function owner() public view override(Ownable, IVault) returns (address) {
        return super.owner();
    }

    /// @notice decimals of the vault tokens
    function decimals() public view override(ERC4626, IKarakBaseVault) returns (uint8) {
        return _config().decimals;
    }

    /// @notice fetches paused map for the vault
    function pausedMap() public view override(IKarakBaseVault, Pauser) returns (uint256) {
        return super.pausedMap();
    }

    /// @notice Allows reading of arbitrary storage slots. Useful for reading inside embedded structs
    /// @dev Originally from Morpho Blue: https://github.com/morpho-org/morpho-blue/blob/d36719dcd2f37068478889782deac96e296719f0/src/Morpho.sol#L544-L557
    /// @param slots The storage slots to read
    /// @return res The values stored in the given storage slots
    function extSloads(bytes32[] calldata slots)
        public
        view
        override(ExtSloads, IVault)
        returns (bytes32[] memory res)
    {
        res = super.extSloads(slots);
    }

    /* ======================================== */

    /* ========== INTERNAL FUNCTIONS ========== */
    function _state() internal pure returns (VaultLib.State storage $) {
        assembly {
            $.slot := STATE_SLOT
        }
    }

    function _config() internal pure returns (VaultLib.Config storage $) {
        assembly {
            $.slot := CONFIG_SLOT
        }
    }

    function _storage() internal pure returns (VaultLib.State storage $, VaultLib.Config storage $$) {
        assembly {
            $.slot := STATE_SLOT
            $$.slot := CONFIG_SLOT
        }
    }

    function _underlyingDecimals() internal view override returns (uint8) {
        return _config().decimals;
    }
    /* ======================================== */

    /* ============== MODIFIERS =============== */
    modifier onlyCore() {
        _checkOwner();
        _;
    }
    /* ======================================== */

    /* ============== OVERRIDES =============== */

    /// @notice will revert
    function withdraw(uint256 assets, address to, address owner)
        public
        override
        whenFunctionNotPaused(Constants.PAUSE_VAULT_WITHDRAW)
        nonReentrant
        returns (uint256 shares)
    {
        // To suppress warnings
        owner = owner;
        assets = assets;
        to = to;
        shares = shares;

        revert NotImplemented();
    }

    /// @notice will revert
    function redeem(uint256 shares, address to, address owner)
        public
        override
        whenFunctionNotPaused(Constants.PAUSE_VAULT_REDEEM)
        nonReentrant
        returns (uint256 assets)
    {
        // To suppress warnings
        owner = owner;
        to = to;
        shares = shares;
        assets = assets;

        revert NotImplemented();
    }
    /* ======================================== */
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Simple single owner authorization mixin.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/auth/Ownable.sol)
///
/// @dev Note:
/// This implementation does NOT auto-initialize the owner to `msg.sender`.
/// You MUST call the `_initializeOwner` in the constructor / initializer.
///
/// While the ownable portion follows
/// [EIP-173](https://eips.ethereum.org/EIPS/eip-173) for compatibility,
/// the nomenclature for the 2-step ownership handover may be unique to this codebase.
abstract contract Ownable {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The caller is not authorized to call the function.
    error Unauthorized();

    /// @dev The `newOwner` cannot be the zero address.
    error NewOwnerIsZeroAddress();

    /// @dev The `pendingOwner` does not have a valid handover request.
    error NoHandoverRequest();

    /// @dev Cannot double-initialize.
    error AlreadyInitialized();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                           EVENTS                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The ownership is transferred from `oldOwner` to `newOwner`.
    /// This event is intentionally kept the same as OpenZeppelin's Ownable to be
    /// compatible with indexers and [EIP-173](https://eips.ethereum.org/EIPS/eip-173),
    /// despite it not being as lightweight as a single argument event.
    event OwnershipTransferred(address indexed oldOwner, address indexed newOwner);

    /// @dev An ownership handover to `pendingOwner` has been requested.
    event OwnershipHandoverRequested(address indexed pendingOwner);

    /// @dev The ownership handover to `pendingOwner` has been canceled.
    event OwnershipHandoverCanceled(address indexed pendingOwner);

    /// @dev `keccak256(bytes("OwnershipTransferred(address,address)"))`.
    uint256 private constant _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE =
        0x8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0;

    /// @dev `keccak256(bytes("OwnershipHandoverRequested(address)"))`.
    uint256 private constant _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE =
        0xdbf36a107da19e49527a7176a1babf963b4b0ff8cde35ee35d6cd8f1f9ac7e1d;

    /// @dev `keccak256(bytes("OwnershipHandoverCanceled(address)"))`.
    uint256 private constant _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE =
        0xfa7b8eab7da67f412cc9575ed43464468f9bfbae89d1675917346ca6d8fe3c92;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          STORAGE                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The owner slot is given by:
    /// `bytes32(~uint256(uint32(bytes4(keccak256("_OWNER_SLOT_NOT")))))`.
    /// It is intentionally chosen to be a high value
    /// to avoid collision with lower slots.
    /// The choice of manual storage layout is to enable compatibility
    /// with both regular and upgradeable contracts.
    bytes32 internal constant _OWNER_SLOT =
        0xffffffffffffffffffffffffffffffffffffffffffffffffffffffff74873927;

    /// The ownership handover slot of `newOwner` is given by:
    /// ```
    ///     mstore(0x00, or(shl(96, user), _HANDOVER_SLOT_SEED))
    ///     let handoverSlot := keccak256(0x00, 0x20)
    /// ```
    /// It stores the expiry timestamp of the two-step ownership handover.
    uint256 private constant _HANDOVER_SLOT_SEED = 0x389a75e1;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     INTERNAL FUNCTIONS                     */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Override to return true to make `_initializeOwner` prevent double-initialization.
    function _guardInitializeOwner() internal pure virtual returns (bool guard) {}

    /// @dev Initializes the owner directly without authorization guard.
    /// This function must be called upon initialization,
    /// regardless of whether the contract is upgradeable or not.
    /// This is to enable generalization to both regular and upgradeable contracts,
    /// and to save gas in case the initial owner is not the caller.
    /// For performance reasons, this function will not check if there
    /// is an existing owner.
    function _initializeOwner(address newOwner) internal virtual {
        if (_guardInitializeOwner()) {
            /// @solidity memory-safe-assembly
            assembly {
                let ownerSlot := _OWNER_SLOT
                if sload(ownerSlot) {
                    mstore(0x00, 0x0dc149f0) // `AlreadyInitialized()`.
                    revert(0x1c, 0x04)
                }
                // Clean the upper 96 bits.
                newOwner := shr(96, shl(96, newOwner))
                // Store the new value.
                sstore(ownerSlot, or(newOwner, shl(255, iszero(newOwner))))
                // Emit the {OwnershipTransferred} event.
                log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner)
            }
        } else {
            /// @solidity memory-safe-assembly
            assembly {
                // Clean the upper 96 bits.
                newOwner := shr(96, shl(96, newOwner))
                // Store the new value.
                sstore(_OWNER_SLOT, newOwner)
                // Emit the {OwnershipTransferred} event.
                log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner)
            }
        }
    }

    /// @dev Sets the owner directly without authorization guard.
    function _setOwner(address newOwner) internal virtual {
        if (_guardInitializeOwner()) {
            /// @solidity memory-safe-assembly
            assembly {
                let ownerSlot := _OWNER_SLOT
                // Clean the upper 96 bits.
                newOwner := shr(96, shl(96, newOwner))
                // Emit the {OwnershipTransferred} event.
                log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner)
                // Store the new value.
                sstore(ownerSlot, or(newOwner, shl(255, iszero(newOwner))))
            }
        } else {
            /// @solidity memory-safe-assembly
            assembly {
                let ownerSlot := _OWNER_SLOT
                // Clean the upper 96 bits.
                newOwner := shr(96, shl(96, newOwner))
                // Emit the {OwnershipTransferred} event.
                log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner)
                // Store the new value.
                sstore(ownerSlot, newOwner)
            }
        }
    }

    /// @dev Throws if the sender is not the owner.
    function _checkOwner() internal view virtual {
        /// @solidity memory-safe-assembly
        assembly {
            // If the caller is not the stored owner, revert.
            if iszero(eq(caller(), sload(_OWNER_SLOT))) {
                mstore(0x00, 0x82b42900) // `Unauthorized()`.
                revert(0x1c, 0x04)
            }
        }
    }

    /// @dev Returns how long a two-step ownership handover is valid for in seconds.
    /// Override to return a different value if needed.
    /// Made internal to conserve bytecode. Wrap it in a public function if needed.
    function _ownershipHandoverValidFor() internal view virtual returns (uint64) {
        return 48 * 3600;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  PUBLIC UPDATE FUNCTIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Allows the owner to transfer the ownership to `newOwner`.
    function transferOwnership(address newOwner) public payable virtual onlyOwner {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(shl(96, newOwner)) {
                mstore(0x00, 0x7448fbae) // `NewOwnerIsZeroAddress()`.
                revert(0x1c, 0x04)
            }
        }
        _setOwner(newOwner);
    }

    /// @dev Allows the owner to renounce their ownership.
    function renounceOwnership() public payable virtual onlyOwner {
        _setOwner(address(0));
    }

    /// @dev Request a two-step ownership handover to the caller.
    /// The request will automatically expire in 48 hours (172800 seconds) by default.
    function requestOwnershipHandover() public payable virtual {
        unchecked {
            uint256 expires = block.timestamp + _ownershipHandoverValidFor();
            /// @solidity memory-safe-assembly
            assembly {
                // Compute and set the handover slot to `expires`.
                mstore(0x0c, _HANDOVER_SLOT_SEED)
                mstore(0x00, caller())
                sstore(keccak256(0x0c, 0x20), expires)
                // Emit the {OwnershipHandoverRequested} event.
                log2(0, 0, _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE, caller())
            }
        }
    }

    /// @dev Cancels the two-step ownership handover to the caller, if any.
    function cancelOwnershipHandover() public payable virtual {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute and set the handover slot to 0.
            mstore(0x0c, _HANDOVER_SLOT_SEED)
            mstore(0x00, caller())
            sstore(keccak256(0x0c, 0x20), 0)
            // Emit the {OwnershipHandoverCanceled} event.
            log2(0, 0, _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE, caller())
        }
    }

    /// @dev Allows the owner to complete the two-step ownership handover to `pendingOwner`.
    /// Reverts if there is no existing ownership handover requested by `pendingOwner`.
    function completeOwnershipHandover(address pendingOwner) public payable virtual onlyOwner {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute and set the handover slot to 0.
            mstore(0x0c, _HANDOVER_SLOT_SEED)
            mstore(0x00, pendingOwner)
            let handoverSlot := keccak256(0x0c, 0x20)
            // If the handover does not exist, or has expired.
            if gt(timestamp(), sload(handoverSlot)) {
                mstore(0x00, 0x6f5e8818) // `NoHandoverRequest()`.
                revert(0x1c, 0x04)
            }
            // Set the handover slot to 0.
            sstore(handoverSlot, 0)
        }
        _setOwner(pendingOwner);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   PUBLIC READ FUNCTIONS                    */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the owner of the contract.
    function owner() public view virtual returns (address result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := sload(_OWNER_SLOT)
        }
    }

    /// @dev Returns the expiry timestamp for the two-step ownership handover to `pendingOwner`.
    function ownershipHandoverExpiresAt(address pendingOwner)
        public
        view
        virtual
        returns (uint256 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the handover slot.
            mstore(0x0c, _HANDOVER_SLOT_SEED)
            mstore(0x00, pendingOwner)
            // Load the handover slot.
            result := sload(keccak256(0x0c, 0x20))
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         MODIFIERS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Marks a function as only callable by the owner.
    modifier onlyOwner() virtual {
        _checkOwner();
        _;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

import {ERC20} from "./ERC20.sol";
import {FixedPointMathLib} from "../utils/FixedPointMathLib.sol";
import {SafeTransferLib} from "../utils/SafeTransferLib.sol";

/// @notice Simple ERC4626 tokenized Vault implementation.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/tokens/ERC4626.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/mixins/ERC4626.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/extensions/ERC4626.sol)
abstract contract ERC4626 is ERC20 {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The default underlying decimals.
    uint8 internal constant _DEFAULT_UNDERLYING_DECIMALS = 18;

    /// @dev The default decimals offset.
    uint8 internal constant _DEFAULT_DECIMALS_OFFSET = 0;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Cannot deposit more than the max limit.
    error DepositMoreThanMax();

    /// @dev Cannot mint more than the max limit.
    error MintMoreThanMax();

    /// @dev Cannot withdraw more than the max limit.
    error WithdrawMoreThanMax();

    /// @dev Cannot redeem more than the max limit.
    error RedeemMoreThanMax();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                           EVENTS                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Emitted during a mint call or deposit call.
    event Deposit(address indexed by, address indexed owner, uint256 assets, uint256 shares);

    /// @dev Emitted during a withdraw call or redeem call.
    event Withdraw(
        address indexed by,
        address indexed to,
        address indexed owner,
        uint256 assets,
        uint256 shares
    );

    /// @dev `keccak256(bytes("Deposit(address,address,uint256,uint256)"))`.
    uint256 private constant _DEPOSIT_EVENT_SIGNATURE =
        0xdcbc1c05240f31ff3ad067ef1ee35ce4997762752e3a095284754544f4c709d7;

    /// @dev `keccak256(bytes("Withdraw(address,address,address,uint256,uint256)"))`.
    uint256 private constant _WITHDRAW_EVENT_SIGNATURE =
        0xfbde797d201c681b91056529119e0b02407c7bb96a4a2c75c01fc9667232c8db;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     ERC4626 CONSTANTS                      */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev To be overridden to return the address of the underlying asset.
    ///
    /// - MUST be an ERC20 token contract.
    /// - MUST NOT revert.
    function asset() public view virtual returns (address);

    /// @dev To be overridden to return the number of decimals of the underlying asset.
    /// Default: 18.
    ///
    /// - MUST NOT revert.
    function _underlyingDecimals() internal view virtual returns (uint8) {
        return _DEFAULT_UNDERLYING_DECIMALS;
    }

    /// @dev Override to return a non-zero value to make the inflation attack even more unfeasible.
    /// Only used when {_useVirtualShares} returns true.
    /// Default: 0.
    ///
    /// - MUST NOT revert.
    function _decimalsOffset() internal view virtual returns (uint8) {
        return _DEFAULT_DECIMALS_OFFSET;
    }

    /// @dev Returns whether virtual shares will be used to mitigate the inflation attack.
    /// See: https://github.com/OpenZeppelin/openzeppelin-contracts/issues/3706
    /// Override to return true or false.
    /// Default: true.
    ///
    /// - MUST NOT revert.
    function _useVirtualShares() internal view virtual returns (bool) {
        return true;
    }

    /// @dev Returns the decimals places of the token.
    ///
    /// - MUST NOT revert.
    function decimals() public view virtual override(ERC20) returns (uint8) {
        if (!_useVirtualShares()) return _underlyingDecimals();
        return _underlyingDecimals() + _decimalsOffset();
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                ASSET DECIMALS GETTER HELPER                */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Helper function to get the decimals of the underlying asset.
    /// Useful for setting the return value of `_underlyingDecimals` during initialization.
    /// If the retrieval succeeds, `success` will be true, and `result` will hold the result.
    /// Otherwise, `success` will be false, and `result` will be zero.
    ///
    /// Example usage:
    /// ```
    /// (bool success, uint8 result) = _tryGetAssetDecimals(underlying);
    /// _decimals = success ? result : _DEFAULT_UNDERLYING_DECIMALS;
    /// ```
    function _tryGetAssetDecimals(address underlying)
        internal
        view
        returns (bool success, uint8 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            // Store the function selector of `decimals()`.
            mstore(0x00, 0x313ce567)
            // Arguments are evaluated last to first.
            success :=
                and(
                    // Returned value is less than 256, at left-padded to 32 bytes.
                    and(lt(mload(0x00), 0x100), gt(returndatasize(), 0x1f)),
                    // The staticcall succeeds.
                    staticcall(gas(), underlying, 0x1c, 0x04, 0x00, 0x20)
                )
            result := mul(mload(0x00), success)
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                      ACCOUNTING LOGIC                      */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the total amount of the underlying asset managed by the Vault.
    ///
    /// - SHOULD include any compounding that occurs from the yield.
    /// - MUST be inclusive of any fees that are charged against assets in the Vault.
    /// - MUST NOT revert.
    function totalAssets() public view virtual returns (uint256 assets) {
        assets = SafeTransferLib.balanceOf(asset(), address(this));
    }

    /// @dev Returns the amount of shares that the Vault will exchange for the amount of
    /// assets provided, in an ideal scenario where all conditions are met.
    ///
    /// - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
    /// - MUST NOT show any variations depending on the caller.
    /// - MUST NOT reflect slippage or other on-chain conditions, during the actual exchange.
    /// - MUST NOT revert.
    ///
    /// Note: This calculation MAY NOT reflect the "per-user" price-per-share, and instead
    /// should reflect the "average-user's" price-per-share, i.e. what the average user should
    /// expect to see when exchanging to and from.
    function convertToShares(uint256 assets) public view virtual returns (uint256 shares) {
        if (!_useVirtualShares()) {
            uint256 supply = totalSupply();
            return _eitherIsZero(assets, supply)
                ? _initialConvertToShares(assets)
                : FixedPointMathLib.fullMulDiv(assets, supply, totalAssets());
        }
        uint256 o = _decimalsOffset();
        if (o == uint256(0)) {
            return FixedPointMathLib.fullMulDiv(assets, totalSupply() + 1, _inc(totalAssets()));
        }
        return FixedPointMathLib.fullMulDiv(assets, totalSupply() + 10 ** o, _inc(totalAssets()));
    }

    /// @dev Returns the amount of assets that the Vault will exchange for the amount of
    /// shares provided, in an ideal scenario where all conditions are met.
    ///
    /// - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
    /// - MUST NOT show any variations depending on the caller.
    /// - MUST NOT reflect slippage or other on-chain conditions, during the actual exchange.
    /// - MUST NOT revert.
    ///
    /// Note: This calculation MAY NOT reflect the "per-user" price-per-share, and instead
    /// should reflect the "average-user's" price-per-share, i.e. what the average user should
    /// expect to see when exchanging to and from.
    function convertToAssets(uint256 shares) public view virtual returns (uint256 assets) {
        if (!_useVirtualShares()) {
            uint256 supply = totalSupply();
            return supply == uint256(0)
                ? _initialConvertToAssets(shares)
                : FixedPointMathLib.fullMulDiv(shares, totalAssets(), supply);
        }
        uint256 o = _decimalsOffset();
        if (o == uint256(0)) {
            return FixedPointMathLib.fullMulDiv(shares, totalAssets() + 1, _inc(totalSupply()));
        }
        return FixedPointMathLib.fullMulDiv(shares, totalAssets() + 1, totalSupply() + 10 ** o);
    }

    /// @dev Allows an on-chain or off-chain user to simulate the effects of their deposit
    /// at the current block, given current on-chain conditions.
    ///
    /// - MUST return as close to and no more than the exact amount of Vault shares that
    ///   will be minted in a deposit call in the same transaction, i.e. deposit should
    ///   return the same or more shares as `previewDeposit` if call in the same transaction.
    /// - MUST NOT account for deposit limits like those returned from `maxDeposit` and should
    ///   always act as if the deposit will be accepted, regardless of approvals, etc.
    /// - MUST be inclusive of deposit fees. Integrators should be aware of this.
    /// - MUST not revert.
    ///
    /// Note: Any unfavorable discrepancy between `convertToShares` and `previewDeposit` SHOULD
    /// be considered slippage in share price or some other type of condition, meaning
    /// the depositor will lose assets by depositing.
    function previewDeposit(uint256 assets) public view virtual returns (uint256 shares) {
        shares = convertToShares(assets);
    }

    /// @dev Allows an on-chain or off-chain user to simulate the effects of their mint
    /// at the current block, given current on-chain conditions.
    ///
    /// - MUST return as close to and no fewer than the exact amount of assets that
    ///   will be deposited in a mint call in the same transaction, i.e. mint should
    ///   return the same or fewer assets as `previewMint` if called in the same transaction.
    /// - MUST NOT account for mint limits like those returned from `maxMint` and should
    ///   always act as if the mint will be accepted, regardless of approvals, etc.
    /// - MUST be inclusive of deposit fees. Integrators should be aware of this.
    /// - MUST not revert.
    ///
    /// Note: Any unfavorable discrepancy between `convertToAssets` and `previewMint` SHOULD
    /// be considered slippage in share price or some other type of condition,
    /// meaning the depositor will lose assets by minting.
    function previewMint(uint256 shares) public view virtual returns (uint256 assets) {
        if (!_useVirtualShares()) {
            uint256 supply = totalSupply();
            return supply == uint256(0)
                ? _initialConvertToAssets(shares)
                : FixedPointMathLib.fullMulDivUp(shares, totalAssets(), supply);
        }
        uint256 o = _decimalsOffset();
        if (o == uint256(0)) {
            return FixedPointMathLib.fullMulDivUp(shares, totalAssets() + 1, _inc(totalSupply()));
        }
        return FixedPointMathLib.fullMulDivUp(shares, totalAssets() + 1, totalSupply() + 10 ** o);
    }

    /// @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal
    /// at the current block, given the current on-chain conditions.
    ///
    /// - MUST return as close to and no fewer than the exact amount of Vault shares that
    ///   will be burned in a withdraw call in the same transaction, i.e. withdraw should
    ///   return the same or fewer shares as `previewWithdraw` if call in the same transaction.
    /// - MUST NOT account for withdrawal limits like those returned from `maxWithdraw` and should
    ///   always act as if the withdrawal will be accepted, regardless of share balance, etc.
    /// - MUST be inclusive of withdrawal fees. Integrators should be aware of this.
    /// - MUST not revert.
    ///
    /// Note: Any unfavorable discrepancy between `convertToShares` and `previewWithdraw` SHOULD
    /// be considered slippage in share price or some other type of condition,
    /// meaning the depositor will lose assets by depositing.
    function previewWithdraw(uint256 assets) public view virtual returns (uint256 shares) {
        if (!_useVirtualShares()) {
            uint256 supply = totalSupply();
            return _eitherIsZero(assets, supply)
                ? _initialConvertToShares(assets)
                : FixedPointMathLib.fullMulDivUp(assets, supply, totalAssets());
        }
        uint256 o = _decimalsOffset();
        if (o == uint256(0)) {
            return FixedPointMathLib.fullMulDivUp(assets, totalSupply() + 1, _inc(totalAssets()));
        }
        return FixedPointMathLib.fullMulDivUp(assets, totalSupply() + 10 ** o, _inc(totalAssets()));
    }

    /// @dev Allows an on-chain or off-chain user to simulate the effects of their redemption
    /// at the current block, given current on-chain conditions.
    ///
    /// - MUST return as close to and no more than the exact amount of assets that
    ///   will be withdrawn in a redeem call in the same transaction, i.e. redeem should
    ///   return the same or more assets as `previewRedeem` if called in the same transaction.
    /// - MUST NOT account for redemption limits like those returned from `maxRedeem` and should
    ///   always act as if the redemption will be accepted, regardless of approvals, etc.
    /// - MUST be inclusive of withdrawal fees. Integrators should be aware of this.
    /// - MUST NOT revert.
    ///
    /// Note: Any unfavorable discrepancy between `convertToAssets` and `previewRedeem` SHOULD
    /// be considered slippage in share price or some other type of condition,
    /// meaning the depositor will lose assets by depositing.
    function previewRedeem(uint256 shares) public view virtual returns (uint256 assets) {
        assets = convertToAssets(shares);
    }

    /// @dev Private helper to return if either value is zero.
    function _eitherIsZero(uint256 a, uint256 b) private pure returns (bool result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := or(iszero(a), iszero(b))
        }
    }

    /// @dev Private helper to return `x + 1` without the overflow check.
    /// Used for computing the denominator input to `FixedPointMathLib.fullMulDiv(a, b, x + 1)`.
    /// When `x == type(uint256).max`, we get `x + 1 == 0` (mod 2**256 - 1),
    /// and `FixedPointMathLib.fullMulDiv` will revert as the denominator is zero.
    function _inc(uint256 x) private pure returns (uint256) {
        unchecked {
            return x + 1;
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*              DEPOSIT / WITHDRAWAL LIMIT LOGIC              */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the maximum amount of the underlying asset that can be deposited
    /// into the Vault for `to`, via a deposit call.
    ///
    /// - MUST return a limited value if `to` is subject to some deposit limit.
    /// - MUST return `2**256-1` if there is no maximum limit.
    /// - MUST NOT revert.
    function maxDeposit(address to) public view virtual returns (uint256 maxAssets) {
        to = to; // Silence unused variable warning.
        maxAssets = type(uint256).max;
    }

    /// @dev Returns the maximum amount of the Vault shares that can be minter for `to`,
    /// via a mint call.
    ///
    /// - MUST return a limited value if `to` is subject to some mint limit.
    /// - MUST return `2**256-1` if there is no maximum limit.
    /// - MUST NOT revert.
    function maxMint(address to) public view virtual returns (uint256 maxShares) {
        to = to; // Silence unused variable warning.
        maxShares = type(uint256).max;
    }

    /// @dev Returns the maximum amount of the underlying asset that can be withdrawn
    /// from the `owner`'s balance in the Vault, via a withdraw call.
    ///
    /// - MUST return a limited value if `owner` is subject to some withdrawal limit or timelock.
    /// - MUST NOT revert.
    function maxWithdraw(address owner) public view virtual returns (uint256 maxAssets) {
        maxAssets = convertToAssets(balanceOf(owner));
    }

    /// @dev Returns the maximum amount of Vault shares that can be redeemed
    /// from the `owner`'s balance in the Vault, via a redeem call.
    ///
    /// - MUST return a limited value if `owner` is subject to some withdrawal limit or timelock.
    /// - MUST return `balanceOf(owner)` otherwise.
    /// - MUST NOT revert.
    function maxRedeem(address owner) public view virtual returns (uint256 maxShares) {
        maxShares = balanceOf(owner);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                 DEPOSIT / WITHDRAWAL LOGIC                 */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Mints `shares` Vault shares to `to` by depositing exactly `assets`
    /// of underlying tokens.
    ///
    /// - MUST emit the {Deposit} event.
    /// - MAY support an additional flow in which the underlying tokens are owned by the Vault
    ///   contract before the deposit execution, and are accounted for during deposit.
    /// - MUST revert if all of `assets` cannot be deposited, such as due to deposit limit,
    ///   slippage, insufficient approval, etc.
    ///
    /// Note: Most implementations will require pre-approval of the Vault with the
    /// Vault's underlying `asset` token.
    function deposit(uint256 assets, address to) public virtual returns (uint256 shares) {
        if (assets > maxDeposit(to)) _revert(0xb3c61a83); // `DepositMoreThanMax()`.
        shares = previewDeposit(assets);
        _deposit(msg.sender, to, assets, shares);
    }

    /// @dev Mints exactly `shares` Vault shares to `to` by depositing `assets`
    /// of underlying tokens.
    ///
    /// - MUST emit the {Deposit} event.
    /// - MAY support an additional flow in which the underlying tokens are owned by the Vault
    ///   contract before the mint execution, and are accounted for during mint.
    /// - MUST revert if all of `shares` cannot be deposited, such as due to deposit limit,
    ///   slippage, insufficient approval, etc.
    ///
    /// Note: Most implementations will require pre-approval of the Vault with the
    /// Vault's underlying `asset` token.
    function mint(uint256 shares, address to) public virtual returns (uint256 assets) {
        if (shares > maxMint(to)) _revert(0x6a695959); // `MintMoreThanMax()`.
        assets = previewMint(shares);
        _deposit(msg.sender, to, assets, shares);
    }

    /// @dev Burns `shares` from `owner` and sends exactly `assets` of underlying tokens to `to`.
    ///
    /// - MUST emit the {Withdraw} event.
    /// - MAY support an additional flow in which the underlying tokens are owned by the Vault
    ///   contract before the withdraw execution, and are accounted for during withdraw.
    /// - MUST revert if all of `assets` cannot be withdrawn, such as due to withdrawal limit,
    ///   slippage, insufficient balance, etc.
    ///
    /// Note: Some implementations will require pre-requesting to the Vault before a withdrawal
    /// may be performed. Those methods should be performed separately.
    function withdraw(uint256 assets, address to, address owner)
        public
        virtual
        returns (uint256 shares)
    {
        if (assets > maxWithdraw(owner)) _revert(0x936941fc); // `WithdrawMoreThanMax()`.
        shares = previewWithdraw(assets);
        _withdraw(msg.sender, to, owner, assets, shares);
    }

    /// @dev Burns exactly `shares` from `owner` and sends `assets` of underlying tokens to `to`.
    ///
    /// - MUST emit the {Withdraw} event.
    /// - MAY support an additional flow in which the underlying tokens are owned by the Vault
    ///   contract before the redeem execution, and are accounted for during redeem.
    /// - MUST revert if all of shares cannot be redeemed, such as due to withdrawal limit,
    ///   slippage, insufficient balance, etc.
    ///
    /// Note: Some implementations will require pre-requesting to the Vault before a redeem
    /// may be performed. Those methods should be performed separately.
    function redeem(uint256 shares, address to, address owner)
        public
        virtual
        returns (uint256 assets)
    {
        if (shares > maxRedeem(owner)) _revert(0x4656425a); // `RedeemMoreThanMax()`.
        assets = previewRedeem(shares);
        _withdraw(msg.sender, to, owner, assets, shares);
    }

    /// @dev Internal helper for reverting efficiently.
    function _revert(uint256 s) private pure {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, s)
            revert(0x1c, 0x04)
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                      INTERNAL HELPERS                      */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev For deposits and mints.
    ///
    /// Emits a {Deposit} event.
    function _deposit(address by, address to, uint256 assets, uint256 shares) internal virtual {
        SafeTransferLib.safeTransferFrom(asset(), by, address(this), assets);
        _mint(to, shares);
        /// @solidity memory-safe-assembly
        assembly {
            // Emit the {Deposit} event.
            mstore(0x00, assets)
            mstore(0x20, shares)
            let m := shr(96, not(0))
            log3(0x00, 0x40, _DEPOSIT_EVENT_SIGNATURE, and(m, by), and(m, to))
        }
        _afterDeposit(assets, shares);
    }

    /// @dev For withdrawals and redemptions.
    ///
    /// Emits a {Withdraw} event.
    function _withdraw(address by, address to, address owner, uint256 assets, uint256 shares)
        internal
        virtual
    {
        if (by != owner) _spendAllowance(owner, by, shares);
        _beforeWithdraw(assets, shares);
        _burn(owner, shares);
        SafeTransferLib.safeTransfer(asset(), to, assets);
        /// @solidity memory-safe-assembly
        assembly {
            // Emit the {Withdraw} event.
            mstore(0x00, assets)
            mstore(0x20, shares)
            let m := shr(96, not(0))
            log4(0x00, 0x40, _WITHDRAW_EVENT_SIGNATURE, and(m, by), and(m, to), and(m, owner))
        }
    }

    /// @dev Internal conversion function (from assets to shares) to apply when the Vault is empty.
    /// Only used when {_useVirtualShares} returns false.
    ///
    /// Note: Make sure to keep this function consistent with {_initialConvertToAssets}
    /// when overriding it.
    function _initialConvertToShares(uint256 assets)
        internal
        view
        virtual
        returns (uint256 shares)
    {
        shares = assets;
    }

    /// @dev Internal conversion function (from shares to assets) to apply when the Vault is empty.
    /// Only used when {_useVirtualShares} returns false.
    ///
    /// Note: Make sure to keep this function consistent with {_initialConvertToShares}
    /// when overriding it.
    function _initialConvertToAssets(uint256 shares)
        internal
        view
        virtual
        returns (uint256 assets)
    {
        assets = shares;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     HOOKS TO OVERRIDE                      */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Hook that is called before any withdrawal or redemption.
    function _beforeWithdraw(uint256 assets, uint256 shares) internal virtual {}

    /// @dev Hook that is called after any deposit or mint.
    function _afterDeposit(uint256 assets, uint256 shares) internal virtual {}
}

File 4 of 33 : ReentrancyGuard.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Reentrancy guard mixin.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/ReentrancyGuard.sol)
abstract contract ReentrancyGuard {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Unauthorized reentrant call.
    error Reentrancy();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          STORAGE                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Equivalent to: `uint72(bytes9(keccak256("_REENTRANCY_GUARD_SLOT")))`.
    /// 9 bytes is large enough to avoid collisions with lower slots,
    /// but not too large to result in excessive bytecode bloat.
    uint256 private constant _REENTRANCY_GUARD_SLOT = 0x929eee149b4bd21268;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                      REENTRANCY GUARD                      */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Guards a function from reentrancy.
    modifier nonReentrant() virtual {
        /// @solidity memory-safe-assembly
        assembly {
            if eq(sload(_REENTRANCY_GUARD_SLOT), address()) {
                mstore(0x00, 0xab143c06) // `Reentrancy()`.
                revert(0x1c, 0x04)
            }
            sstore(_REENTRANCY_GUARD_SLOT, address())
        }
        _;
        /// @solidity memory-safe-assembly
        assembly {
            sstore(_REENTRANCY_GUARD_SLOT, codesize())
        }
    }

    /// @dev Guards a view function from read-only reentrancy.
    modifier nonReadReentrant() virtual {
        /// @solidity memory-safe-assembly
        assembly {
            if eq(sload(_REENTRANCY_GUARD_SLOT), address()) {
                mstore(0x00, 0xab143c06) // `Reentrancy()`.
                revert(0x1c, 0x04)
            }
        }
        _;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SafeTransferLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol)
/// @author Permit2 operations from (https://github.com/Uniswap/permit2/blob/main/src/libraries/Permit2Lib.sol)
///
/// @dev Note:
/// - For ETH transfers, please use `forceSafeTransferETH` for DoS protection.
/// - For ERC20s, this implementation won't check that a token has code,
///   responsibility is delegated to the caller.
library SafeTransferLib {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The ETH transfer has failed.
    error ETHTransferFailed();

    /// @dev The ERC20 `transferFrom` has failed.
    error TransferFromFailed();

    /// @dev The ERC20 `transfer` has failed.
    error TransferFailed();

    /// @dev The ERC20 `approve` has failed.
    error ApproveFailed();

    /// @dev The Permit2 operation has failed.
    error Permit2Failed();

    /// @dev The Permit2 amount must be less than `2**160 - 1`.
    error Permit2AmountOverflow();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Suggested gas stipend for contract receiving ETH that disallows any storage writes.
    uint256 internal constant GAS_STIPEND_NO_STORAGE_WRITES = 2300;

    /// @dev Suggested gas stipend for contract receiving ETH to perform a few
    /// storage reads and writes, but low enough to prevent griefing.
    uint256 internal constant GAS_STIPEND_NO_GRIEF = 100000;

    /// @dev The unique EIP-712 domain domain separator for the DAI token contract.
    bytes32 internal constant DAI_DOMAIN_SEPARATOR =
        0xdbb8cf42e1ecb028be3f3dbc922e1d878b963f411dc388ced501601c60f7c6f7;

    /// @dev The address for the WETH9 contract on Ethereum mainnet.
    address internal constant WETH9 = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;

    /// @dev The canonical Permit2 address.
    /// [Github](https://github.com/Uniswap/permit2)
    /// [Etherscan](https://etherscan.io/address/0x000000000022D473030F116dDEE9F6B43aC78BA3)
    address internal constant PERMIT2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       ETH OPERATIONS                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    // If the ETH transfer MUST succeed with a reasonable gas budget, use the force variants.
    //
    // The regular variants:
    // - Forwards all remaining gas to the target.
    // - Reverts if the target reverts.
    // - Reverts if the current contract has insufficient balance.
    //
    // The force variants:
    // - Forwards with an optional gas stipend
    //   (defaults to `GAS_STIPEND_NO_GRIEF`, which is sufficient for most cases).
    // - If the target reverts, or if the gas stipend is exhausted,
    //   creates a temporary contract to force send the ETH via `SELFDESTRUCT`.
    //   Future compatible with `SENDALL`: https://eips.ethereum.org/EIPS/eip-4758.
    // - Reverts if the current contract has insufficient balance.
    //
    // The try variants:
    // - Forwards with a mandatory gas stipend.
    // - Instead of reverting, returns whether the transfer succeeded.

    /// @dev Sends `amount` (in wei) ETH to `to`.
    function safeTransferETH(address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(call(gas(), to, amount, codesize(), 0x00, codesize(), 0x00)) {
                mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                revert(0x1c, 0x04)
            }
        }
    }

    /// @dev Sends all the ETH in the current contract to `to`.
    function safeTransferAllETH(address to) internal {
        /// @solidity memory-safe-assembly
        assembly {
            // Transfer all the ETH and check if it succeeded or not.
            if iszero(call(gas(), to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
                mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                revert(0x1c, 0x04)
            }
        }
    }

    /// @dev Force sends `amount` (in wei) ETH to `to`, with a `gasStipend`.
    function forceSafeTransferETH(address to, uint256 amount, uint256 gasStipend) internal {
        /// @solidity memory-safe-assembly
        assembly {
            if lt(selfbalance(), amount) {
                mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                revert(0x1c, 0x04)
            }
            if iszero(call(gasStipend, to, amount, codesize(), 0x00, codesize(), 0x00)) {
                mstore(0x00, to) // Store the address in scratch space.
                mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                if iszero(create(amount, 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
            }
        }
    }

    /// @dev Force sends all the ETH in the current contract to `to`, with a `gasStipend`.
    function forceSafeTransferAllETH(address to, uint256 gasStipend) internal {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(call(gasStipend, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
                mstore(0x00, to) // Store the address in scratch space.
                mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                if iszero(create(selfbalance(), 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
            }
        }
    }

    /// @dev Force sends `amount` (in wei) ETH to `to`, with `GAS_STIPEND_NO_GRIEF`.
    function forceSafeTransferETH(address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            if lt(selfbalance(), amount) {
                mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                revert(0x1c, 0x04)
            }
            if iszero(call(GAS_STIPEND_NO_GRIEF, to, amount, codesize(), 0x00, codesize(), 0x00)) {
                mstore(0x00, to) // Store the address in scratch space.
                mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                if iszero(create(amount, 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
            }
        }
    }

    /// @dev Force sends all the ETH in the current contract to `to`, with `GAS_STIPEND_NO_GRIEF`.
    function forceSafeTransferAllETH(address to) internal {
        /// @solidity memory-safe-assembly
        assembly {
            // forgefmt: disable-next-item
            if iszero(call(GAS_STIPEND_NO_GRIEF, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
                mstore(0x00, to) // Store the address in scratch space.
                mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                if iszero(create(selfbalance(), 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
            }
        }
    }

    /// @dev Sends `amount` (in wei) ETH to `to`, with a `gasStipend`.
    function trySafeTransferETH(address to, uint256 amount, uint256 gasStipend)
        internal
        returns (bool success)
    {
        /// @solidity memory-safe-assembly
        assembly {
            success := call(gasStipend, to, amount, codesize(), 0x00, codesize(), 0x00)
        }
    }

    /// @dev Sends all the ETH in the current contract to `to`, with a `gasStipend`.
    function trySafeTransferAllETH(address to, uint256 gasStipend)
        internal
        returns (bool success)
    {
        /// @solidity memory-safe-assembly
        assembly {
            success := call(gasStipend, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                      ERC20 OPERATIONS                      */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Sends `amount` of ERC20 `token` from `from` to `to`.
    /// Reverts upon failure.
    ///
    /// The `from` account must have at least `amount` approved for
    /// the current contract to manage.
    function safeTransferFrom(address token, address from, address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Cache the free memory pointer.
            mstore(0x60, amount) // Store the `amount` argument.
            mstore(0x40, to) // Store the `to` argument.
            mstore(0x2c, shl(96, from)) // Store the `from` argument.
            mstore(0x0c, 0x23b872dd000000000000000000000000) // `transferFrom(address,address,uint256)`.
            // Perform the transfer, reverting upon failure.
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                    call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20)
                )
            ) {
                mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x60, 0) // Restore the zero slot to zero.
            mstore(0x40, m) // Restore the free memory pointer.
        }
    }

    /// @dev Sends `amount` of ERC20 `token` from `from` to `to`.
    ///
    /// The `from` account must have at least `amount` approved for the current contract to manage.
    function trySafeTransferFrom(address token, address from, address to, uint256 amount)
        internal
        returns (bool success)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Cache the free memory pointer.
            mstore(0x60, amount) // Store the `amount` argument.
            mstore(0x40, to) // Store the `to` argument.
            mstore(0x2c, shl(96, from)) // Store the `from` argument.
            mstore(0x0c, 0x23b872dd000000000000000000000000) // `transferFrom(address,address,uint256)`.
            success :=
                and( // The arguments of `and` are evaluated from right to left.
                    or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                    call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20)
                )
            mstore(0x60, 0) // Restore the zero slot to zero.
            mstore(0x40, m) // Restore the free memory pointer.
        }
    }

    /// @dev Sends all of ERC20 `token` from `from` to `to`.
    /// Reverts upon failure.
    ///
    /// The `from` account must have their entire balance approved for the current contract to manage.
    function safeTransferAllFrom(address token, address from, address to)
        internal
        returns (uint256 amount)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Cache the free memory pointer.
            mstore(0x40, to) // Store the `to` argument.
            mstore(0x2c, shl(96, from)) // Store the `from` argument.
            mstore(0x0c, 0x70a08231000000000000000000000000) // `balanceOf(address)`.
            // Read the balance, reverting upon failure.
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    gt(returndatasize(), 0x1f), // At least 32 bytes returned.
                    staticcall(gas(), token, 0x1c, 0x24, 0x60, 0x20)
                )
            ) {
                mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x00, 0x23b872dd) // `transferFrom(address,address,uint256)`.
            amount := mload(0x60) // The `amount` is already at 0x60. We'll need to return it.
            // Perform the transfer, reverting upon failure.
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                    call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20)
                )
            ) {
                mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x60, 0) // Restore the zero slot to zero.
            mstore(0x40, m) // Restore the free memory pointer.
        }
    }

    /// @dev Sends `amount` of ERC20 `token` from the current contract to `to`.
    /// Reverts upon failure.
    function safeTransfer(address token, address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x14, to) // Store the `to` argument.
            mstore(0x34, amount) // Store the `amount` argument.
            mstore(0x00, 0xa9059cbb000000000000000000000000) // `transfer(address,uint256)`.
            // Perform the transfer, reverting upon failure.
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                    call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                )
            ) {
                mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
        }
    }

    /// @dev Sends all of ERC20 `token` from the current contract to `to`.
    /// Reverts upon failure.
    function safeTransferAll(address token, address to) internal returns (uint256 amount) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, 0x70a08231) // Store the function selector of `balanceOf(address)`.
            mstore(0x20, address()) // Store the address of the current contract.
            // Read the balance, reverting upon failure.
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    gt(returndatasize(), 0x1f), // At least 32 bytes returned.
                    staticcall(gas(), token, 0x1c, 0x24, 0x34, 0x20)
                )
            ) {
                mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x14, to) // Store the `to` argument.
            amount := mload(0x34) // The `amount` is already at 0x34. We'll need to return it.
            mstore(0x00, 0xa9059cbb000000000000000000000000) // `transfer(address,uint256)`.
            // Perform the transfer, reverting upon failure.
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                    call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                )
            ) {
                mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
        }
    }

    /// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract.
    /// Reverts upon failure.
    function safeApprove(address token, address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x14, to) // Store the `to` argument.
            mstore(0x34, amount) // Store the `amount` argument.
            mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
            // Perform the approval, reverting upon failure.
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                    call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                )
            ) {
                mstore(0x00, 0x3e3f8f73) // `ApproveFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
        }
    }

    /// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract.
    /// If the initial attempt to approve fails, attempts to reset the approved amount to zero,
    /// then retries the approval again (some tokens, e.g. USDT, requires this).
    /// Reverts upon failure.
    function safeApproveWithRetry(address token, address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x14, to) // Store the `to` argument.
            mstore(0x34, amount) // Store the `amount` argument.
            mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
            // Perform the approval, retrying upon failure.
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                    call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                )
            ) {
                mstore(0x34, 0) // Store 0 for the `amount`.
                mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
                pop(call(gas(), token, 0, 0x10, 0x44, codesize(), 0x00)) // Reset the approval.
                mstore(0x34, amount) // Store back the original `amount`.
                // Retry the approval, reverting upon failure.
                if iszero(
                    and(
                        or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                        call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                    )
                ) {
                    mstore(0x00, 0x3e3f8f73) // `ApproveFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
        }
    }

    /// @dev Returns the amount of ERC20 `token` owned by `account`.
    /// Returns zero if the `token` does not exist.
    function balanceOf(address token, address account) internal view returns (uint256 amount) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x14, account) // Store the `account` argument.
            mstore(0x00, 0x70a08231000000000000000000000000) // `balanceOf(address)`.
            amount :=
                mul( // The arguments of `mul` are evaluated from right to left.
                    mload(0x20),
                    and( // The arguments of `and` are evaluated from right to left.
                        gt(returndatasize(), 0x1f), // At least 32 bytes returned.
                        staticcall(gas(), token, 0x10, 0x24, 0x20, 0x20)
                    )
                )
        }
    }

    /// @dev Sends `amount` of ERC20 `token` from `from` to `to`.
    /// If the initial attempt fails, try to use Permit2 to transfer the token.
    /// Reverts upon failure.
    ///
    /// The `from` account must have at least `amount` approved for the current contract to manage.
    function safeTransferFrom2(address token, address from, address to, uint256 amount) internal {
        if (!trySafeTransferFrom(token, from, to, amount)) {
            permit2TransferFrom(token, from, to, amount);
        }
    }

    /// @dev Sends `amount` of ERC20 `token` from `from` to `to` via Permit2.
    /// Reverts upon failure.
    function permit2TransferFrom(address token, address from, address to, uint256 amount)
        internal
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(add(m, 0x74), shr(96, shl(96, token)))
            mstore(add(m, 0x54), amount)
            mstore(add(m, 0x34), to)
            mstore(add(m, 0x20), shl(96, from))
            // `transferFrom(address,address,uint160,address)`.
            mstore(m, 0x36c78516000000000000000000000000)
            let p := PERMIT2
            let exists := eq(chainid(), 1)
            if iszero(exists) { exists := iszero(iszero(extcodesize(p))) }
            if iszero(and(call(gas(), p, 0, add(m, 0x10), 0x84, codesize(), 0x00), exists)) {
                mstore(0x00, 0x7939f4248757f0fd) // `TransferFromFailed()` or `Permit2AmountOverflow()`.
                revert(add(0x18, shl(2, iszero(iszero(shr(160, amount))))), 0x04)
            }
        }
    }

    /// @dev Permit a user to spend a given amount of
    /// another user's tokens via native EIP-2612 permit if possible, falling
    /// back to Permit2 if native permit fails or is not implemented on the token.
    function permit2(
        address token,
        address owner,
        address spender,
        uint256 amount,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        bool success;
        /// @solidity memory-safe-assembly
        assembly {
            for {} shl(96, xor(token, WETH9)) {} {
                mstore(0x00, 0x3644e515) // `DOMAIN_SEPARATOR()`.
                if iszero(
                    and( // The arguments of `and` are evaluated from right to left.
                        lt(iszero(mload(0x00)), eq(returndatasize(), 0x20)), // Returns 1 non-zero word.
                        // Gas stipend to limit gas burn for tokens that don't refund gas when
                        // an non-existing function is called. 5K should be enough for a SLOAD.
                        staticcall(5000, token, 0x1c, 0x04, 0x00, 0x20)
                    )
                ) { break }
                // After here, we can be sure that token is a contract.
                let m := mload(0x40)
                mstore(add(m, 0x34), spender)
                mstore(add(m, 0x20), shl(96, owner))
                mstore(add(m, 0x74), deadline)
                if eq(mload(0x00), DAI_DOMAIN_SEPARATOR) {
                    mstore(0x14, owner)
                    mstore(0x00, 0x7ecebe00000000000000000000000000) // `nonces(address)`.
                    mstore(add(m, 0x94), staticcall(gas(), token, 0x10, 0x24, add(m, 0x54), 0x20))
                    mstore(m, 0x8fcbaf0c000000000000000000000000) // `IDAIPermit.permit`.
                    // `nonces` is already at `add(m, 0x54)`.
                    // `1` is already stored at `add(m, 0x94)`.
                    mstore(add(m, 0xb4), and(0xff, v))
                    mstore(add(m, 0xd4), r)
                    mstore(add(m, 0xf4), s)
                    success := call(gas(), token, 0, add(m, 0x10), 0x104, codesize(), 0x00)
                    break
                }
                mstore(m, 0xd505accf000000000000000000000000) // `IERC20Permit.permit`.
                mstore(add(m, 0x54), amount)
                mstore(add(m, 0x94), and(0xff, v))
                mstore(add(m, 0xb4), r)
                mstore(add(m, 0xd4), s)
                success := call(gas(), token, 0, add(m, 0x10), 0xe4, codesize(), 0x00)
                break
            }
        }
        if (!success) simplePermit2(token, owner, spender, amount, deadline, v, r, s);
    }

    /// @dev Simple permit on the Permit2 contract.
    function simplePermit2(
        address token,
        address owner,
        address spender,
        uint256 amount,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, 0x927da105) // `allowance(address,address,address)`.
            {
                let addressMask := shr(96, not(0))
                mstore(add(m, 0x20), and(addressMask, owner))
                mstore(add(m, 0x40), and(addressMask, token))
                mstore(add(m, 0x60), and(addressMask, spender))
                mstore(add(m, 0xc0), and(addressMask, spender))
            }
            let p := mul(PERMIT2, iszero(shr(160, amount)))
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    gt(returndatasize(), 0x5f), // Returns 3 words: `amount`, `expiration`, `nonce`.
                    staticcall(gas(), p, add(m, 0x1c), 0x64, add(m, 0x60), 0x60)
                )
            ) {
                mstore(0x00, 0x6b836e6b8757f0fd) // `Permit2Failed()` or `Permit2AmountOverflow()`.
                revert(add(0x18, shl(2, iszero(p))), 0x04)
            }
            mstore(m, 0x2b67b570) // `Permit2.permit` (PermitSingle variant).
            // `owner` is already `add(m, 0x20)`.
            // `token` is already at `add(m, 0x40)`.
            mstore(add(m, 0x60), amount)
            mstore(add(m, 0x80), 0xffffffffffff) // `expiration = type(uint48).max`.
            // `nonce` is already at `add(m, 0xa0)`.
            // `spender` is already at `add(m, 0xc0)`.
            mstore(add(m, 0xe0), deadline)
            mstore(add(m, 0x100), 0x100) // `signature` offset.
            mstore(add(m, 0x120), 0x41) // `signature` length.
            mstore(add(m, 0x140), r)
            mstore(add(m, 0x160), s)
            mstore(add(m, 0x180), shl(248, v))
            if iszero(call(gas(), p, 0, add(m, 0x1c), 0x184, codesize(), 0x00)) {
                mstore(0x00, 0x6b836e6b) // `Permit2Failed()`.
                revert(0x1c, 0x04)
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Storage of the initializable contract.
     *
     * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
     * when using with upgradeable contracts.
     *
     * @custom:storage-location erc7201:openzeppelin.storage.Initializable
     */
    struct InitializableStorage {
        /**
         * @dev Indicates that the contract has been initialized.
         */
        uint64 _initialized;
        /**
         * @dev Indicates that the contract is in the process of being initialized.
         */
        bool _initializing;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;

    /**
     * @dev The contract is already initialized.
     */
    error InvalidInitialization();

    /**
     * @dev The contract is not initializing.
     */
    error NotInitializing();

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint64 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
     * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
     * production.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        // Cache values to avoid duplicated sloads
        bool isTopLevelCall = !$._initializing;
        uint64 initialized = $._initialized;

        // Allowed calls:
        // - initialSetup: the contract is not in the initializing state and no previous version was
        //                 initialized
        // - construction: the contract is initialized at version 1 (no reininitialization) and the
        //                 current contract is just being deployed
        bool initialSetup = initialized == 0 && isTopLevelCall;
        bool construction = initialized == 1 && address(this).code.length == 0;

        if (!initialSetup && !construction) {
            revert InvalidInitialization();
        }
        $._initialized = 1;
        if (isTopLevelCall) {
            $._initializing = true;
        }
        _;
        if (isTopLevelCall) {
            $._initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint64 version) {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing || $._initialized >= version) {
            revert InvalidInitialization();
        }
        $._initialized = version;
        $._initializing = true;
        _;
        $._initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        _checkInitializing();
        _;
    }

    /**
     * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
     */
    function _checkInitializing() internal view virtual {
        if (!_isInitializing()) {
            revert NotInitializing();
        }
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing) {
            revert InvalidInitialization();
        }
        if ($._initialized != type(uint64).max) {
            $._initialized = type(uint64).max;
            emit Initialized(type(uint64).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint64) {
        return _getInitializableStorage()._initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _getInitializableStorage()._initializing;
    }

    /**
     * @dev Returns a pointer to the storage namespace.
     */
    // solhint-disable-next-line var-name-mixedcase
    function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
        assembly {
            $.slot := INITIALIZABLE_STORAGE
        }
    }
}

// SPDX-License-Identifier: BUSL-1.1

pragma solidity ^0.8.21;

import {Initializable} from "@openzeppelin-upgradeable/proxy/utils/Initializable.sol";
import {ContextUpgradeable} from "@openzeppelin-upgradeable/utils/ContextUpgradeable.sol";

/// @dev Pauser contract that modifies https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/master/contracts/utils/PausableUpgradeable.sol
/// to enable the ability for pausing specific functions using bitmaps
contract Pauser is Initializable, ContextUpgradeable {
    struct PauserStorage {
        uint256 _paused;
    }

    // keccak256(abi.encode(uint256(keccak256("pauser.storage")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant PAUSER_STORAGE_SLOT = 0x271441cddf42198c20456f920f5dac04f245854c82f280f2e59e7095958d0b00;

    function _getPauserStorage() private pure returns (PauserStorage storage $) {
        assembly {
            $.slot := PAUSER_STORAGE_SLOT
        }
    }

    event Paused(address account, uint256 map);

    event Unpaused(address account, uint256 map);

    error EnforcedPause();

    error EnforcedPauseFunction(uint8 functionIndex);

    error AttemptedUnpauseWhilePausing();

    error AttemptedPauseWhileUnpausing();

    function __Pauser_init() internal onlyInitializing {
        __Pauser_init_unchained();
    }

    function __Pauser_init_unchained() internal onlyInitializing {
        _getPauserStorage()._paused = 0;
    }

    modifier whenNotPaused() {
        if (paused()) revert EnforcedPause();
        _;
    }

    modifier whenFunctionNotPaused(uint8 index) {
        if (paused(index)) revert EnforcedPauseFunction(index);
        _;
    }

    function paused() public view virtual returns (bool) {
        return (_getPauserStorage()._paused != 0);
    }

    function paused(uint8 index) public view virtual returns (bool) {
        uint256 mask = 1 << index;
        return ((_getPauserStorage()._paused & mask) != 0);
    }

    function pausedMap() public view virtual returns (uint256) {
        return _getPauserStorage()._paused;
    }

    function _pause(uint256 map) internal virtual {
        PauserStorage storage self = _getPauserStorage();
        if ((self._paused & map) != self._paused) revert AttemptedUnpauseWhilePausing();
        self._paused = map;
        emit Paused(_msgSender(), map);
    }

    function _unpause(uint256 map) internal virtual {
        PauserStorage storage self = _getPauserStorage();
        if (self._paused & map != map) revert AttemptedPauseWhileUnpausing();
        self._paused = map;
        emit Unpaused(_msgSender(), map);
    }
}

// SPDX-License-Identifier: SEE LICENSE IN LICENSE
pragma solidity ^0.8.25;

import {Constants} from "../interfaces/Constants.sol";
import "./Withdraw.sol";
import "../interfaces/Errors.sol";

library VaultLib {
    struct Config {
        // Required fields
        address asset;
        uint8 decimals;
        address operator;
        string name;
        string symbol;
        bytes extraData;
    }

    struct State {
        mapping(address staker => uint256 withdrawNonce) stakerToWithdrawNonce;
        mapping(bytes32 stakerWithdrawNonceKey => WithdrawLib.QueuedWithdrawal withdrawal) withdrawalMap;
    }

    function validateQueuedWithdrawal(State storage self, bytes32 withdrawalKey)
        internal
        view
        returns (WithdrawLib.QueuedWithdrawal memory qdWithdrawal)
    {
        qdWithdrawal = self.withdrawalMap[withdrawalKey];

        if (qdWithdrawal.start == 0) {
            revert WithdrawalNotFound();
        }

        if (qdWithdrawal.start + Constants.MIN_WITHDRAWAL_DELAY > block.timestamp) {
            revert MinWithdrawDelayNotPassed();
        }
    }
}

// SPDX-License-Identifier: SEE LICENSE IN LICENSE
pragma solidity ^0.8.25;

library WithdrawLib {
    struct QueuedWithdrawal {
        address staker;
        uint96 start;
        uint256 shares;
        address beneficiary;
    }

    function calculateWithdrawKey(address staker, uint256 stakerNonce) internal pure returns (bytes32) {
        return keccak256(abi.encode(staker, stakerNonce));
    }
}

File 12 of 33 : ExtSloads.sol
// SPDX-License-Identifier: SEE LICENSE IN LICENSE
pragma solidity ^0.8.25;

abstract contract ExtSloads {
    /// @notice Allows reading of arbitrary storage slots. Useful for reading inside embedded structs
    /// @dev Originally from Morpho Blue: https://github.com/morpho-org/morpho-blue/blob/d36719dcd2f37068478889782deac96e296719f0/src/Morpho.sol#L544-L557
    /// @param slots The storage slots to read
    /// @return res The values stored in the given storage slots
    function extSloads(bytes32[] calldata slots) public view virtual returns (bytes32[] memory res) {
        uint256 nSlots = slots.length;

        res = new bytes32[](nSlots);

        for (uint256 i; i < nSlots;) {
            bytes32 slot = slots[i++];

            assembly ("memory-safe") {
                mstore(add(res, mul(i, 32)), sload(slot))
            }
        }
    }
}

File 13 of 33 : Constants.sol
// SPDX-License-Identifier: SEE LICENSE IN LICENSE
pragma solidity ^0.8.25;

library Constants {
    address public constant DEFAULT_VAULT_IMPLEMENTATION_FLAG = address(1);
    address public constant SLASHED_ASSETS_DUMP_ADDRESS = address(1);

    // Bit from solady/src/auth/OwnableRoles.sol
    uint256 public constant MANAGER_ROLE = 1 << 0;
    uint256 public constant VETO_COMMITTEE_ROLE = 1 << 1;

    uint256 public constant SNAPSHOT_EXPIRY = 7 days;
    uint256 public constant SLASHING_WINDOW = 7 days;
    uint256 public constant SLASHING_VETO_WINDOW = 2 days;
    uint256 public constant MIN_STAKE_UPDATE_DELAY = SLASHING_WINDOW + SLASHING_VETO_WINDOW;
    uint256 public constant MIN_WITHDRAWAL_DELAY = SLASHING_WINDOW + SLASHING_VETO_WINDOW;

    uint256 public constant ONE_WAD = 1e18;

    uint256 public constant HUNDRED_PERCENT_WAD = 100e18;
    uint256 public constant MAX_SLASHING_PERCENT_WAD = HUNDRED_PERCENT_WAD;

    uint256 public constant MAX_VAULTS_PER_OPERATOR = 32;
    uint256 public constant MAX_SLASHABLE_VAULTS_PER_REQUEST = MAX_VAULTS_PER_OPERATOR;
    uint256 public constant MAX_DSS_PER_OPERATOR = 32;

    uint256 internal constant BEACON_ROOTS_RING_BUFFER = 8191;
    /// (https://eips.ethereum.org/EIPS/eip-4788)
    address internal constant BEACON_ROOTS_ADDRESS = 0x000F3df6D732807Ef1319fB7B8bB8522d0Beac02;

    uint256 public constant SLASHING_COOLDOWN = 2 days;

    // Vault function pausing index
    uint8 internal constant PAUSE_VAULT_DEPOSIT = 0;
    uint8 internal constant PAUSE_VAULT_DEPOSIT_SLIPPAGE = 1;
    uint8 internal constant PAUSE_VAULT_MINT = 2;
    uint8 internal constant PAUSE_VAULT_START_REDEEM = 3;
    uint8 internal constant PAUSE_VAULT_FINISH_REDEEM = 4;
    uint8 internal constant PAUSE_VAULT_WITHDRAW = 5;
    uint8 internal constant PAUSE_VAULT_REDEEM = 6;

    // Core function pausing index
    uint8 internal constant PAUSE_CORE_REGISTER_OPERATOR = 0;
    uint8 internal constant PAUSE_CORE_MODIFY_OPERATOR = 1;
    uint8 internal constant PAUSE_CORE_REGISTER_TO_DSS = 2;
    uint8 internal constant PAUSE_CORE_UNREGISTER_FROM_DSS = 3;
    uint8 internal constant PAUSE_CORE_REQUEST_STAKE_UPDATE = 4;
    uint8 internal constant PAUSE_CORE_FINALIZE_STAKE_UPDATE = 5;
    uint8 internal constant PAUSE_CORE_DEPLOY_VAULTS = 6;
    uint8 internal constant PAUSE_CORE_REQUEST_SLASHING = 7;
    uint8 internal constant PAUSE_CORE_CANCEL_SLASHING = 8;
    uint8 internal constant PAUSE_CORE_FINALIZE_SLASHING = 9;
    uint8 internal constant PAUSE_CORE_REGISTER_DSS = 10;

    // NativeNode function pausing index
    uint8 internal constant PAUSE_NODE_WITHDRAW = 0;

    // NativeVault function pausing index
    uint8 internal constant PAUSE_NATIVEVAULT_SLASHER = 0;
    uint8 internal constant PAUSE_NATIVEVAULT_CREATE_NODE = 1;
    uint8 internal constant PAUSE_NATIVEVAULT_START_SNAPSHOT = 2;
    uint8 internal constant PAUSE_NATIVEVAULT_START_WITHDRAWAL = 3;
    uint8 internal constant PAUSE_NATIVEVAULT_FINISH_WITHDRAWAL = 4;
    uint8 internal constant PAUSE_NATIVEVAULT_VALIDATE_SNAPSHOT = 5;
    uint8 internal constant PAUSE_NATIVEVAULT_NODE_IMPLEMENTATION = 6;
    uint8 internal constant PAUSE_NATIVEVAULT_VALIDATE_WITHDRAW_CREDS = 7;
    uint8 internal constant PAUSE_NATIVEVAULT_VALIDATE_EXPIRED_SNAPSHOT = 8;

    address internal constant NATIVE_ASSET_ADDR = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
}

// SPDX-License-Identifier: SEE LICENSE IN LICENSE
pragma solidity ^0.8.25;

import {IKarakBaseVault} from "./IKarakBaseVault.sol";
import {WithdrawLib} from "../entities/Withdraw.sol";

interface IVault is IKarakBaseVault {
    /* ========== MUTATIVE FUNCTIONS ========== */
    function deposit(uint256 assets, address to) external returns (uint256 shares);
    function deposit(uint256 assets, address to, uint256 minSharesOut) external returns (uint256 shares);
    function mint(uint256 shares, address to) external returns (uint256 assets);
    function startRedeem(uint256 shares, address withdrawer) external returns (bytes32 withdrawalKey);
    function finishRedeem(bytes32 withdrawalKey) external;
    /* ======================================== */

    /* ============ VIEW FUNCTIONS ============ */
    function owner() external view returns (address);
    function getNextWithdrawNonce(address staker) external view returns (uint256);
    function isWithdrawalPending(address staker, uint256 _withdrawNonce) external view returns (bool);
    function getQueuedWithdrawal(address staker, uint256 _withdrawNonce)
        external
        view
        returns (WithdrawLib.QueuedWithdrawal memory);
    function extSloads(bytes32[] calldata slots) external view returns (bytes32[] memory res);
    /* ======================================== */
}

// SPDX-License-Identifier: SEE LICENSE IN LICENSE
pragma solidity ^0.8.25;

import {VaultLib} from "../entities/VaultLib.sol";

interface IKarakBaseVault {
    /* ========== MUTATIVE FUNCTIONS ========== */
    function initialize(
        address _owner,
        address _operator,
        address _depositToken,
        string memory _name,
        string memory _symbol,
        bytes memory _extraData
    ) external;

    function slashAssets(uint256 slashPercentageWad, address slashingHandler)
        external
        returns (uint256 transferAmount);

    function pause(uint256 map) external;

    function unpause(uint256 map) external;
    /* ======================================== */

    /* ============ VIEW FUNCTIONS ============ */
    function totalAssets() external view returns (uint256);

    function name() external view returns (string memory);

    function symbol() external view returns (string memory);

    function decimals() external view returns (uint8);

    function vaultConfig() external pure returns (VaultLib.Config memory);

    function asset() external view returns (address);

    function pausedMap() external view returns (uint256);
    /* ======================================== */
}

// SPDX-License-Identifier: SEE LICENSE IN LICENSE
pragma solidity ^0.8.25;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

interface ISlashingHandler {
    function initialize(address owner, IERC20[] calldata _supportedAssets) external;
    function handleSlashing(IERC20 token, uint256 amount) external;
}

File 17 of 33 : Errors.sol
// SPDX-License-Identifier: SEE LICENSE IN LICENSE
pragma solidity ^0.8.25;

// Vault
error VaultNotAChildVault();
error InvalidVaultAdminFunction();
error UndefinedVaultType();
error NotEnoughShares();
error NotImplemented();
error RedeemMoreThanMax();
error DepositMoreThanMax();

// Staker
error WithdrawalNotFound();
error WithdrawAlreadyCompleted();

// Operator
error OperatorAlreadyRegisteredToDSS();
error OperatorNotRegistered();
error InvalidOperatorInput();
error OperatorStakeUpdateDelayNotPassed();
error InvalidQueuedStakeUpdateInput();
error InvalidStakePercentage();
error OperatorNotValidatingForDSS();
error PendingStakeUpdateRequest();
error MaxVaultCapacityReached();
error AllVaultsNotUnstakedFromDSS();
error MaxDSSCapacityReached();
error VaultAlreadyStakedInDSS();
error VaultNotStakedInDSS();

// Core
error VaultAlreadyDeployed();
error VaultImplNotAllowlisted();
error VaultNotStakedToDSS();
error StakesNotZero();
error AssetNotAllowlisted();
error DSSHookCallReverted(bytes32 revertReason);
error VaultCreationFailedAddrMismatch(address expected, address actual);
error InvalidLeverageComputation();

// Slashing
error InvalidSlashingParams();
error MinWithdrawDelayNotPassed();
error MinSlashingDelayNotPassed();
error SlashingHandlerNotAllowlisted();
error UnsupportedAsset();
error MaxSlashableVaultsPerRequestBreached();
error SlashingCooldownNotPassed();
error ZeroSlashPercentageWad();
error MaxSlashPercentageWadBreached();
error InvalidSlashingPercentageWad();
error DuplicateSlashingVaults();
error InvalidSlashingCount();

// DSS
error DSSNotRegistered();
error DSSAlreadyRegistered();

// Generic
error ZeroAddress();
error ZeroAmount();
error ZeroShares();
error ReservedAddress();
error NotEnoughGas();

// TODO: cleanup
// NativeRestakerNode
error NotEnoughETH();
error NotVaultSlasher();
error NotNodeOwner();
error DirectDepositToNode();
error PendingIncompleteSnapshot();
error NoBalanceUpdateToSnapshot();
error NoActiveSnapshot();
error AmountExceedsWithdrawableETH();
error BeaconTimestampTooOld();
error BeaconTimestampIsCurrent();
error BeaconRootFetchError();
error ValidatorAlreadyActive();
error ValidatorNotActive();
error ValidatorExiting();
error WithdrawalCredentialsMismatchWithNode();
error InvalidValidatorFieldsLength();
error InvalidValidatorFieldsProofLength();
error InvalidValidatorFieldsProofInclusion();
error InvalidBeaconStateProof();
error InvalidBalanceRootProof();
error InvalidBalanceRootProofLength();
error InvalidBalanceProof();
error InvalidBalanceProofLength();
error SnapshotNotExpired();
error SnapshotExpired();
error NodeCreationFailedAddressMismatch(address expected, address actual);
error DepositTokenNotAccepted();

// NativeRestakerNodeManager
error NodeAlreadyExists();
error NodeCreationFailedAddrMismatch(address expected, address actual);
error NotNativeRestakerNode();
error NotChildNode();
error LengthsDontMatch();
error EmptyArray();
error NotSmartContract();
error InvalidLeavesLength();
error AttemptedSnapshotInSameBlock();

File 18 of 33 : Events.sol
// SPDX-License-Identifier: SEE LICENSE IN LICENSE
pragma solidity ^0.8.25;

import "../entities/Operator.sol";
import {SlasherLib} from "../entities/SlasherLib.sol";

event StartedRedeem(address staker, address operator, uint256 shares, bytes32 withdrawKey, uint256 assets);

event FinishedRedeem(
    address staker, address beneficiary, address operator, uint256 shares, uint256 assetsClaimed, bytes32 withdrawRoot
);

event CanceledRedeem(address staker, address operator, uint256 shares, bytes32 withdrawRoot);

event NewVault(address vault, address implementation);

event DeployedVault(address operator, address vault, address asset);

event AddedVault(address operator, address vault, address vaultImplementation);

event UpgradedVault(address implementation, address vault);

event UpgradedAllVaults(address implementation);

event AllowlistedAssets(address[] assets, address[] slashingHandlers);

event RegisteredOperatorToDSS(address operator, address dss);

event UnregisteredOperatorToDSS(address operator, address dss);

event RequestedSlashing(address dss, SlasherLib.SlashRequest requestSlashing);

event CancelledSlashing(address canceller, SlasherLib.QueuedSlashing queuedSlashing);

event Slashed(uint256 assets);

event SkippedSlashing(address vault);

event FinalizedSlashing(address finisher, SlasherLib.QueuedSlashing queuedSlashing);

event RequestedStakeUpdate(Operator.QueuedStakeUpdate updateRequest);

event CanceledStakeUpdate(address operator, bytes32 stakeHash);

event FinishedStakeUpdate(Operator.QueuedStakeUpdate updateRequest);

event HookCallFailed(bytes32 returnData);

event HookCallSucceeded(bytes32 returnData);

event InterfaceNotSupported();

// TODO: reorganize and cleanup
// Native Restaking Events
event StartedWithdraw(address nodeOwner, address operator, bytes32 withdrawKey, uint256 assets, address recipient);

event FinishedWithdraw(address nodeOwner, address recipient, address operator, uint256 assets, bytes32 withdrawKey);

event NodeDeployed(address owner, address node, address nodeImplementation);

event NativeVaultInitialized(address owner, address manager, address operator);

event SnapshotCreated(address nodeOwner, address node, uint64 timestamp, bytes32 parentBeaconBlockRoot);

event SnapshotFinished(address nodeOwner, address node, uint64 snapshotTimestamp, int256 totalSharesWei);

event NodeETHWithdrawn(address node, address to, uint256 weiAmount);

event NativeRestakerNodeDeployed(address node, address implementation);

event RestakedValidator(address nodeOwner, address node, uint256 validatorIndex, uint64 timestamp, uint256 amountWei);

event ValidatorWithdrawn(address nodeOwner, address node, uint64 timestamp, uint40 validatorIndex);

event ValidatorBalanceChanged(
    address nodeOwner, address node, uint40 validatorIndex, uint64 timestamp, uint256 newBalanceWei
);

event SnapshotValidator(address nodeOwner, address node, uint64 timestamp, uint40 validatorIndex);

event UpgradedAllNodes(address implementation);

event DepositedSlashedAssets(address nativeNode, uint256 amount);

event IncreasedBalance(uint256 totalRestakedETH);

event DecreasedBalance(uint256 totalRestakedETH);

event DSSRegistered(address dss, uint256 maxSlashablePercentageWad);

event InitializeCore(
    address owner,
    address vaultImpl,
    address manager,
    address vetoCommittee,
    uint32 hookCallGasLimit,
    uint32 supportsInterfaceGasLimit,
    uint32 hookGasBuffer
);

event GasValuesUpdated(uint32 hookCallGasLimit, uint32 supportsInterfaceGasLimit, uint32 hookGasBuffer);

event AllowlistedVaultImpl(address vaultImpl);

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Simple ERC20 + EIP-2612 implementation.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/tokens/ERC20.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol)
///
/// @dev Note:
/// - The ERC20 standard allows minting and transferring to and from the zero address,
///   minting and transferring zero tokens, as well as self-approvals.
///   For performance, this implementation WILL NOT revert for such actions.
///   Please add any checks with overrides if desired.
/// - The `permit` function uses the ecrecover precompile (0x1).
///
/// If you are overriding:
/// - NEVER violate the ERC20 invariant:
///   the total sum of all balances must be equal to `totalSupply()`.
/// - Check that the overridden function is actually used in the function you want to
///   change the behavior of. Much of the code has been manually inlined for performance.
abstract contract ERC20 {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The total supply has overflowed.
    error TotalSupplyOverflow();

    /// @dev The allowance has overflowed.
    error AllowanceOverflow();

    /// @dev The allowance has underflowed.
    error AllowanceUnderflow();

    /// @dev Insufficient balance.
    error InsufficientBalance();

    /// @dev Insufficient allowance.
    error InsufficientAllowance();

    /// @dev The permit is invalid.
    error InvalidPermit();

    /// @dev The permit has expired.
    error PermitExpired();

    /// @dev The allowance of Permit2 is fixed at infinity.
    error Permit2AllowanceIsFixedAtInfinity();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                           EVENTS                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Emitted when `amount` tokens is transferred from `from` to `to`.
    event Transfer(address indexed from, address indexed to, uint256 amount);

    /// @dev Emitted when `amount` tokens is approved by `owner` to be used by `spender`.
    event Approval(address indexed owner, address indexed spender, uint256 amount);

    /// @dev `keccak256(bytes("Transfer(address,address,uint256)"))`.
    uint256 private constant _TRANSFER_EVENT_SIGNATURE =
        0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef;

    /// @dev `keccak256(bytes("Approval(address,address,uint256)"))`.
    uint256 private constant _APPROVAL_EVENT_SIGNATURE =
        0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          STORAGE                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The storage slot for the total supply.
    uint256 private constant _TOTAL_SUPPLY_SLOT = 0x05345cdf77eb68f44c;

    /// @dev The balance slot of `owner` is given by:
    /// ```
    ///     mstore(0x0c, _BALANCE_SLOT_SEED)
    ///     mstore(0x00, owner)
    ///     let balanceSlot := keccak256(0x0c, 0x20)
    /// ```
    uint256 private constant _BALANCE_SLOT_SEED = 0x87a211a2;

    /// @dev The allowance slot of (`owner`, `spender`) is given by:
    /// ```
    ///     mstore(0x20, spender)
    ///     mstore(0x0c, _ALLOWANCE_SLOT_SEED)
    ///     mstore(0x00, owner)
    ///     let allowanceSlot := keccak256(0x0c, 0x34)
    /// ```
    uint256 private constant _ALLOWANCE_SLOT_SEED = 0x7f5e9f20;

    /// @dev The nonce slot of `owner` is given by:
    /// ```
    ///     mstore(0x0c, _NONCES_SLOT_SEED)
    ///     mstore(0x00, owner)
    ///     let nonceSlot := keccak256(0x0c, 0x20)
    /// ```
    uint256 private constant _NONCES_SLOT_SEED = 0x38377508;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev `(_NONCES_SLOT_SEED << 16) | 0x1901`.
    uint256 private constant _NONCES_SLOT_SEED_WITH_SIGNATURE_PREFIX = 0x383775081901;

    /// @dev `keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)")`.
    bytes32 private constant _DOMAIN_TYPEHASH =
        0x8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f;

    /// @dev `keccak256("1")`.
    /// If you need to use a different version, override `_versionHash`.
    bytes32 private constant _DEFAULT_VERSION_HASH =
        0xc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc6;

    /// @dev `keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)")`.
    bytes32 private constant _PERMIT_TYPEHASH =
        0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;

    /// @dev The canonical Permit2 address.
    /// For signature-based allowance granting for single transaction ERC20 `transferFrom`.
    /// To enable, override `_givePermit2InfiniteAllowance()`.
    /// [Github](https://github.com/Uniswap/permit2)
    /// [Etherscan](https://etherscan.io/address/0x000000000022D473030F116dDEE9F6B43aC78BA3)
    address internal constant _PERMIT2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       ERC20 METADATA                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the name of the token.
    function name() public view virtual returns (string memory);

    /// @dev Returns the symbol of the token.
    function symbol() public view virtual returns (string memory);

    /// @dev Returns the decimals places of the token.
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                           ERC20                            */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the amount of tokens in existence.
    function totalSupply() public view virtual returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := sload(_TOTAL_SUPPLY_SLOT)
        }
    }

    /// @dev Returns the amount of tokens owned by `owner`.
    function balanceOf(address owner) public view virtual returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x0c, _BALANCE_SLOT_SEED)
            mstore(0x00, owner)
            result := sload(keccak256(0x0c, 0x20))
        }
    }

    /// @dev Returns the amount of tokens that `spender` can spend on behalf of `owner`.
    function allowance(address owner, address spender)
        public
        view
        virtual
        returns (uint256 result)
    {
        if (_givePermit2InfiniteAllowance()) {
            if (spender == _PERMIT2) return type(uint256).max;
        }
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x20, spender)
            mstore(0x0c, _ALLOWANCE_SLOT_SEED)
            mstore(0x00, owner)
            result := sload(keccak256(0x0c, 0x34))
        }
    }

    /// @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
    ///
    /// Emits a {Approval} event.
    function approve(address spender, uint256 amount) public virtual returns (bool) {
        if (_givePermit2InfiniteAllowance()) {
            /// @solidity memory-safe-assembly
            assembly {
                // If `spender == _PERMIT2 && amount != type(uint256).max`.
                if iszero(or(xor(shr(96, shl(96, spender)), _PERMIT2), iszero(not(amount)))) {
                    mstore(0x00, 0x3f68539a) // `Permit2AllowanceIsFixedAtInfinity()`.
                    revert(0x1c, 0x04)
                }
            }
        }
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the allowance slot and store the amount.
            mstore(0x20, spender)
            mstore(0x0c, _ALLOWANCE_SLOT_SEED)
            mstore(0x00, caller())
            sstore(keccak256(0x0c, 0x34), amount)
            // Emit the {Approval} event.
            mstore(0x00, amount)
            log3(0x00, 0x20, _APPROVAL_EVENT_SIGNATURE, caller(), shr(96, mload(0x2c)))
        }
        return true;
    }

    /// @dev Transfer `amount` tokens from the caller to `to`.
    ///
    /// Requirements:
    /// - `from` must at least have `amount`.
    ///
    /// Emits a {Transfer} event.
    function transfer(address to, uint256 amount) public virtual returns (bool) {
        _beforeTokenTransfer(msg.sender, to, amount);
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the balance slot and load its value.
            mstore(0x0c, _BALANCE_SLOT_SEED)
            mstore(0x00, caller())
            let fromBalanceSlot := keccak256(0x0c, 0x20)
            let fromBalance := sload(fromBalanceSlot)
            // Revert if insufficient balance.
            if gt(amount, fromBalance) {
                mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
                revert(0x1c, 0x04)
            }
            // Subtract and store the updated balance.
            sstore(fromBalanceSlot, sub(fromBalance, amount))
            // Compute the balance slot of `to`.
            mstore(0x00, to)
            let toBalanceSlot := keccak256(0x0c, 0x20)
            // Add and store the updated balance of `to`.
            // Will not overflow because the sum of all user balances
            // cannot exceed the maximum uint256 value.
            sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
            // Emit the {Transfer} event.
            mstore(0x20, amount)
            log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, caller(), shr(96, mload(0x0c)))
        }
        _afterTokenTransfer(msg.sender, to, amount);
        return true;
    }

    /// @dev Transfers `amount` tokens from `from` to `to`.
    ///
    /// Note: Does not update the allowance if it is the maximum uint256 value.
    ///
    /// Requirements:
    /// - `from` must at least have `amount`.
    /// - The caller must have at least `amount` of allowance to transfer the tokens of `from`.
    ///
    /// Emits a {Transfer} event.
    function transferFrom(address from, address to, uint256 amount) public virtual returns (bool) {
        _beforeTokenTransfer(from, to, amount);
        // Code duplication is for zero-cost abstraction if possible.
        if (_givePermit2InfiniteAllowance()) {
            /// @solidity memory-safe-assembly
            assembly {
                let from_ := shl(96, from)
                if iszero(eq(caller(), _PERMIT2)) {
                    // Compute the allowance slot and load its value.
                    mstore(0x20, caller())
                    mstore(0x0c, or(from_, _ALLOWANCE_SLOT_SEED))
                    let allowanceSlot := keccak256(0x0c, 0x34)
                    let allowance_ := sload(allowanceSlot)
                    // If the allowance is not the maximum uint256 value.
                    if not(allowance_) {
                        // Revert if the amount to be transferred exceeds the allowance.
                        if gt(amount, allowance_) {
                            mstore(0x00, 0x13be252b) // `InsufficientAllowance()`.
                            revert(0x1c, 0x04)
                        }
                        // Subtract and store the updated allowance.
                        sstore(allowanceSlot, sub(allowance_, amount))
                    }
                }
                // Compute the balance slot and load its value.
                mstore(0x0c, or(from_, _BALANCE_SLOT_SEED))
                let fromBalanceSlot := keccak256(0x0c, 0x20)
                let fromBalance := sload(fromBalanceSlot)
                // Revert if insufficient balance.
                if gt(amount, fromBalance) {
                    mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
                    revert(0x1c, 0x04)
                }
                // Subtract and store the updated balance.
                sstore(fromBalanceSlot, sub(fromBalance, amount))
                // Compute the balance slot of `to`.
                mstore(0x00, to)
                let toBalanceSlot := keccak256(0x0c, 0x20)
                // Add and store the updated balance of `to`.
                // Will not overflow because the sum of all user balances
                // cannot exceed the maximum uint256 value.
                sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
                // Emit the {Transfer} event.
                mstore(0x20, amount)
                log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, from_), shr(96, mload(0x0c)))
            }
        } else {
            /// @solidity memory-safe-assembly
            assembly {
                let from_ := shl(96, from)
                // Compute the allowance slot and load its value.
                mstore(0x20, caller())
                mstore(0x0c, or(from_, _ALLOWANCE_SLOT_SEED))
                let allowanceSlot := keccak256(0x0c, 0x34)
                let allowance_ := sload(allowanceSlot)
                // If the allowance is not the maximum uint256 value.
                if not(allowance_) {
                    // Revert if the amount to be transferred exceeds the allowance.
                    if gt(amount, allowance_) {
                        mstore(0x00, 0x13be252b) // `InsufficientAllowance()`.
                        revert(0x1c, 0x04)
                    }
                    // Subtract and store the updated allowance.
                    sstore(allowanceSlot, sub(allowance_, amount))
                }
                // Compute the balance slot and load its value.
                mstore(0x0c, or(from_, _BALANCE_SLOT_SEED))
                let fromBalanceSlot := keccak256(0x0c, 0x20)
                let fromBalance := sload(fromBalanceSlot)
                // Revert if insufficient balance.
                if gt(amount, fromBalance) {
                    mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
                    revert(0x1c, 0x04)
                }
                // Subtract and store the updated balance.
                sstore(fromBalanceSlot, sub(fromBalance, amount))
                // Compute the balance slot of `to`.
                mstore(0x00, to)
                let toBalanceSlot := keccak256(0x0c, 0x20)
                // Add and store the updated balance of `to`.
                // Will not overflow because the sum of all user balances
                // cannot exceed the maximum uint256 value.
                sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
                // Emit the {Transfer} event.
                mstore(0x20, amount)
                log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, from_), shr(96, mload(0x0c)))
            }
        }
        _afterTokenTransfer(from, to, amount);
        return true;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          EIP-2612                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev For more performance, override to return the constant value
    /// of `keccak256(bytes(name()))` if `name()` will never change.
    function _constantNameHash() internal view virtual returns (bytes32 result) {}

    /// @dev If you need a different value, override this function.
    function _versionHash() internal view virtual returns (bytes32 result) {
        result = _DEFAULT_VERSION_HASH;
    }

    /// @dev Returns the current nonce for `owner`.
    /// This value is used to compute the signature for EIP-2612 permit.
    function nonces(address owner) public view virtual returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the nonce slot and load its value.
            mstore(0x0c, _NONCES_SLOT_SEED)
            mstore(0x00, owner)
            result := sload(keccak256(0x0c, 0x20))
        }
    }

    /// @dev Sets `value` as the allowance of `spender` over the tokens of `owner`,
    /// authorized by a signed approval by `owner`.
    ///
    /// Emits a {Approval} event.
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        if (_givePermit2InfiniteAllowance()) {
            /// @solidity memory-safe-assembly
            assembly {
                // If `spender == _PERMIT2 && value != type(uint256).max`.
                if iszero(or(xor(shr(96, shl(96, spender)), _PERMIT2), iszero(not(value)))) {
                    mstore(0x00, 0x3f68539a) // `Permit2AllowanceIsFixedAtInfinity()`.
                    revert(0x1c, 0x04)
                }
            }
        }
        bytes32 nameHash = _constantNameHash();
        //  We simply calculate it on-the-fly to allow for cases where the `name` may change.
        if (nameHash == bytes32(0)) nameHash = keccak256(bytes(name()));
        bytes32 versionHash = _versionHash();
        /// @solidity memory-safe-assembly
        assembly {
            // Revert if the block timestamp is greater than `deadline`.
            if gt(timestamp(), deadline) {
                mstore(0x00, 0x1a15a3cc) // `PermitExpired()`.
                revert(0x1c, 0x04)
            }
            let m := mload(0x40) // Grab the free memory pointer.
            // Clean the upper 96 bits.
            owner := shr(96, shl(96, owner))
            spender := shr(96, shl(96, spender))
            // Compute the nonce slot and load its value.
            mstore(0x0e, _NONCES_SLOT_SEED_WITH_SIGNATURE_PREFIX)
            mstore(0x00, owner)
            let nonceSlot := keccak256(0x0c, 0x20)
            let nonceValue := sload(nonceSlot)
            // Prepare the domain separator.
            mstore(m, _DOMAIN_TYPEHASH)
            mstore(add(m, 0x20), nameHash)
            mstore(add(m, 0x40), versionHash)
            mstore(add(m, 0x60), chainid())
            mstore(add(m, 0x80), address())
            mstore(0x2e, keccak256(m, 0xa0))
            // Prepare the struct hash.
            mstore(m, _PERMIT_TYPEHASH)
            mstore(add(m, 0x20), owner)
            mstore(add(m, 0x40), spender)
            mstore(add(m, 0x60), value)
            mstore(add(m, 0x80), nonceValue)
            mstore(add(m, 0xa0), deadline)
            mstore(0x4e, keccak256(m, 0xc0))
            // Prepare the ecrecover calldata.
            mstore(0x00, keccak256(0x2c, 0x42))
            mstore(0x20, and(0xff, v))
            mstore(0x40, r)
            mstore(0x60, s)
            let t := staticcall(gas(), 1, 0, 0x80, 0x20, 0x20)
            // If the ecrecover fails, the returndatasize will be 0x00,
            // `owner` will be checked if it equals the hash at 0x00,
            // which evaluates to false (i.e. 0), and we will revert.
            // If the ecrecover succeeds, the returndatasize will be 0x20,
            // `owner` will be compared against the returned address at 0x20.
            if iszero(eq(mload(returndatasize()), owner)) {
                mstore(0x00, 0xddafbaef) // `InvalidPermit()`.
                revert(0x1c, 0x04)
            }
            // Increment and store the updated nonce.
            sstore(nonceSlot, add(nonceValue, t)) // `t` is 1 if ecrecover succeeds.
            // Compute the allowance slot and store the value.
            // The `owner` is already at slot 0x20.
            mstore(0x40, or(shl(160, _ALLOWANCE_SLOT_SEED), spender))
            sstore(keccak256(0x2c, 0x34), value)
            // Emit the {Approval} event.
            log3(add(m, 0x60), 0x20, _APPROVAL_EVENT_SIGNATURE, owner, spender)
            mstore(0x40, m) // Restore the free memory pointer.
            mstore(0x60, 0) // Restore the zero pointer.
        }
    }

    /// @dev Returns the EIP-712 domain separator for the EIP-2612 permit.
    function DOMAIN_SEPARATOR() public view virtual returns (bytes32 result) {
        bytes32 nameHash = _constantNameHash();
        //  We simply calculate it on-the-fly to allow for cases where the `name` may change.
        if (nameHash == bytes32(0)) nameHash = keccak256(bytes(name()));
        bytes32 versionHash = _versionHash();
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Grab the free memory pointer.
            mstore(m, _DOMAIN_TYPEHASH)
            mstore(add(m, 0x20), nameHash)
            mstore(add(m, 0x40), versionHash)
            mstore(add(m, 0x60), chainid())
            mstore(add(m, 0x80), address())
            result := keccak256(m, 0xa0)
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  INTERNAL MINT FUNCTIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Mints `amount` tokens to `to`, increasing the total supply.
    ///
    /// Emits a {Transfer} event.
    function _mint(address to, uint256 amount) internal virtual {
        _beforeTokenTransfer(address(0), to, amount);
        /// @solidity memory-safe-assembly
        assembly {
            let totalSupplyBefore := sload(_TOTAL_SUPPLY_SLOT)
            let totalSupplyAfter := add(totalSupplyBefore, amount)
            // Revert if the total supply overflows.
            if lt(totalSupplyAfter, totalSupplyBefore) {
                mstore(0x00, 0xe5cfe957) // `TotalSupplyOverflow()`.
                revert(0x1c, 0x04)
            }
            // Store the updated total supply.
            sstore(_TOTAL_SUPPLY_SLOT, totalSupplyAfter)
            // Compute the balance slot and load its value.
            mstore(0x0c, _BALANCE_SLOT_SEED)
            mstore(0x00, to)
            let toBalanceSlot := keccak256(0x0c, 0x20)
            // Add and store the updated balance.
            sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
            // Emit the {Transfer} event.
            mstore(0x20, amount)
            log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, 0, shr(96, mload(0x0c)))
        }
        _afterTokenTransfer(address(0), to, amount);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  INTERNAL BURN FUNCTIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Burns `amount` tokens from `from`, reducing the total supply.
    ///
    /// Emits a {Transfer} event.
    function _burn(address from, uint256 amount) internal virtual {
        _beforeTokenTransfer(from, address(0), amount);
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the balance slot and load its value.
            mstore(0x0c, _BALANCE_SLOT_SEED)
            mstore(0x00, from)
            let fromBalanceSlot := keccak256(0x0c, 0x20)
            let fromBalance := sload(fromBalanceSlot)
            // Revert if insufficient balance.
            if gt(amount, fromBalance) {
                mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
                revert(0x1c, 0x04)
            }
            // Subtract and store the updated balance.
            sstore(fromBalanceSlot, sub(fromBalance, amount))
            // Subtract and store the updated total supply.
            sstore(_TOTAL_SUPPLY_SLOT, sub(sload(_TOTAL_SUPPLY_SLOT), amount))
            // Emit the {Transfer} event.
            mstore(0x00, amount)
            log3(0x00, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, shl(96, from)), 0)
        }
        _afterTokenTransfer(from, address(0), amount);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                INTERNAL TRANSFER FUNCTIONS                 */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Moves `amount` of tokens from `from` to `to`.
    function _transfer(address from, address to, uint256 amount) internal virtual {
        _beforeTokenTransfer(from, to, amount);
        /// @solidity memory-safe-assembly
        assembly {
            let from_ := shl(96, from)
            // Compute the balance slot and load its value.
            mstore(0x0c, or(from_, _BALANCE_SLOT_SEED))
            let fromBalanceSlot := keccak256(0x0c, 0x20)
            let fromBalance := sload(fromBalanceSlot)
            // Revert if insufficient balance.
            if gt(amount, fromBalance) {
                mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
                revert(0x1c, 0x04)
            }
            // Subtract and store the updated balance.
            sstore(fromBalanceSlot, sub(fromBalance, amount))
            // Compute the balance slot of `to`.
            mstore(0x00, to)
            let toBalanceSlot := keccak256(0x0c, 0x20)
            // Add and store the updated balance of `to`.
            // Will not overflow because the sum of all user balances
            // cannot exceed the maximum uint256 value.
            sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
            // Emit the {Transfer} event.
            mstore(0x20, amount)
            log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, from_), shr(96, mload(0x0c)))
        }
        _afterTokenTransfer(from, to, amount);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                INTERNAL ALLOWANCE FUNCTIONS                */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Updates the allowance of `owner` for `spender` based on spent `amount`.
    function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
        if (_givePermit2InfiniteAllowance()) {
            if (spender == _PERMIT2) return; // Do nothing, as allowance is infinite.
        }
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the allowance slot and load its value.
            mstore(0x20, spender)
            mstore(0x0c, _ALLOWANCE_SLOT_SEED)
            mstore(0x00, owner)
            let allowanceSlot := keccak256(0x0c, 0x34)
            let allowance_ := sload(allowanceSlot)
            // If the allowance is not the maximum uint256 value.
            if not(allowance_) {
                // Revert if the amount to be transferred exceeds the allowance.
                if gt(amount, allowance_) {
                    mstore(0x00, 0x13be252b) // `InsufficientAllowance()`.
                    revert(0x1c, 0x04)
                }
                // Subtract and store the updated allowance.
                sstore(allowanceSlot, sub(allowance_, amount))
            }
        }
    }

    /// @dev Sets `amount` as the allowance of `spender` over the tokens of `owner`.
    ///
    /// Emits a {Approval} event.
    function _approve(address owner, address spender, uint256 amount) internal virtual {
        if (_givePermit2InfiniteAllowance()) {
            /// @solidity memory-safe-assembly
            assembly {
                // If `spender == _PERMIT2 && amount != type(uint256).max`.
                if iszero(or(xor(shr(96, shl(96, spender)), _PERMIT2), iszero(not(amount)))) {
                    mstore(0x00, 0x3f68539a) // `Permit2AllowanceIsFixedAtInfinity()`.
                    revert(0x1c, 0x04)
                }
            }
        }
        /// @solidity memory-safe-assembly
        assembly {
            let owner_ := shl(96, owner)
            // Compute the allowance slot and store the amount.
            mstore(0x20, spender)
            mstore(0x0c, or(owner_, _ALLOWANCE_SLOT_SEED))
            sstore(keccak256(0x0c, 0x34), amount)
            // Emit the {Approval} event.
            mstore(0x00, amount)
            log3(0x00, 0x20, _APPROVAL_EVENT_SIGNATURE, shr(96, owner_), shr(96, mload(0x2c)))
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     HOOKS TO OVERRIDE                      */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Hook that is called before any transfer of tokens.
    /// This includes minting and burning.
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}

    /// @dev Hook that is called after any transfer of tokens.
    /// This includes minting and burning.
    function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          PERMIT2                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns whether to fix the Permit2 contract's allowance at infinity.
    ///
    /// This value should be kept constant after contract initialization,
    /// or else the actual allowance values may not match with the {Approval} events.
    /// For best performance, return a compile-time constant for zero-cost abstraction.
    function _givePermit2InfiniteAllowance() internal view virtual returns (bool) {
        return false;
    }
}

File 20 of 33 : FixedPointMathLib.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
library FixedPointMathLib {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The operation failed, as the output exceeds the maximum value of uint256.
    error ExpOverflow();

    /// @dev The operation failed, as the output exceeds the maximum value of uint256.
    error FactorialOverflow();

    /// @dev The operation failed, due to an overflow.
    error RPowOverflow();

    /// @dev The mantissa is too big to fit.
    error MantissaOverflow();

    /// @dev The operation failed, due to an multiplication overflow.
    error MulWadFailed();

    /// @dev The operation failed, due to an multiplication overflow.
    error SMulWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error DivWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error SDivWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error MulDivFailed();

    /// @dev The division failed, as the denominator is zero.
    error DivFailed();

    /// @dev The full precision multiply-divide operation failed, either due
    /// to the result being larger than 256 bits, or a division by a zero.
    error FullMulDivFailed();

    /// @dev The output is undefined, as the input is less-than-or-equal to zero.
    error LnWadUndefined();

    /// @dev The input outside the acceptable domain.
    error OutOfDomain();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The scalar of ETH and most ERC20s.
    uint256 internal constant WAD = 1e18;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*              SIMPLIFIED FIXED POINT OPERATIONS             */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Equivalent to `(x * y) / WAD` rounded down.
    function mulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
            if gt(x, div(not(0), y)) {
                if y {
                    mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            z := div(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down.
    function sMulWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require((x == 0 || z / x == y) && !(x == -1 && y == type(int256).min))`.
            if iszero(gt(or(iszero(x), eq(sdiv(z, x), y)), lt(not(x), eq(y, shl(255, 1))))) {
                mstore(0x00, 0xedcd4dd4) // `SMulWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := sdiv(z, WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
    function rawMulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
    function rawSMulWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded up.
    function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
            if iszero(eq(div(z, y), x)) {
                if y {
                    mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            z := add(iszero(iszero(mod(z, WAD))), div(z, WAD))
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded up, but without overflow checks.
    function rawMulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD))
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down.
    function divWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`.
            if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) {
                mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := div(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down.
    function sDivWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, WAD)
            // Equivalent to `require(y != 0 && ((x * WAD) / WAD == x))`.
            if iszero(mul(y, eq(sdiv(z, WAD), x))) {
                mstore(0x00, 0x5c43740d) // `SDivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := sdiv(z, y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
    function rawDivWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
    function rawSDivWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded up.
    function divWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`.
            if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) {
                mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded up, but without overflow and divide by zero checks.
    function rawDivWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
        }
    }

    /// @dev Equivalent to `x` to the power of `y`.
    /// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`.
    /// Note: This function is an approximation.
    function powWad(int256 x, int256 y) internal pure returns (int256) {
        // Using `ln(x)` means `x` must be greater than 0.
        return expWad((lnWad(x) * y) / int256(WAD));
    }

    /// @dev Returns `exp(x)`, denominated in `WAD`.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
    /// Note: This function is an approximation. Monotonically increasing.
    function expWad(int256 x) internal pure returns (int256 r) {
        unchecked {
            // When the result is less than 0.5 we return zero.
            // This happens when `x <= (log(1e-18) * 1e18) ~ -4.15e19`.
            if (x <= -41446531673892822313) return r;

            /// @solidity memory-safe-assembly
            assembly {
                // When the result is greater than `(2**255 - 1) / 1e18` we can not represent it as
                // an int. This happens when `x >= floor(log((2**255 - 1) / 1e18) * 1e18) ≈ 135`.
                if iszero(slt(x, 135305999368893231589)) {
                    mstore(0x00, 0xa37bfec9) // `ExpOverflow()`.
                    revert(0x1c, 0x04)
                }
            }

            // `x` is now in the range `(-42, 136) * 1e18`. Convert to `(-42, 136) * 2**96`
            // for more intermediate precision and a binary basis. This base conversion
            // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
            x = (x << 78) / 5 ** 18;

            // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
            // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
            // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
            int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96;
            x = x - k * 54916777467707473351141471128;

            // `k` is in the range `[-61, 195]`.

            // Evaluate using a (6, 7)-term rational approximation.
            // `p` is made monic, we'll multiply by a scale factor later.
            int256 y = x + 1346386616545796478920950773328;
            y = ((y * x) >> 96) + 57155421227552351082224309758442;
            int256 p = y + x - 94201549194550492254356042504812;
            p = ((p * y) >> 96) + 28719021644029726153956944680412240;
            p = p * x + (4385272521454847904659076985693276 << 96);

            // We leave `p` in `2**192` basis so we don't need to scale it back up for the division.
            int256 q = x - 2855989394907223263936484059900;
            q = ((q * x) >> 96) + 50020603652535783019961831881945;
            q = ((q * x) >> 96) - 533845033583426703283633433725380;
            q = ((q * x) >> 96) + 3604857256930695427073651918091429;
            q = ((q * x) >> 96) - 14423608567350463180887372962807573;
            q = ((q * x) >> 96) + 26449188498355588339934803723976023;

            /// @solidity memory-safe-assembly
            assembly {
                // Div in assembly because solidity adds a zero check despite the unchecked.
                // The q polynomial won't have zeros in the domain as all its roots are complex.
                // No scaling is necessary because p is already `2**96` too large.
                r := sdiv(p, q)
            }

            // r should be in the range `(0.09, 0.25) * 2**96`.

            // We now need to multiply r by:
            // - The scale factor `s ≈ 6.031367120`.
            // - The `2**k` factor from the range reduction.
            // - The `1e18 / 2**96` factor for base conversion.
            // We do this all at once, with an intermediate result in `2**213`
            // basis, so the final right shift is always by a positive amount.
            r = int256(
                (uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)
            );
        }
    }

    /// @dev Returns `ln(x)`, denominated in `WAD`.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
    /// Note: This function is an approximation. Monotonically increasing.
    function lnWad(int256 x) internal pure returns (int256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            // We want to convert `x` from `10**18` fixed point to `2**96` fixed point.
            // We do this by multiplying by `2**96 / 10**18`. But since
            // `ln(x * C) = ln(x) + ln(C)`, we can simply do nothing here
            // and add `ln(2**96 / 10**18)` at the end.

            // Compute `k = log2(x) - 96`, `r = 159 - k = 255 - log2(x) = 255 ^ log2(x)`.
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // We place the check here for more optimal stack operations.
            if iszero(sgt(x, 0)) {
                mstore(0x00, 0x1615e638) // `LnWadUndefined()`.
                revert(0x1c, 0x04)
            }
            // forgefmt: disable-next-item
            r := xor(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff))

            // Reduce range of x to (1, 2) * 2**96
            // ln(2^k * x) = k * ln(2) + ln(x)
            x := shr(159, shl(r, x))

            // Evaluate using a (8, 8)-term rational approximation.
            // `p` is made monic, we will multiply by a scale factor later.
            // forgefmt: disable-next-item
            let p := sub( // This heavily nested expression is to avoid stack-too-deep for via-ir.
                sar(96, mul(add(43456485725739037958740375743393,
                sar(96, mul(add(24828157081833163892658089445524,
                sar(96, mul(add(3273285459638523848632254066296,
                    x), x))), x))), x)), 11111509109440967052023855526967)
            p := sub(sar(96, mul(p, x)), 45023709667254063763336534515857)
            p := sub(sar(96, mul(p, x)), 14706773417378608786704636184526)
            p := sub(mul(p, x), shl(96, 795164235651350426258249787498))
            // We leave `p` in `2**192` basis so we don't need to scale it back up for the division.

            // `q` is monic by convention.
            let q := add(5573035233440673466300451813936, x)
            q := add(71694874799317883764090561454958, sar(96, mul(x, q)))
            q := add(283447036172924575727196451306956, sar(96, mul(x, q)))
            q := add(401686690394027663651624208769553, sar(96, mul(x, q)))
            q := add(204048457590392012362485061816622, sar(96, mul(x, q)))
            q := add(31853899698501571402653359427138, sar(96, mul(x, q)))
            q := add(909429971244387300277376558375, sar(96, mul(x, q)))

            // `p / q` is in the range `(0, 0.125) * 2**96`.

            // Finalization, we need to:
            // - Multiply by the scale factor `s = 5.549…`.
            // - Add `ln(2**96 / 10**18)`.
            // - Add `k * ln(2)`.
            // - Multiply by `10**18 / 2**96 = 5**18 >> 78`.

            // The q polynomial is known not to have zeros in the domain.
            // No scaling required because p is already `2**96` too large.
            p := sdiv(p, q)
            // Multiply by the scaling factor: `s * 5**18 * 2**96`, base is now `5**18 * 2**192`.
            p := mul(1677202110996718588342820967067443963516166, p)
            // Add `ln(2) * k * 5**18 * 2**192`.
            // forgefmt: disable-next-item
            p := add(mul(16597577552685614221487285958193947469193820559219878177908093499208371, sub(159, r)), p)
            // Add `ln(2**96 / 10**18) * 5**18 * 2**192`.
            p := add(600920179829731861736702779321621459595472258049074101567377883020018308, p)
            // Base conversion: mul `2**18 / 2**192`.
            r := sar(174, p)
        }
    }

    /// @dev Returns `W_0(x)`, denominated in `WAD`.
    /// See: https://en.wikipedia.org/wiki/Lambert_W_function
    /// a.k.a. Product log function. This is an approximation of the principal branch.
    /// Note: This function is an approximation. Monotonically increasing.
    function lambertW0Wad(int256 x) internal pure returns (int256 w) {
        // forgefmt: disable-next-item
        unchecked {
            if ((w = x) <= -367879441171442322) revert OutOfDomain(); // `x` less than `-1/e`.
            (int256 wad, int256 p) = (int256(WAD), x);
            uint256 c; // Whether we need to avoid catastrophic cancellation.
            uint256 i = 4; // Number of iterations.
            if (w <= 0x1ffffffffffff) {
                if (-0x4000000000000 <= w) {
                    i = 1; // Inputs near zero only take one step to converge.
                } else if (w <= -0x3ffffffffffffff) {
                    i = 32; // Inputs near `-1/e` take very long to converge.
                }
            } else if (uint256(w >> 63) == uint256(0)) {
                /// @solidity memory-safe-assembly
                assembly {
                    // Inline log2 for more performance, since the range is small.
                    let v := shr(49, w)
                    let l := shl(3, lt(0xff, v))
                    l := add(or(l, byte(and(0x1f, shr(shr(l, v), 0x8421084210842108cc6318c6db6d54be)),
                        0x0706060506020504060203020504030106050205030304010505030400000000)), 49)
                    w := sdiv(shl(l, 7), byte(sub(l, 31), 0x0303030303030303040506080c13))
                    c := gt(l, 60)
                    i := add(2, add(gt(l, 53), c))
                }
            } else {
                int256 ll = lnWad(w = lnWad(w));
                /// @solidity memory-safe-assembly
                assembly {
                    // `w = ln(x) - ln(ln(x)) + b * ln(ln(x)) / ln(x)`.
                    w := add(sdiv(mul(ll, 1023715080943847266), w), sub(w, ll))
                    i := add(3, iszero(shr(68, x)))
                    c := iszero(shr(143, x))
                }
                if (c == uint256(0)) {
                    do { // If `x` is big, use Newton's so that intermediate values won't overflow.
                        int256 e = expWad(w);
                        /// @solidity memory-safe-assembly
                        assembly {
                            let t := mul(w, div(e, wad))
                            w := sub(w, sdiv(sub(t, x), div(add(e, t), wad)))
                        }
                        if (p <= w) break;
                        p = w;
                    } while (--i != uint256(0));
                    /// @solidity memory-safe-assembly
                    assembly {
                        w := sub(w, sgt(w, 2))
                    }
                    return w;
                }
            }
            do { // Otherwise, use Halley's for faster convergence.
                int256 e = expWad(w);
                /// @solidity memory-safe-assembly
                assembly {
                    let t := add(w, wad)
                    let s := sub(mul(w, e), mul(x, wad))
                    w := sub(w, sdiv(mul(s, wad), sub(mul(e, t), sdiv(mul(add(t, wad), s), add(t, t)))))
                }
                if (p <= w) break;
                p = w;
            } while (--i != c);
            /// @solidity memory-safe-assembly
            assembly {
                w := sub(w, sgt(w, 2))
            }
            // For certain ranges of `x`, we'll use the quadratic-rate recursive formula of
            // R. Iacono and J.P. Boyd for the last iteration, to avoid catastrophic cancellation.
            if (c == uint256(0)) return w;
            int256 t = w | 1;
            /// @solidity memory-safe-assembly
            assembly {
                x := sdiv(mul(x, wad), t)
            }
            x = (t * (wad + lnWad(x)));
            /// @solidity memory-safe-assembly
            assembly {
                w := sdiv(x, add(wad, t))
            }
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  GENERAL NUMBER UTILITIES                  */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Calculates `floor(x * y / d)` with full precision.
    /// Throws if result overflows a uint256 or when `d` is zero.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/21/muldiv
    function fullMulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            // 512-bit multiply `[p1 p0] = x * y`.
            // Compute the product mod `2**256` and mod `2**256 - 1`
            // then use the Chinese Remainder Theorem to reconstruct
            // the 512 bit result. The result is stored in two 256
            // variables such that `product = p1 * 2**256 + p0`.

            // Temporarily use `result` as `p0` to save gas.
            result := mul(x, y) // Lower 256 bits of `x * y`.
            for {} 1 {} {
                // If overflows.
                if iszero(mul(or(iszero(x), eq(div(result, x), y)), d)) {
                    let mm := mulmod(x, y, not(0))
                    let p1 := sub(mm, add(result, lt(mm, result))) // Upper 256 bits of `x * y`.

                    /*------------------- 512 by 256 division --------------------*/

                    // Make division exact by subtracting the remainder from `[p1 p0]`.
                    let r := mulmod(x, y, d) // Compute remainder using mulmod.
                    let t := and(d, sub(0, d)) // The least significant bit of `d`. `t >= 1`.
                    // Make sure the result is less than `2**256`. Also prevents `d == 0`.
                    // Placing the check here seems to give more optimal stack operations.
                    if iszero(gt(d, p1)) {
                        mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                        revert(0x1c, 0x04)
                    }
                    d := div(d, t) // Divide `d` by `t`, which is a power of two.
                    // Invert `d mod 2**256`
                    // Now that `d` is an odd number, it has an inverse
                    // modulo `2**256` such that `d * inv = 1 mod 2**256`.
                    // Compute the inverse by starting with a seed that is correct
                    // correct for four bits. That is, `d * inv = 1 mod 2**4`.
                    let inv := xor(2, mul(3, d))
                    // Now use Newton-Raphson iteration to improve the precision.
                    // Thanks to Hensel's lifting lemma, this also works in modular
                    // arithmetic, doubling the correct bits in each step.
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**8
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**16
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**32
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**64
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**128
                    result :=
                        mul(
                            // Divide [p1 p0] by the factors of two.
                            // Shift in bits from `p1` into `p0`. For this we need
                            // to flip `t` such that it is `2**256 / t`.
                            or(
                                mul(sub(p1, gt(r, result)), add(div(sub(0, t), t), 1)),
                                div(sub(result, r), t)
                            ),
                            mul(sub(2, mul(d, inv)), inv) // inverse mod 2**256
                        )
                    break
                }
                result := div(result, d)
                break
            }
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision.
    /// Behavior is undefined if `d` is zero or the final result cannot fit in 256 bits.
    /// Performs the full 512 bit calculation regardless.
    function fullMulDivUnchecked(uint256 x, uint256 y, uint256 d)
        internal
        pure
        returns (uint256 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            result := mul(x, y)
            let mm := mulmod(x, y, not(0))
            let p1 := sub(mm, add(result, lt(mm, result)))
            let t := and(d, sub(0, d))
            let r := mulmod(x, y, d)
            d := div(d, t)
            let inv := xor(2, mul(3, d))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            result :=
                mul(
                    or(mul(sub(p1, gt(r, result)), add(div(sub(0, t), t), 1)), div(sub(result, r), t)),
                    mul(sub(2, mul(d, inv)), inv)
                )
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision, rounded up.
    /// Throws if result overflows a uint256 or when `d` is zero.
    /// Credit to Uniswap-v3-core under MIT license:
    /// https://github.com/Uniswap/v3-core/blob/main/contracts/libraries/FullMath.sol
    function fullMulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 result) {
        result = fullMulDiv(x, y, d);
        /// @solidity memory-safe-assembly
        assembly {
            if mulmod(x, y, d) {
                result := add(result, 1)
                if iszero(result) {
                    mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                    revert(0x1c, 0x04)
                }
            }
        }
    }

    /// @dev Returns `floor(x * y / d)`.
    /// Reverts if `x * y` overflows, or `d` is zero.
    function mulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
            if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                revert(0x1c, 0x04)
            }
            z := div(z, d)
        }
    }

    /// @dev Returns `ceil(x * y / d)`.
    /// Reverts if `x * y` overflows, or `d` is zero.
    function mulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
            if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(z, d))), div(z, d))
        }
    }

    /// @dev Returns `ceil(x / d)`.
    /// Reverts if `d` is zero.
    function divUp(uint256 x, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(d) {
                mstore(0x00, 0x65244e4e) // `DivFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(x, d))), div(x, d))
        }
    }

    /// @dev Returns `max(0, x - y)`.
    function zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(gt(x, y), sub(x, y))
        }
    }

    /// @dev Returns `condition ? x : y`, without branching.
    function ternary(bool condition, uint256 x, uint256 y) internal pure returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := xor(x, mul(xor(x, y), iszero(condition)))
        }
    }

    /// @dev Exponentiate `x` to `y` by squaring, denominated in base `b`.
    /// Reverts if the computation overflows.
    function rpow(uint256 x, uint256 y, uint256 b) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(b, iszero(y)) // `0 ** 0 = 1`. Otherwise, `0 ** n = 0`.
            if x {
                z := xor(b, mul(xor(b, x), and(y, 1))) // `z = isEven(y) ? scale : x`
                let half := shr(1, b) // Divide `b` by 2.
                // Divide `y` by 2 every iteration.
                for { y := shr(1, y) } y { y := shr(1, y) } {
                    let xx := mul(x, x) // Store x squared.
                    let xxRound := add(xx, half) // Round to the nearest number.
                    // Revert if `xx + half` overflowed, or if `x ** 2` overflows.
                    if or(lt(xxRound, xx), shr(128, x)) {
                        mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                        revert(0x1c, 0x04)
                    }
                    x := div(xxRound, b) // Set `x` to scaled `xxRound`.
                    // If `y` is odd:
                    if and(y, 1) {
                        let zx := mul(z, x) // Compute `z * x`.
                        let zxRound := add(zx, half) // Round to the nearest number.
                        // If `z * x` overflowed or `zx + half` overflowed:
                        if or(xor(div(zx, x), z), lt(zxRound, zx)) {
                            // Revert if `x` is non-zero.
                            if x {
                                mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                                revert(0x1c, 0x04)
                            }
                        }
                        z := div(zxRound, b) // Return properly scaled `zxRound`.
                    }
                }
            }
        }
    }

    /// @dev Returns the square root of `x`, rounded down.
    function sqrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`.
            z := 181 // The "correct" value is 1, but this saves a multiplication later.

            // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
            // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.

            // Let `y = x / 2**r`. We check `y >= 2**(k + 8)`
            // but shift right by `k` bits to ensure that if `x >= 256`, then `y >= 256`.
            let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffffff, shr(r, x))))
            z := shl(shr(1, r), z)

            // Goal was to get `z*z*y` within a small factor of `x`. More iterations could
            // get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`.
            // We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small.
            // That's not possible if `x < 256` but we can just verify those cases exhaustively.

            // Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`.
            // Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`.
            // Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps.

            // For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)`
            // is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`,
            // with largest error when `s = 1` and when `s = 256` or `1/256`.

            // Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`.
            // Then we can estimate `sqrt(y)` using
            // `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`.

            // There is no overflow risk here since `y < 2**136` after the first branch above.
            z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181.

            // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))

            // If `x+1` is a perfect square, the Babylonian method cycles between
            // `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor.
            // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
            z := sub(z, lt(div(x, z), z))
        }
    }

    /// @dev Returns the cube root of `x`, rounded down.
    /// Credit to bout3fiddy and pcaversaccio under AGPLv3 license:
    /// https://github.com/pcaversaccio/snekmate/blob/main/src/utils/Math.vy
    /// Formally verified by xuwinnie:
    /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf
    function cbrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            let r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // Makeshift lookup table to nudge the approximate log2 result.
            z := div(shl(div(r, 3), shl(lt(0xf, shr(r, x)), 0xf)), xor(7, mod(r, 3)))
            // Newton-Raphson's.
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            // Round down.
            z := sub(z, lt(div(x, mul(z, z)), z))
        }
    }

    /// @dev Returns the square root of `x`, denominated in `WAD`, rounded down.
    function sqrtWad(uint256 x) internal pure returns (uint256 z) {
        unchecked {
            if (x <= type(uint256).max / 10 ** 18) return sqrt(x * 10 ** 18);
            z = (1 + sqrt(x)) * 10 ** 9;
            z = (fullMulDivUnchecked(x, 10 ** 18, z) + z) >> 1;
        }
        /// @solidity memory-safe-assembly
        assembly {
            z := sub(z, gt(999999999999999999, sub(mulmod(z, z, x), 1))) // Round down.
        }
    }

    /// @dev Returns the cube root of `x`, denominated in `WAD`, rounded down.
    /// Formally verified by xuwinnie:
    /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf
    function cbrtWad(uint256 x) internal pure returns (uint256 z) {
        unchecked {
            if (x <= type(uint256).max / 10 ** 36) return cbrt(x * 10 ** 36);
            z = (1 + cbrt(x)) * 10 ** 12;
            z = (fullMulDivUnchecked(x, 10 ** 36, z * z) + z + z) / 3;
        }
        /// @solidity memory-safe-assembly
        assembly {
            let p := x
            for {} 1 {} {
                if iszero(shr(229, p)) {
                    if iszero(shr(199, p)) {
                        p := mul(p, 100000000000000000) // 10 ** 17.
                        break
                    }
                    p := mul(p, 100000000) // 10 ** 8.
                    break
                }
                if iszero(shr(249, p)) { p := mul(p, 100) }
                break
            }
            let t := mulmod(mul(z, z), z, p)
            z := sub(z, gt(lt(t, shr(1, p)), iszero(t))) // Round down.
        }
    }

    /// @dev Returns the factorial of `x`.
    function factorial(uint256 x) internal pure returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := 1
            if iszero(lt(x, 58)) {
                mstore(0x00, 0xaba0f2a2) // `FactorialOverflow()`.
                revert(0x1c, 0x04)
            }
            for {} x { x := sub(x, 1) } { result := mul(result, x) }
        }
    }

    /// @dev Returns the log2 of `x`.
    /// Equivalent to computing the index of the most significant bit (MSB) of `x`.
    /// Returns 0 if `x` is zero.
    function log2(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // forgefmt: disable-next-item
            r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                0x0706060506020504060203020504030106050205030304010505030400000000))
        }
    }

    /// @dev Returns the log2 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log2Up(uint256 x) internal pure returns (uint256 r) {
        r = log2(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(shl(r, 1), x))
        }
    }

    /// @dev Returns the log10 of `x`.
    /// Returns 0 if `x` is zero.
    function log10(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(lt(x, 100000000000000000000000000000000000000)) {
                x := div(x, 100000000000000000000000000000000000000)
                r := 38
            }
            if iszero(lt(x, 100000000000000000000)) {
                x := div(x, 100000000000000000000)
                r := add(r, 20)
            }
            if iszero(lt(x, 10000000000)) {
                x := div(x, 10000000000)
                r := add(r, 10)
            }
            if iszero(lt(x, 100000)) {
                x := div(x, 100000)
                r := add(r, 5)
            }
            r := add(r, add(gt(x, 9), add(gt(x, 99), add(gt(x, 999), gt(x, 9999)))))
        }
    }

    /// @dev Returns the log10 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log10Up(uint256 x) internal pure returns (uint256 r) {
        r = log10(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(exp(10, r), x))
        }
    }

    /// @dev Returns the log256 of `x`.
    /// Returns 0 if `x` is zero.
    function log256(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(shr(3, r), lt(0xff, shr(r, x)))
        }
    }

    /// @dev Returns the log256 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log256Up(uint256 x) internal pure returns (uint256 r) {
        r = log256(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(shl(shl(3, r), 1), x))
        }
    }

    /// @dev Returns the scientific notation format `mantissa * 10 ** exponent` of `x`.
    /// Useful for compressing prices (e.g. using 25 bit mantissa and 7 bit exponent).
    function sci(uint256 x) internal pure returns (uint256 mantissa, uint256 exponent) {
        /// @solidity memory-safe-assembly
        assembly {
            mantissa := x
            if mantissa {
                if iszero(mod(mantissa, 1000000000000000000000000000000000)) {
                    mantissa := div(mantissa, 1000000000000000000000000000000000)
                    exponent := 33
                }
                if iszero(mod(mantissa, 10000000000000000000)) {
                    mantissa := div(mantissa, 10000000000000000000)
                    exponent := add(exponent, 19)
                }
                if iszero(mod(mantissa, 1000000000000)) {
                    mantissa := div(mantissa, 1000000000000)
                    exponent := add(exponent, 12)
                }
                if iszero(mod(mantissa, 1000000)) {
                    mantissa := div(mantissa, 1000000)
                    exponent := add(exponent, 6)
                }
                if iszero(mod(mantissa, 10000)) {
                    mantissa := div(mantissa, 10000)
                    exponent := add(exponent, 4)
                }
                if iszero(mod(mantissa, 100)) {
                    mantissa := div(mantissa, 100)
                    exponent := add(exponent, 2)
                }
                if iszero(mod(mantissa, 10)) {
                    mantissa := div(mantissa, 10)
                    exponent := add(exponent, 1)
                }
            }
        }
    }

    /// @dev Convenience function for packing `x` into a smaller number using `sci`.
    /// The `mantissa` will be in bits [7..255] (the upper 249 bits).
    /// The `exponent` will be in bits [0..6] (the lower 7 bits).
    /// Use `SafeCastLib` to safely ensure that the `packed` number is small
    /// enough to fit in the desired unsigned integer type:
    /// ```
    ///     uint32 packed = SafeCastLib.toUint32(FixedPointMathLib.packSci(777 ether));
    /// ```
    function packSci(uint256 x) internal pure returns (uint256 packed) {
        (x, packed) = sci(x); // Reuse for `mantissa` and `exponent`.
        /// @solidity memory-safe-assembly
        assembly {
            if shr(249, x) {
                mstore(0x00, 0xce30380c) // `MantissaOverflow()`.
                revert(0x1c, 0x04)
            }
            packed := or(shl(7, x), packed)
        }
    }

    /// @dev Convenience function for unpacking a packed number from `packSci`.
    function unpackSci(uint256 packed) internal pure returns (uint256 unpacked) {
        unchecked {
            unpacked = (packed >> 7) * 10 ** (packed & 0x7f);
        }
    }

    /// @dev Returns the average of `x` and `y`. Rounds towards zero.
    function avg(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = (x & y) + ((x ^ y) >> 1);
        }
    }

    /// @dev Returns the average of `x` and `y`. Rounds towards negative infinity.
    function avg(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = (x >> 1) + (y >> 1) + (x & y & 1);
        }
    }

    /// @dev Returns the absolute value of `x`.
    function abs(int256 x) internal pure returns (uint256 z) {
        unchecked {
            z = (uint256(x) + uint256(x >> 255)) ^ uint256(x >> 255);
        }
    }

    /// @dev Returns the absolute distance between `x` and `y`.
    function dist(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(xor(sub(0, gt(x, y)), sub(y, x)), gt(x, y))
        }
    }

    /// @dev Returns the absolute distance between `x` and `y`.
    function dist(int256 x, int256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(xor(sub(0, sgt(x, y)), sub(y, x)), sgt(x, y))
        }
    }

    /// @dev Returns the minimum of `x` and `y`.
    function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), lt(y, x)))
        }
    }

    /// @dev Returns the minimum of `x` and `y`.
    function min(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), slt(y, x)))
        }
    }

    /// @dev Returns the maximum of `x` and `y`.
    function max(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), gt(y, x)))
        }
    }

    /// @dev Returns the maximum of `x` and `y`.
    function max(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), sgt(y, x)))
        }
    }

    /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
    function clamp(uint256 x, uint256 minValue, uint256 maxValue)
        internal
        pure
        returns (uint256 z)
    {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, minValue), gt(minValue, x)))
            z := xor(z, mul(xor(z, maxValue), lt(maxValue, z)))
        }
    }

    /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
    function clamp(int256 x, int256 minValue, int256 maxValue) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, minValue), sgt(minValue, x)))
            z := xor(z, mul(xor(z, maxValue), slt(maxValue, z)))
        }
    }

    /// @dev Returns greatest common divisor of `x` and `y`.
    function gcd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            for { z := x } y {} {
                let t := y
                y := mod(z, y)
                z := t
            }
        }
    }

    /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`,
    /// with `t` clamped between `begin` and `end` (inclusive).
    /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
    /// If `begins == end`, returns `t <= begin ? a : b`.
    function lerp(uint256 a, uint256 b, uint256 t, uint256 begin, uint256 end)
        internal
        pure
        returns (uint256)
    {
        if (begin > end) (t, begin, end) = (~t, ~begin, ~end);
        if (t <= begin) return a;
        if (t >= end) return b;
        unchecked {
            if (b >= a) return a + fullMulDiv(b - a, t - begin, end - begin);
            return a - fullMulDiv(a - b, t - begin, end - begin);
        }
    }

    /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`.
    /// with `t` clamped between `begin` and `end` (inclusive).
    /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
    /// If `begins == end`, returns `t <= begin ? a : b`.
    function lerp(int256 a, int256 b, int256 t, int256 begin, int256 end)
        internal
        pure
        returns (int256)
    {
        if (begin > end) (t, begin, end) = (~t, ~begin, ~end);
        if (t <= begin) return a;
        if (t >= end) return b;
        // forgefmt: disable-next-item
        unchecked {
            if (b >= a) return int256(uint256(a) + fullMulDiv(uint256(b - a),
                uint256(t - begin), uint256(end - begin)));
            return int256(uint256(a) - fullMulDiv(uint256(a - b),
                uint256(t - begin), uint256(end - begin)));
        }
    }

    /// @dev Returns if `x` is an even number. Some people may need this.
    function isEven(uint256 x) internal pure returns (bool) {
        return x & uint256(1) == uint256(0);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   RAW NUMBER OPERATIONS                    */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns `x + y`, without checking for overflow.
    function rawAdd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x + y;
        }
    }

    /// @dev Returns `x + y`, without checking for overflow.
    function rawAdd(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x + y;
        }
    }

    /// @dev Returns `x - y`, without checking for underflow.
    function rawSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x - y;
        }
    }

    /// @dev Returns `x - y`, without checking for underflow.
    function rawSub(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x - y;
        }
    }

    /// @dev Returns `x * y`, without checking for overflow.
    function rawMul(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x * y;
        }
    }

    /// @dev Returns `x * y`, without checking for overflow.
    function rawMul(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x * y;
        }
    }

    /// @dev Returns `x / y`, returning 0 if `y` is zero.
    function rawDiv(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(x, y)
        }
    }

    /// @dev Returns `x / y`, returning 0 if `y` is zero.
    function rawSDiv(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(x, y)
        }
    }

    /// @dev Returns `x % y`, returning 0 if `y` is zero.
    function rawMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mod(x, y)
        }
    }

    /// @dev Returns `x % y`, returning 0 if `y` is zero.
    function rawSMod(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := smod(x, y)
        }
    }

    /// @dev Returns `(x + y) % d`, return 0 if `d` if zero.
    function rawAddMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := addmod(x, y, d)
        }
    }

    /// @dev Returns `(x * y) % d`, return 0 if `d` if zero.
    function rawMulMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mulmod(x, y, d)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract ContextUpgradeable is Initializable {
    function __Context_init() internal onlyInitializing {
    }

    function __Context_init_unchained() internal onlyInitializing {
    }
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: SEE LICENSE IN LICENSE
pragma solidity ^0.8.25;

import {EnumerableSet} from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";

import {CoreLib} from "./CoreLib.sol";
import {IKarakBaseVault} from "../interfaces/IKarakBaseVault.sol";
import {HookLib} from "./HookLib.sol";

import "../interfaces/Errors.sol";
import "../interfaces/Constants.sol";
import "../interfaces/IDSS.sol";

library Operator {
    using EnumerableSet for EnumerableSet.AddressSet;
    using CoreLib for CoreLib.Storage;

    struct State {
        EnumerableSet.AddressSet vaults;
        EnumerableSet.AddressSet dssMap;
        mapping(IDSS dss => EnumerableSet.AddressSet vaultStakeInDss) vaultStakedInDssMap;
        mapping(IDSS dss => uint256 timestamp) nextSlashableTimestamp; // When this operator can be slashed again by a DSS
        mapping(address vault => bytes32 updateHash) pendingStakeUpdates; //Supporting only 1 update per vault at a time
        mapping(address vault => uint256 pendingSlashCount) pendingSlashingsInVault; // store the count of queued slashings per vault
    }

    struct StakeUpdateRequest {
        address vault;
        IDSS dss;
        bool toStake; // true for stake, false for unstake
    }

    struct QueuedStakeUpdate {
        uint48 nonce;
        uint48 startTimestamp;
        address operator;
        StakeUpdateRequest updateRequest;
    }

    function getVaults(State storage operatorState) internal view returns (address[] memory) {
        return operatorState.vaults.values();
    }

    function addVault(State storage operatorState, IKarakBaseVault vault) internal {
        if (vault == IKarakBaseVault(address(0))) revert ZeroAddress();
        if (operatorState.vaults.length() == Constants.MAX_VAULTS_PER_OPERATOR) revert MaxVaultCapacityReached();
        operatorState.vaults.add(address(vault));
    }

    function calculateRoot(QueuedStakeUpdate memory newStake) internal pure returns (bytes32) {
        return keccak256(abi.encode(newStake));
    }

    function validateStakeUpdateRequest(State storage operatorState, StakeUpdateRequest memory stakeUpdate)
        internal
        view
    {
        if (operatorState.pendingStakeUpdates[stakeUpdate.vault] != bytes32(0)) revert PendingStakeUpdateRequest();
        if (!operatorState.vaults.contains(stakeUpdate.vault)) revert VaultNotAChildVault();
        if (stakeUpdate.toStake && operatorState.vaultStakedInDssMap[stakeUpdate.dss].contains(stakeUpdate.vault)) {
            revert VaultAlreadyStakedInDSS();
        }
        if (!stakeUpdate.toStake && !operatorState.vaultStakedInDssMap[stakeUpdate.dss].contains(stakeUpdate.vault)) {
            revert VaultNotStakedInDSS();
        }
    }

    function requestUpdateVaultStakeInDSS(
        CoreLib.Storage storage self,
        StakeUpdateRequest memory requestStakeUpdate,
        uint128 nonce,
        address operator
    ) external returns (QueuedStakeUpdate memory queuedStake) {
        State storage operatorState = self.operatorState[operator];
        validateStakeUpdateRequest(operatorState, requestStakeUpdate);
        queuedStake = QueuedStakeUpdate({
            nonce: uint48(nonce),
            startTimestamp: uint48(block.timestamp),
            operator: operator,
            updateRequest: requestStakeUpdate
        });
        operatorState.pendingStakeUpdates[requestStakeUpdate.vault] = calculateRoot(queuedStake);
        IDSS dss = requestStakeUpdate.dss;

        HookLib.callHookIfInterfaceImplemented({
            dss: dss,
            data: abi.encodeWithSelector(dss.requestUpdateStakeHook.selector, operator, requestStakeUpdate),
            interfaceId: dss.requestUpdateStakeHook.selector,
            ignoreFailure: !requestStakeUpdate.toStake,
            hookCallGasLimit: self.hookCallGasLimit,
            supportsInterfaceGasLimit: self.supportsInterfaceGasLimit,
            hookGasBuffer: self.hookGasBuffer
        });
    }

    function validateQueuedStakeUpdate(State storage operatorState, QueuedStakeUpdate memory queuedStakeUpdate)
        internal
        view
    {
        if (queuedStakeUpdate.startTimestamp + Constants.MIN_STAKE_UPDATE_DELAY > block.timestamp) {
            revert OperatorStakeUpdateDelayNotPassed();
        }
        if (
            calculateRoot(queuedStakeUpdate) != operatorState.pendingStakeUpdates[queuedStakeUpdate.updateRequest.vault]
        ) {
            revert InvalidQueuedStakeUpdateInput();
        }
    }

    function updateVaultStakeInDSS(State storage operatorState, address vault, IDSS dss, bool toStake) internal {
        if (toStake) {
            operatorState.vaultStakedInDssMap[dss].add(vault);
        } else {
            operatorState.vaultStakedInDssMap[dss].remove(vault);
        }
    }

    function validateAndUpdateVaultStakeInDSS(CoreLib.Storage storage self, QueuedStakeUpdate memory queuedStakeUpdate)
        external
    {
        State storage operatorState = self.operatorState[queuedStakeUpdate.operator];
        validateQueuedStakeUpdate(operatorState, queuedStakeUpdate);
        updateVaultStakeInDSS(
            operatorState,
            queuedStakeUpdate.updateRequest.vault,
            queuedStakeUpdate.updateRequest.dss,
            queuedStakeUpdate.updateRequest.toStake
        );
        delete operatorState.pendingStakeUpdates[queuedStakeUpdate.updateRequest.vault];
        IDSS dss = queuedStakeUpdate.updateRequest.dss;
        HookLib.callHookIfInterfaceImplemented({
            dss: dss,
            data: abi.encodeWithSelector(dss.finishUpdateStakeHook.selector, msg.sender, queuedStakeUpdate),
            interfaceId: dss.finishUpdateStakeHook.selector,
            ignoreFailure: true,
            hookCallGasLimit: self.hookCallGasLimit,
            supportsInterfaceGasLimit: self.supportsInterfaceGasLimit,
            hookGasBuffer: self.hookGasBuffer
        });
    }

    function isOperatorRegisteredToDSS(CoreLib.Storage storage self, address operator, IDSS dss)
        internal
        view
        returns (bool)
    {
        return self.operatorState[operator].dssMap.contains(address(dss));
    }

    function checkIfOperatorIsRegInRegDSS(CoreLib.Storage storage self, address operator, IDSS dss) internal view {
        if (!self.isDSSRegistered(dss)) revert DSSNotRegistered();
        if (!isOperatorRegisteredToDSS(self, operator, dss)) {
            revert OperatorNotValidatingForDSS();
        }
    }

    function registerOperatorToDSS(
        CoreLib.Storage storage self,
        IDSS dss,
        address operator,
        bytes memory registrationHookData
    ) external {
        State storage operatorState = self.operatorState[operator];
        if (isOperatorRegisteredToDSS(self, operator, dss)) revert OperatorAlreadyRegisteredToDSS();
        if (operatorState.dssMap.length() == Constants.MAX_DSS_PER_OPERATOR) revert MaxDSSCapacityReached();

        operatorState.dssMap.add(address(dss));

        HookLib.callHookIfInterfaceImplemented({
            dss: dss,
            data: abi.encodeWithSelector(dss.registrationHook.selector, operator, registrationHookData),
            interfaceId: dss.registrationHook.selector,
            ignoreFailure: false,
            hookCallGasLimit: self.hookCallGasLimit,
            supportsInterfaceGasLimit: self.supportsInterfaceGasLimit,
            hookGasBuffer: self.hookGasBuffer
        });
    }

    function getVaultsStakedToDSS(State storage operatorState, IDSS dss)
        public
        view
        returns (address[] memory vaults)
    {
        vaults = operatorState.vaultStakedInDssMap[dss].values();
    }

    function unregisterOperatorFromDSS(CoreLib.Storage storage self, IDSS dss, address operator) external {
        State storage operatorState = self.operatorState[operator];
        // Checks if all operator delegations are zero
        address[] memory vaults = getVaultsStakedToDSS(operatorState, dss);
        if (vaults.length != 0) revert AllVaultsNotUnstakedFromDSS();
        if (!isOperatorRegisteredToDSS(self, operator, dss)) revert OperatorNotValidatingForDSS();

        self.operatorState[operator].dssMap.remove(address(dss));
        HookLib.callHookIfInterfaceImplemented({
            dss: dss,
            data: abi.encodeWithSelector(dss.unregistrationHook.selector, operator),
            interfaceId: dss.unregistrationHook.selector,
            ignoreFailure: true, // So it can't prevent the operator from unregistering
            hookCallGasLimit: self.hookCallGasLimit,
            supportsInterfaceGasLimit: self.supportsInterfaceGasLimit,
            hookGasBuffer: self.hookGasBuffer
        });
    }

    /// Fetches the DSSs the operator is registered in
    /// @param self Reference to the Core's storage
    /// @param operator address of the operator
    /// @return dssAddresses List of DSSs
    function getDSSsOperatorIsRegisteredTo(CoreLib.Storage storage self, address operator)
        internal
        view
        returns (address[] memory dssAddresses)
    {
        dssAddresses = self.operatorState[operator].dssMap.values();
    }

    function isVaultStakedToDSS(State storage operatorState, IDSS dss, address vault) internal view returns (bool) {
        return operatorState.vaultStakedInDssMap[dss].contains(vault);
    }

    /// Fetches the list of DSSs an operator's vault is staked to
    /// @param self Reference to the Core's storage
    /// @return count Count of the DSSs the operator's vault is staked to
    function getDSSCountVaultStakedTo(CoreLib.Storage storage self, IKarakBaseVault vault)
        external
        view
        returns (uint256 count)
    {
        address operator = vault.vaultConfig().operator;
        address[] memory dssAddresses = getDSSsOperatorIsRegisteredTo(self, operator);
        State storage operatorState = self.operatorState[operator];
        for (uint256 i = 0; i < dssAddresses.length; i++) {
            if (isVaultStakedToDSS(operatorState, IDSS(dssAddresses[i]), address(vault))) count++;
        }
    }

    function getSlashingsQueuedForVault(CoreLib.Storage storage self, address vault)
        internal
        view
        returns (uint256 count)
    {
        address operator = IKarakBaseVault(vault).vaultConfig().operator;
        return self.operatorState[operator].pendingSlashingsInVault[vault];
    }

    function updateSlashingQueuedForVault(CoreLib.Storage storage self, IKarakBaseVault vault, bool increment)
        internal
    {
        address operator = vault.vaultConfig().operator;
        if (increment) {
            self.operatorState[operator].pendingSlashingsInVault[address(vault)]++;
        } else {
            if (self.operatorState[operator].pendingSlashingsInVault[address(vault)] == 0) {
                revert InvalidSlashingCount();
            } else {
                self.operatorState[operator].pendingSlashingsInVault[address(vault)]--;
            }
        }
    }

    function adjustQueuedSlashingCount(CoreLib.Storage storage self, address[] memory vaults, bool increment)
        internal
    {
        for (uint256 i = 0; i < vaults.length; i++) {
            IKarakBaseVault vault = IKarakBaseVault(vaults[i]);
            updateSlashingQueuedForVault(self, vault, increment);
        }
    }
}

// SPDX-License-Identifier: SEE LICENSE IN LICENSE
pragma solidity ^0.8.25;

import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import "@openzeppelin/contracts/utils/structs/EnumerableMap.sol";

import {CoreLib} from "./CoreLib.sol";
import {HookLib} from "./HookLib.sol";
import {Operator} from "./Operator.sol";
import {CommonUtils} from "../utils/CommonUtils.sol";

import "../interfaces/Errors.sol";
import "../interfaces/Constants.sol";
import "../interfaces/IDSS.sol";
import "../interfaces/IKarakBaseVault.sol";
import "../interfaces/Events.sol";

library SlasherLib {
    using Operator for Operator.State;
    using Operator for CoreLib.Storage;
    using EnumerableMap for EnumerableMap.AddressToUintMap;
    using CommonUtils for address[];

    struct SlashRequest {
        address operator;
        uint96[] slashPercentagesWad;
        address[] vaults;
    }

    struct QueuedSlashing {
        IDSS dss;
        uint96 timestamp;
        address operator;
        address[] vaults;
        uint96[] slashPercentagesWad;
        uint256 nonce;
    }

    function calculateRoot(QueuedSlashing memory queuedSlashing) internal pure returns (bytes32 root) {
        root = keccak256(abi.encode(queuedSlashing));
    }

    function validateVaultsAndSlashPercentages(
        CoreLib.Storage storage self,
        SlashRequest memory slashingRequest,
        IDSS dss
    ) internal view {
        if (slashingRequest.vaults.hasDuplicates()) revert DuplicateSlashingVaults();

        uint256 maxSlashPercentageWad = getDSSMaxSlashablePercentageWad(self, dss);
        for (uint256 i = 0; i < slashingRequest.vaults.length; i++) {
            if (!self.operatorState[slashingRequest.operator].isVaultStakedToDSS(dss, slashingRequest.vaults[i])) {
                revert VaultNotStakedToDSS();
            }
            if (slashingRequest.slashPercentagesWad[i] == 0) revert ZeroSlashPercentageWad();
            if (slashingRequest.slashPercentagesWad[i] > maxSlashPercentageWad) revert MaxSlashPercentageWadBreached();
        }
    }

    function validateRequestSlashingParams(CoreLib.Storage storage self, SlashRequest memory slashingRequest, IDSS dss)
        internal
        view
    {
        // revert if slashing cooldown has not passed
        if (block.timestamp < self.operatorState[slashingRequest.operator].nextSlashableTimestamp[dss]) {
            revert SlashingCooldownNotPassed();
        }
        // vaults length and corresponding slashPercentages array length should match
        if (slashingRequest.slashPercentagesWad.length != slashingRequest.vaults.length) revert LengthsDontMatch();
        // Max vaults slashed per request
        if (slashingRequest.vaults.length > Constants.MAX_SLASHABLE_VAULTS_PER_REQUEST) {
            revert MaxSlashableVaultsPerRequestBreached();
        }
        // Non zero vault length check
        if (slashingRequest.vaults.length == 0) revert EmptyArray();
        // Validate vault addresses and slashPercentages Values
        validateVaultsAndSlashPercentages(self, slashingRequest, dss);
    }

    function computeSlashAmount(address vault, uint256 slashPercentageWad) internal view returns (uint256) {
        return Math.mulDiv(slashPercentageWad, IKarakBaseVault(vault).totalAssets(), Constants.MAX_SLASHING_PERCENT_WAD);
    }

    function requestSlashing(
        CoreLib.Storage storage self,
        IDSS dss,
        SlashRequest memory slashingMetadata,
        uint256 nonce
    ) internal returns (QueuedSlashing memory queuedSlashing) {
        validateRequestSlashingParams(self, slashingMetadata, dss);
        queuedSlashing = QueuedSlashing({
            dss: dss,
            timestamp: uint96(block.timestamp),
            operator: slashingMetadata.operator,
            vaults: slashingMetadata.vaults,
            slashPercentagesWad: slashingMetadata.slashPercentagesWad,
            nonce: nonce
        });
        self.adjustQueuedSlashingCount(slashingMetadata.vaults, true);
        self.slashingRequests[calculateRoot(queuedSlashing)] = true;
        self.operatorState[slashingMetadata.operator].nextSlashableTimestamp[dss] =
            block.timestamp + Constants.SLASHING_COOLDOWN;
        HookLib.callHookIfInterfaceImplemented({
            dss: dss,
            data: abi.encodeWithSelector(
                dss.requestSlashingHook.selector, slashingMetadata.operator, slashingMetadata.slashPercentagesWad
            ),
            interfaceId: dss.requestSlashingHook.selector,
            ignoreFailure: true,
            hookCallGasLimit: self.hookCallGasLimit,
            supportsInterfaceGasLimit: self.supportsInterfaceGasLimit,
            hookGasBuffer: self.hookGasBuffer
        });
    }

    function finalizeSlashing(CoreLib.Storage storage self, QueuedSlashing memory queuedSlashing) internal {
        bytes32 slashRoot = calculateRoot(queuedSlashing);
        if (!self.slashingRequests[slashRoot]) revert InvalidSlashingParams();
        if (queuedSlashing.timestamp + Constants.SLASHING_VETO_WINDOW > block.timestamp) {
            revert MinSlashingDelayNotPassed();
        }
        delete self.slashingRequests[slashRoot];
        self.adjustQueuedSlashingCount(queuedSlashing.vaults, false);
        for (uint256 i = 0; i < queuedSlashing.vaults.length; i++) {
            if (
                !self.operatorState[queuedSlashing.operator].isVaultStakedToDSS(
                    queuedSlashing.dss, queuedSlashing.vaults[i]
                )
            ) {
                emit SkippedSlashing(queuedSlashing.vaults[i]);
                continue;
            }
            uint256 slashAmount = computeSlashAmount(queuedSlashing.vaults[i], queuedSlashing.slashPercentagesWad[i]);
            IKarakBaseVault(queuedSlashing.vaults[i]).slashAssets(
                slashAmount, self.assetSlashingHandlers[IKarakBaseVault(queuedSlashing.vaults[i]).asset()]
            );
        }

        IDSS dss = queuedSlashing.dss;

        HookLib.callHookIfInterfaceImplemented({
            dss: dss,
            data: abi.encodeWithSelector(dss.finishSlashingHook.selector, queuedSlashing.operator),
            interfaceId: dss.finishSlashingHook.selector,
            ignoreFailure: true,
            hookCallGasLimit: self.hookCallGasLimit,
            supportsInterfaceGasLimit: self.supportsInterfaceGasLimit,
            hookGasBuffer: self.hookGasBuffer
        });
    }

    function cancelSlashing(CoreLib.Storage storage self, QueuedSlashing memory queuedSlashing) internal {
        bytes32 slashRoot = calculateRoot(queuedSlashing);
        if (!self.slashingRequests[slashRoot]) revert InvalidSlashingParams();
        delete self.slashingRequests[slashRoot];
        self.adjustQueuedSlashingCount(queuedSlashing.vaults, false);
        IDSS dss = queuedSlashing.dss;

        HookLib.callHookIfInterfaceImplemented({
            dss: dss,
            data: abi.encodeWithSelector(dss.cancelSlashingHook.selector, queuedSlashing.operator),
            interfaceId: dss.cancelSlashingHook.selector,
            ignoreFailure: true,
            hookCallGasLimit: self.hookCallGasLimit,
            supportsInterfaceGasLimit: self.supportsInterfaceGasLimit,
            hookGasBuffer: self.hookGasBuffer
        });
    }

    function getDSSMaxSlashablePercentageWad(CoreLib.Storage storage self, IDSS dss) internal view returns (uint256) {
        return self.dssMaxSlashablePercentageWad[dss];
    }

    function setDSSMaxSlashablePercentageWad(
        CoreLib.Storage storage self,
        IDSS dss,
        uint256 dssMaxSlashablePercentageWad
    ) internal {
        uint256 currentSlashablePercentageWad = self.dssMaxSlashablePercentageWad[dss];
        if (currentSlashablePercentageWad != 0) revert DSSAlreadyRegistered();
        if (dssMaxSlashablePercentageWad == 0) revert ZeroSlashPercentageWad();
        if (dssMaxSlashablePercentageWad > Constants.MAX_SLASHING_PERCENT_WAD) revert MaxSlashPercentageWadBreached();
        self.dssMaxSlashablePercentageWad[dss] = dssMaxSlashablePercentageWad;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for managing
 * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
 * types.
 *
 * Sets have the following properties:
 *
 * - Elements are added, removed, and checked for existence in constant time
 * (O(1)).
 * - Elements are enumerated in O(n). No guarantees are made on the ordering.
 *
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using EnumerableSet for EnumerableSet.AddressSet;
 *
 *     // Declare a set state variable
 *     EnumerableSet.AddressSet private mySet;
 * }
 * ```
 *
 * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
 * and `uint256` (`UintSet`) are supported.
 *
 * [WARNING]
 * ====
 * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
 * unusable.
 * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
 *
 * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
 * array of EnumerableSet.
 * ====
 */
library EnumerableSet {
    // To implement this library for multiple types with as little code
    // repetition as possible, we write it in terms of a generic Set type with
    // bytes32 values.
    // The Set implementation uses private functions, and user-facing
    // implementations (such as AddressSet) are just wrappers around the
    // underlying Set.
    // This means that we can only create new EnumerableSets for types that fit
    // in bytes32.

    struct Set {
        // Storage of set values
        bytes32[] _values;
        // Position is the index of the value in the `values` array plus 1.
        // Position 0 is used to mean a value is not in the set.
        mapping(bytes32 value => uint256) _positions;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function _add(Set storage set, bytes32 value) private returns (bool) {
        if (!_contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._positions[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function _remove(Set storage set, bytes32 value) private returns (bool) {
        // We cache the value's position to prevent multiple reads from the same storage slot
        uint256 position = set._positions[value];

        if (position != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 valueIndex = position - 1;
            uint256 lastIndex = set._values.length - 1;

            if (valueIndex != lastIndex) {
                bytes32 lastValue = set._values[lastIndex];

                // Move the lastValue to the index where the value to delete is
                set._values[valueIndex] = lastValue;
                // Update the tracked position of the lastValue (that was just moved)
                set._positions[lastValue] = position;
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the tracked position for the deleted slot
            delete set._positions[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function _contains(Set storage set, bytes32 value) private view returns (bool) {
        return set._positions[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function _length(Set storage set) private view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function _at(Set storage set, uint256 index) private view returns (bytes32) {
        return set._values[index];
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function _values(Set storage set) private view returns (bytes32[] memory) {
        return set._values;
    }

    // Bytes32Set

    struct Bytes32Set {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _add(set._inner, value);
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _remove(set._inner, value);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
        return _contains(set._inner, value);
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(Bytes32Set storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
        return _at(set._inner, index);
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
        bytes32[] memory store = _values(set._inner);
        bytes32[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }

    // AddressSet

    struct AddressSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(AddressSet storage set, address value) internal returns (bool) {
        return _add(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(AddressSet storage set, address value) internal returns (bool) {
        return _remove(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(AddressSet storage set, address value) internal view returns (bool) {
        return _contains(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(AddressSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(AddressSet storage set, uint256 index) internal view returns (address) {
        return address(uint160(uint256(_at(set._inner, index))));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(AddressSet storage set) internal view returns (address[] memory) {
        bytes32[] memory store = _values(set._inner);
        address[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }

    // UintSet

    struct UintSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(UintSet storage set, uint256 value) internal returns (bool) {
        return _add(set._inner, bytes32(value));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(UintSet storage set, uint256 value) internal returns (bool) {
        return _remove(set._inner, bytes32(value));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(UintSet storage set, uint256 value) internal view returns (bool) {
        return _contains(set._inner, bytes32(value));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(UintSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(UintSet storage set, uint256 index) internal view returns (uint256) {
        return uint256(_at(set._inner, index));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(UintSet storage set) internal view returns (uint256[] memory) {
        bytes32[] memory store = _values(set._inner);
        uint256[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }
}

// SPDX-License-Identifier: SEE LICENSE IN LICENSE
pragma solidity ^0.8.25;

import {Create2} from "@openzeppelin/contracts/utils/Create2.sol";
import {LibClone} from "solady/src/utils/LibClone.sol";

import {Operator} from "./Operator.sol";
import {VaultLib} from "./VaultLib.sol";

import {IKarakBaseVault} from "../interfaces/IKarakBaseVault.sol";
import {IDSS} from "../interfaces/IDSS.sol";
import "../interfaces/Constants.sol";
import "../interfaces/Errors.sol";
import "../interfaces/Events.sol";

library CoreLib {
    using Operator for Operator.State;

    /// @custom:storage-location erc7201:core.storage
    struct Storage {
        // Operator
        mapping(address operator => Operator.State) operatorState;
        // Vault
        mapping(address vault => address implementation) vaultToImplMap;
        mapping(address implementation => bool) allowlistedVaultImpl;
        // Assets
        mapping(address asset => address slashingHandler) assetSlashingHandlers;
        // DSS
        mapping(bytes32 slashRoot => bool) slashingRequests;
        mapping(IDSS dss => uint256 slashablePercentageWad) dssMaxSlashablePercentageWad;
        address vaultImpl;
        uint96 vaultNonce;
        address vetoCommittee;
        uint96 nonce;
        uint32 hookCallGasLimit;
        uint32 supportsInterfaceGasLimit;
        uint32 hookGasBuffer;
    }

    function init(
        Storage storage self,
        address _vaultImpl,
        address _vetoCommittee,
        uint32 _hookCallGasLimit,
        uint32 _supportsInterfaceGasLimit,
        uint32 _hookGasBuffer
    ) internal {
        if (_vaultImpl == address(0) || _vetoCommittee == address(0)) {
            revert ZeroAddress();
        }
        self.vaultImpl = _vaultImpl;
        self.vetoCommittee = _vetoCommittee;
        updateGasValues(self, _hookCallGasLimit, _supportsInterfaceGasLimit, _hookGasBuffer);
    }

    function updateGasValues(
        Storage storage self,
        uint32 _hookCallGasLimit,
        uint32 _supportsInterfaceGasLimit,
        uint32 _hookGasBuffer
    ) internal {
        self.hookCallGasLimit = _hookCallGasLimit;
        self.hookGasBuffer = _hookGasBuffer;
        self.supportsInterfaceGasLimit = _supportsInterfaceGasLimit;
    }

    function allowlistAssets(Storage storage self, address[] memory assets, address[] memory slashingHandlers)
        internal
    {
        if (assets.length != slashingHandlers.length) revert LengthsDontMatch();
        for (uint256 i = 0; i < assets.length; i++) {
            if (slashingHandlers[i] == address(0) || assets[i] == address(0)) revert ZeroAddress();
            self.assetSlashingHandlers[assets[i]] = slashingHandlers[i];
        }
    }

    function validateVaultConfigs(Storage storage self, VaultLib.Config[] calldata vaultConfigs, address implementation)
        internal
        view
    {
        if (!(implementation == address(0) || isVaultImplAllowlisted(self, implementation))) {
            revert VaultImplNotAllowlisted();
        }
        for (uint256 i = 0; i < vaultConfigs.length; i++) {
            if (self.assetSlashingHandlers[vaultConfigs[i].asset] == address(0)) revert AssetNotAllowlisted();
        }
    }

    function createVault(
        Storage storage self,
        address operator,
        address depositToken,
        string memory name,
        string memory symbol,
        bytes memory extraData,
        address implementation
    ) internal returns (IKarakBaseVault) {
        // Use Create2 to determine the address before hand
        bytes32 salt = keccak256(abi.encodePacked(operator, depositToken, self.vaultNonce++));

        address expectedNewVaultAddr =
            LibClone.predictDeterministicAddressERC1967BeaconProxy(address(this), salt, address(this));

        self.vaultToImplMap[address(expectedNewVaultAddr)] = implementation;

        IKarakBaseVault vault = cloneVault(salt);
        vault.initialize(address(this), operator, depositToken, name, symbol, extraData);

        // Extra protection to ensure the vault was created with the correct address
        if (expectedNewVaultAddr != address(vault)) {
            revert VaultCreationFailedAddrMismatch(expectedNewVaultAddr, address(vault));
        }

        emit NewVault(address(vault), implementation);
        return vault;
    }

    function deployVaults(
        Storage storage self,
        address operator,
        address implementation,
        VaultLib.Config[] calldata vaultConfigs
    ) internal returns (IKarakBaseVault[] memory) {
        validateVaultConfigs(self, vaultConfigs, implementation);
        IKarakBaseVault[] memory vaults = new IKarakBaseVault[](vaultConfigs.length);

        if (implementation == address(0)) {
            // Allows us to change all the standard vaults to a new implementation
            implementation = Constants.DEFAULT_VAULT_IMPLEMENTATION_FLAG;
        }

        for (uint256 i = 0; i < vaultConfigs.length; i++) {
            IKarakBaseVault vault = createVault(
                self,
                operator,
                vaultConfigs[i].asset,
                vaultConfigs[i].name,
                vaultConfigs[i].symbol,
                vaultConfigs[i].extraData,
                implementation
            );
            vaults[i] = vault;
            self.operatorState[operator].addVault(vault);
            emit DeployedVault(operator, address(vault), vaultConfigs[i].asset);
        }
        return vaults;
    }

    function cloneVault(bytes32 salt) internal returns (IKarakBaseVault) {
        return IKarakBaseVault(address(LibClone.deployDeterministicERC1967BeaconProxy(address(this), salt)));
    }

    function allowlistVaultImpl(Storage storage self, address implementation) internal {
        self.allowlistedVaultImpl[implementation] = true;
    }

    function isVaultImplAllowlisted(Storage storage self, address implementation) internal view returns (bool) {
        return self.allowlistedVaultImpl[implementation] || implementation == self.vaultImpl;
    }

    function isDSSRegistered(Storage storage self, IDSS dss) internal view returns (bool) {
        return self.dssMaxSlashablePercentageWad[dss] != 0;
    }
}

// SPDX-License-Identifier: SEE LICENSE IN LICENSE
pragma solidity ^0.8.25;

import {Constants} from "../interfaces/Constants.sol";
import "@openzeppelin/contracts/interfaces/IERC165.sol";
import "../interfaces/Errors.sol";
import "../interfaces/Events.sol";

library HookLib {
    /// @notice Performs low level call with limited gas and limit return data
    /// @param target address of the target contract
    /// @param data the calldata
    /// @param gasLimit the gaslimit with which the call is to be performed
    /// @return success boolean representing call was successful or not
    /// @return returnVal returned value by the contract
    function performLowLevelCallAndLimitReturnData(address target, bytes memory data, uint256 gasLimit)
        internal
        returns (bool success, bytes32 returnVal)
    {
        bytes32[1] memory returnData;

        assembly {
            // pointer(data) + 0x20 is where actual data is available
            // pointer(data) contains the size of the data in bytes
            // returnData is where the return value is written to
            // we limit size of return value to 32 bytes (same as the size of `returnData` above)
            success :=
                call(
                    gasLimit, // gas available to the inner call
                    target, // address of contract being called
                    0, // ETH (denominated in WEI) being transferred in this call
                    add(data, 0x20), // Pointer to actual data (i.e. 32 bytes offset from `data`)
                    mload(data), // Size of actual data (i.e. the value stored in the first 32 bytes at `data`)
                    returnData, // Free pointer as a buffer for the inner call to write the return value
                    32 // 32 bytes size limit for the return value
                )
        }
        returnVal = returnData[0];
    }

    /// @notice Performs low level call to the DSS
    /// @param target address of DSS contract
    /// @param data the calldata
    /// @param ignoreFailure whether to revert tx incase call to DSS fails
    /// @param hookCallGasLimit max gas to perform call with
    /// @param hookGasBuffer gas to perform this function call
    /// @return boolean indicating call succeeded or not
    function callHook(
        address target,
        bytes memory data,
        bool ignoreFailure,
        uint32 hookCallGasLimit,
        uint32 hookGasBuffer
    ) internal returns (bool) {
        if (gasleft() < (hookCallGasLimit * 64 / 63 + hookGasBuffer)) revert NotEnoughGas();

        (bool success, bytes32 returnData) = performLowLevelCallAndLimitReturnData(target, data, hookCallGasLimit);

        if (!ignoreFailure && !success) revert DSSHookCallReverted(returnData);

        if (success) emit HookCallSucceeded(returnData);
        else emit HookCallFailed(returnData);
        return success;
    }

    /// @notice performs a low level call to the dss with given data, returns boolean incase of success or failure
    /// @dev Returns `false` if the interface is not supported since the call wasn't a success if it actually went through
    /// If the call to the DSS is not successful then the tx is reverted based on the `ignoreFailure` param
    /// gas checks are performed to ensure calls are not failed due to OOG error
    /// @param dss address of the DSS
    /// @param data the calldata
    /// @param interfaceId interface to be called
    /// @param ignoreFailure whether the call to DSS can be ignored or not
    /// @param hookCallGasLimit gasLimit to perform call to the DSS
    /// @param supportsInterfaceGasLimit gasLimit to perform `supportsInterface` call to the DSS
    /// @param hookGasBuffer gas to perform this function call
    /// @return boolean indicating hook call passed or failed
    function callHookIfInterfaceImplemented(
        IERC165 dss,
        bytes memory data,
        bytes4 interfaceId,
        bool ignoreFailure,
        uint32 hookCallGasLimit,
        uint32 supportsInterfaceGasLimit,
        uint32 hookGasBuffer
    ) internal returns (bool) {
        if (gasleft() < (supportsInterfaceGasLimit * 64 / 63 + hookGasBuffer)) {
            revert NotEnoughGas();
        }

        (bool success, bytes32 result) = performLowLevelCallAndLimitReturnData(
            address(dss),
            abi.encodeWithSelector(IERC165.supportsInterface.selector, interfaceId),
            supportsInterfaceGasLimit
        );

        if (!success || result == bytes32(0)) {
            // Either call failed or interface isn't implemented
            emit InterfaceNotSupported();
            return false;
        }
        return callHook(address(dss), data, ignoreFailure, hookCallGasLimit, hookGasBuffer);
    }
}

// SPDX-License-Identifier: SEE LICENSE IN LICENSE
pragma solidity ^0.8.25;

import "@openzeppelin/contracts/interfaces/IERC165.sol";
import {Operator} from "../entities/Operator.sol";

interface IDSS is IERC165 {
    // HOOKS

    function registrationHook(address operator, bytes memory extraData) external;
    function unregistrationHook(address operator) external;

    function requestUpdateStakeHook(address operator, Operator.StakeUpdateRequest memory newStake) external;
    function finishUpdateStakeHook(address operator, Operator.QueuedStakeUpdate memory queuedStakeUpdate) external;
    function requestSlashingHook(address operator, uint256[] memory slashingPercentagesWad) external;
    function cancelSlashingHook(address operator) external;
    function finishSlashingHook(address operator) external;
}

File 28 of 33 : EnumerableMap.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/EnumerableMap.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableMap.js.

pragma solidity ^0.8.20;

import {EnumerableSet} from "./EnumerableSet.sol";

/**
 * @dev Library for managing an enumerable variant of Solidity's
 * https://solidity.readthedocs.io/en/latest/types.html#mapping-types[`mapping`]
 * type.
 *
 * Maps have the following properties:
 *
 * - Entries are added, removed, and checked for existence in constant time
 * (O(1)).
 * - Entries are enumerated in O(n). No guarantees are made on the ordering.
 *
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using EnumerableMap for EnumerableMap.UintToAddressMap;
 *
 *     // Declare a set state variable
 *     EnumerableMap.UintToAddressMap private myMap;
 * }
 * ```
 *
 * The following map types are supported:
 *
 * - `uint256 -> address` (`UintToAddressMap`) since v3.0.0
 * - `address -> uint256` (`AddressToUintMap`) since v4.6.0
 * - `bytes32 -> bytes32` (`Bytes32ToBytes32Map`) since v4.6.0
 * - `uint256 -> uint256` (`UintToUintMap`) since v4.7.0
 * - `bytes32 -> uint256` (`Bytes32ToUintMap`) since v4.7.0
 *
 * [WARNING]
 * ====
 * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
 * unusable.
 * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
 *
 * In order to clean an EnumerableMap, you can either remove all elements one by one or create a fresh instance using an
 * array of EnumerableMap.
 * ====
 */
library EnumerableMap {
    using EnumerableSet for EnumerableSet.Bytes32Set;

    // To implement this library for multiple types with as little code repetition as possible, we write it in
    // terms of a generic Map type with bytes32 keys and values. The Map implementation uses private functions,
    // and user-facing implementations such as `UintToAddressMap` are just wrappers around the underlying Map.
    // This means that we can only create new EnumerableMaps for types that fit in bytes32.

    /**
     * @dev Query for a nonexistent map key.
     */
    error EnumerableMapNonexistentKey(bytes32 key);

    struct Bytes32ToBytes32Map {
        // Storage of keys
        EnumerableSet.Bytes32Set _keys;
        mapping(bytes32 key => bytes32) _values;
    }

    /**
     * @dev Adds a key-value pair to a map, or updates the value for an existing
     * key. O(1).
     *
     * Returns true if the key was added to the map, that is if it was not
     * already present.
     */
    function set(Bytes32ToBytes32Map storage map, bytes32 key, bytes32 value) internal returns (bool) {
        map._values[key] = value;
        return map._keys.add(key);
    }

    /**
     * @dev Removes a key-value pair from a map. O(1).
     *
     * Returns true if the key was removed from the map, that is if it was present.
     */
    function remove(Bytes32ToBytes32Map storage map, bytes32 key) internal returns (bool) {
        delete map._values[key];
        return map._keys.remove(key);
    }

    /**
     * @dev Returns true if the key is in the map. O(1).
     */
    function contains(Bytes32ToBytes32Map storage map, bytes32 key) internal view returns (bool) {
        return map._keys.contains(key);
    }

    /**
     * @dev Returns the number of key-value pairs in the map. O(1).
     */
    function length(Bytes32ToBytes32Map storage map) internal view returns (uint256) {
        return map._keys.length();
    }

    /**
     * @dev Returns the key-value pair stored at position `index` in the map. O(1).
     *
     * Note that there are no guarantees on the ordering of entries inside the
     * array, and it may change when more entries are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(Bytes32ToBytes32Map storage map, uint256 index) internal view returns (bytes32, bytes32) {
        bytes32 key = map._keys.at(index);
        return (key, map._values[key]);
    }

    /**
     * @dev Tries to returns the value associated with `key`. O(1).
     * Does not revert if `key` is not in the map.
     */
    function tryGet(Bytes32ToBytes32Map storage map, bytes32 key) internal view returns (bool, bytes32) {
        bytes32 value = map._values[key];
        if (value == bytes32(0)) {
            return (contains(map, key), bytes32(0));
        } else {
            return (true, value);
        }
    }

    /**
     * @dev Returns the value associated with `key`. O(1).
     *
     * Requirements:
     *
     * - `key` must be in the map.
     */
    function get(Bytes32ToBytes32Map storage map, bytes32 key) internal view returns (bytes32) {
        bytes32 value = map._values[key];
        if (value == 0 && !contains(map, key)) {
            revert EnumerableMapNonexistentKey(key);
        }
        return value;
    }

    /**
     * @dev Return the an array containing all the keys
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the map grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function keys(Bytes32ToBytes32Map storage map) internal view returns (bytes32[] memory) {
        return map._keys.values();
    }

    // UintToUintMap

    struct UintToUintMap {
        Bytes32ToBytes32Map _inner;
    }

    /**
     * @dev Adds a key-value pair to a map, or updates the value for an existing
     * key. O(1).
     *
     * Returns true if the key was added to the map, that is if it was not
     * already present.
     */
    function set(UintToUintMap storage map, uint256 key, uint256 value) internal returns (bool) {
        return set(map._inner, bytes32(key), bytes32(value));
    }

    /**
     * @dev Removes a value from a map. O(1).
     *
     * Returns true if the key was removed from the map, that is if it was present.
     */
    function remove(UintToUintMap storage map, uint256 key) internal returns (bool) {
        return remove(map._inner, bytes32(key));
    }

    /**
     * @dev Returns true if the key is in the map. O(1).
     */
    function contains(UintToUintMap storage map, uint256 key) internal view returns (bool) {
        return contains(map._inner, bytes32(key));
    }

    /**
     * @dev Returns the number of elements in the map. O(1).
     */
    function length(UintToUintMap storage map) internal view returns (uint256) {
        return length(map._inner);
    }

    /**
     * @dev Returns the element stored at position `index` in the map. O(1).
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(UintToUintMap storage map, uint256 index) internal view returns (uint256, uint256) {
        (bytes32 key, bytes32 value) = at(map._inner, index);
        return (uint256(key), uint256(value));
    }

    /**
     * @dev Tries to returns the value associated with `key`. O(1).
     * Does not revert if `key` is not in the map.
     */
    function tryGet(UintToUintMap storage map, uint256 key) internal view returns (bool, uint256) {
        (bool success, bytes32 value) = tryGet(map._inner, bytes32(key));
        return (success, uint256(value));
    }

    /**
     * @dev Returns the value associated with `key`. O(1).
     *
     * Requirements:
     *
     * - `key` must be in the map.
     */
    function get(UintToUintMap storage map, uint256 key) internal view returns (uint256) {
        return uint256(get(map._inner, bytes32(key)));
    }

    /**
     * @dev Return the an array containing all the keys
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the map grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function keys(UintToUintMap storage map) internal view returns (uint256[] memory) {
        bytes32[] memory store = keys(map._inner);
        uint256[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }

    // UintToAddressMap

    struct UintToAddressMap {
        Bytes32ToBytes32Map _inner;
    }

    /**
     * @dev Adds a key-value pair to a map, or updates the value for an existing
     * key. O(1).
     *
     * Returns true if the key was added to the map, that is if it was not
     * already present.
     */
    function set(UintToAddressMap storage map, uint256 key, address value) internal returns (bool) {
        return set(map._inner, bytes32(key), bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Removes a value from a map. O(1).
     *
     * Returns true if the key was removed from the map, that is if it was present.
     */
    function remove(UintToAddressMap storage map, uint256 key) internal returns (bool) {
        return remove(map._inner, bytes32(key));
    }

    /**
     * @dev Returns true if the key is in the map. O(1).
     */
    function contains(UintToAddressMap storage map, uint256 key) internal view returns (bool) {
        return contains(map._inner, bytes32(key));
    }

    /**
     * @dev Returns the number of elements in the map. O(1).
     */
    function length(UintToAddressMap storage map) internal view returns (uint256) {
        return length(map._inner);
    }

    /**
     * @dev Returns the element stored at position `index` in the map. O(1).
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(UintToAddressMap storage map, uint256 index) internal view returns (uint256, address) {
        (bytes32 key, bytes32 value) = at(map._inner, index);
        return (uint256(key), address(uint160(uint256(value))));
    }

    /**
     * @dev Tries to returns the value associated with `key`. O(1).
     * Does not revert if `key` is not in the map.
     */
    function tryGet(UintToAddressMap storage map, uint256 key) internal view returns (bool, address) {
        (bool success, bytes32 value) = tryGet(map._inner, bytes32(key));
        return (success, address(uint160(uint256(value))));
    }

    /**
     * @dev Returns the value associated with `key`. O(1).
     *
     * Requirements:
     *
     * - `key` must be in the map.
     */
    function get(UintToAddressMap storage map, uint256 key) internal view returns (address) {
        return address(uint160(uint256(get(map._inner, bytes32(key)))));
    }

    /**
     * @dev Return the an array containing all the keys
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the map grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function keys(UintToAddressMap storage map) internal view returns (uint256[] memory) {
        bytes32[] memory store = keys(map._inner);
        uint256[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }

    // AddressToUintMap

    struct AddressToUintMap {
        Bytes32ToBytes32Map _inner;
    }

    /**
     * @dev Adds a key-value pair to a map, or updates the value for an existing
     * key. O(1).
     *
     * Returns true if the key was added to the map, that is if it was not
     * already present.
     */
    function set(AddressToUintMap storage map, address key, uint256 value) internal returns (bool) {
        return set(map._inner, bytes32(uint256(uint160(key))), bytes32(value));
    }

    /**
     * @dev Removes a value from a map. O(1).
     *
     * Returns true if the key was removed from the map, that is if it was present.
     */
    function remove(AddressToUintMap storage map, address key) internal returns (bool) {
        return remove(map._inner, bytes32(uint256(uint160(key))));
    }

    /**
     * @dev Returns true if the key is in the map. O(1).
     */
    function contains(AddressToUintMap storage map, address key) internal view returns (bool) {
        return contains(map._inner, bytes32(uint256(uint160(key))));
    }

    /**
     * @dev Returns the number of elements in the map. O(1).
     */
    function length(AddressToUintMap storage map) internal view returns (uint256) {
        return length(map._inner);
    }

    /**
     * @dev Returns the element stored at position `index` in the map. O(1).
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(AddressToUintMap storage map, uint256 index) internal view returns (address, uint256) {
        (bytes32 key, bytes32 value) = at(map._inner, index);
        return (address(uint160(uint256(key))), uint256(value));
    }

    /**
     * @dev Tries to returns the value associated with `key`. O(1).
     * Does not revert if `key` is not in the map.
     */
    function tryGet(AddressToUintMap storage map, address key) internal view returns (bool, uint256) {
        (bool success, bytes32 value) = tryGet(map._inner, bytes32(uint256(uint160(key))));
        return (success, uint256(value));
    }

    /**
     * @dev Returns the value associated with `key`. O(1).
     *
     * Requirements:
     *
     * - `key` must be in the map.
     */
    function get(AddressToUintMap storage map, address key) internal view returns (uint256) {
        return uint256(get(map._inner, bytes32(uint256(uint160(key)))));
    }

    /**
     * @dev Return the an array containing all the keys
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the map grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function keys(AddressToUintMap storage map) internal view returns (address[] memory) {
        bytes32[] memory store = keys(map._inner);
        address[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }

    // Bytes32ToUintMap

    struct Bytes32ToUintMap {
        Bytes32ToBytes32Map _inner;
    }

    /**
     * @dev Adds a key-value pair to a map, or updates the value for an existing
     * key. O(1).
     *
     * Returns true if the key was added to the map, that is if it was not
     * already present.
     */
    function set(Bytes32ToUintMap storage map, bytes32 key, uint256 value) internal returns (bool) {
        return set(map._inner, key, bytes32(value));
    }

    /**
     * @dev Removes a value from a map. O(1).
     *
     * Returns true if the key was removed from the map, that is if it was present.
     */
    function remove(Bytes32ToUintMap storage map, bytes32 key) internal returns (bool) {
        return remove(map._inner, key);
    }

    /**
     * @dev Returns true if the key is in the map. O(1).
     */
    function contains(Bytes32ToUintMap storage map, bytes32 key) internal view returns (bool) {
        return contains(map._inner, key);
    }

    /**
     * @dev Returns the number of elements in the map. O(1).
     */
    function length(Bytes32ToUintMap storage map) internal view returns (uint256) {
        return length(map._inner);
    }

    /**
     * @dev Returns the element stored at position `index` in the map. O(1).
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(Bytes32ToUintMap storage map, uint256 index) internal view returns (bytes32, uint256) {
        (bytes32 key, bytes32 value) = at(map._inner, index);
        return (key, uint256(value));
    }

    /**
     * @dev Tries to returns the value associated with `key`. O(1).
     * Does not revert if `key` is not in the map.
     */
    function tryGet(Bytes32ToUintMap storage map, bytes32 key) internal view returns (bool, uint256) {
        (bool success, bytes32 value) = tryGet(map._inner, key);
        return (success, uint256(value));
    }

    /**
     * @dev Returns the value associated with `key`. O(1).
     *
     * Requirements:
     *
     * - `key` must be in the map.
     */
    function get(Bytes32ToUintMap storage map, bytes32 key) internal view returns (uint256) {
        return uint256(get(map._inner, key));
    }

    /**
     * @dev Return the an array containing all the keys
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the map grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function keys(Bytes32ToUintMap storage map) internal view returns (bytes32[] memory) {
        bytes32[] memory store = keys(map._inner);
        bytes32[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }
}

// SPDX-License-Identifier: SEE LICENSE IN LICENSE
pragma solidity ^0.8.21;

library CommonUtils {
    /// Sorts the array using quick sort inplace
    /// @param arr Array to sort
    function sortArr(address[] memory arr) private pure {
        if (arr.length == 0) return;
        sort(arr, 0, arr.length - 1);
    }

    function sort(address[] memory arr, uint256 left, uint256 right) private pure {
        if (left >= right) return;
        uint256 lastUnsortedInd = left;
        uint256 pivot = right;
        for (uint256 i = left; i < right; i++) {
            if (arr[i] <= arr[pivot]) {
                if (i != lastUnsortedInd) swap(arr, i, lastUnsortedInd);
                lastUnsortedInd++;
            }
        }
        swap(arr, pivot, lastUnsortedInd);
        if (lastUnsortedInd > left) {
            sort(arr, left, lastUnsortedInd - 1);
        }
        sort(arr, lastUnsortedInd, right);
    }

    function swap(address[] memory arr, uint256 left, uint256 right) private pure {
        address temp = arr[left];
        arr[left] = arr[right];
        arr[right] = temp;
    }

    /// @notice Sorts the array and checks for duplicates
    /// Intent was to get the array unchanges after sorting
    /// @param arr Array of addresses to check duplicates
    /// @return boolean indicates whether array has duplicates or not
    function hasDuplicates(address[] memory arr) external pure returns (bool) {
        sortArr(arr);
        if (arr.length == 0) return false;
        for (uint256 i = 0; i < arr.length - 1; i++) {
            if (arr[i] == arr[i + 1]) return true;
        }
        return false;
    }

    function isSmartContract(address addr) external view returns (bool) {
        uint256 size;
        assembly {
            size := extcodesize(addr)
        }
        return size > 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Create2.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper to make usage of the `CREATE2` EVM opcode easier and safer.
 * `CREATE2` can be used to compute in advance the address where a smart
 * contract will be deployed, which allows for interesting new mechanisms known
 * as 'counterfactual interactions'.
 *
 * See the https://eips.ethereum.org/EIPS/eip-1014#motivation[EIP] for more
 * information.
 */
library Create2 {
    /**
     * @dev Not enough balance for performing a CREATE2 deploy.
     */
    error Create2InsufficientBalance(uint256 balance, uint256 needed);

    /**
     * @dev There's no code to deploy.
     */
    error Create2EmptyBytecode();

    /**
     * @dev The deployment failed.
     */
    error Create2FailedDeployment();

    /**
     * @dev Deploys a contract using `CREATE2`. The address where the contract
     * will be deployed can be known in advance via {computeAddress}.
     *
     * The bytecode for a contract can be obtained from Solidity with
     * `type(contractName).creationCode`.
     *
     * Requirements:
     *
     * - `bytecode` must not be empty.
     * - `salt` must have not been used for `bytecode` already.
     * - the factory must have a balance of at least `amount`.
     * - if `amount` is non-zero, `bytecode` must have a `payable` constructor.
     */
    function deploy(uint256 amount, bytes32 salt, bytes memory bytecode) internal returns (address addr) {
        if (address(this).balance < amount) {
            revert Create2InsufficientBalance(address(this).balance, amount);
        }
        if (bytecode.length == 0) {
            revert Create2EmptyBytecode();
        }
        /// @solidity memory-safe-assembly
        assembly {
            addr := create2(amount, add(bytecode, 0x20), mload(bytecode), salt)
        }
        if (addr == address(0)) {
            revert Create2FailedDeployment();
        }
    }

    /**
     * @dev Returns the address where a contract will be stored if deployed via {deploy}. Any change in the
     * `bytecodeHash` or `salt` will result in a new destination address.
     */
    function computeAddress(bytes32 salt, bytes32 bytecodeHash) internal view returns (address) {
        return computeAddress(salt, bytecodeHash, address(this));
    }

    /**
     * @dev Returns the address where a contract will be stored if deployed via {deploy} from a contract located at
     * `deployer`. If `deployer` is this contract's address, returns the same value as {computeAddress}.
     */
    function computeAddress(bytes32 salt, bytes32 bytecodeHash, address deployer) internal pure returns (address addr) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40) // Get free memory pointer

            // |                   | ↓ ptr ...  ↓ ptr + 0x0B (start) ...  ↓ ptr + 0x20 ...  ↓ ptr + 0x40 ...   |
            // |-------------------|---------------------------------------------------------------------------|
            // | bytecodeHash      |                                                        CCCCCCCCCCCCC...CC |
            // | salt              |                                      BBBBBBBBBBBBB...BB                   |
            // | deployer          | 000000...0000AAAAAAAAAAAAAAAAAAA...AA                                     |
            // | 0xFF              |            FF                                                             |
            // |-------------------|---------------------------------------------------------------------------|
            // | memory            | 000000...00FFAAAAAAAAAAAAAAAAAAA...AABBBBBBBBBBBBB...BBCCCCCCCCCCCCC...CC |
            // | keccak(start, 85) |            ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ |

            mstore(add(ptr, 0x40), bytecodeHash)
            mstore(add(ptr, 0x20), salt)
            mstore(ptr, deployer) // Right-aligned with 12 preceding garbage bytes
            let start := add(ptr, 0x0b) // The hashed data starts at the final garbage byte which we will set to 0xff
            mstore8(start, 0xff)
            addr := keccak256(start, 85)
        }
    }
}

File 31 of 33 : LibClone.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Minimal proxy library.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibClone.sol)
/// @author Minimal proxy by 0age (https://github.com/0age)
/// @author Clones with immutable args by wighawag, zefram.eth, Saw-mon & Natalie
/// (https://github.com/Saw-mon-and-Natalie/clones-with-immutable-args)
/// @author Minimal ERC1967 proxy by jtriley-eth (https://github.com/jtriley-eth/minimum-viable-proxy)
///
/// @dev Minimal proxy:
/// Although the sw0nt pattern saves 5 gas over the ERC1167 pattern during runtime,
/// it is not supported out-of-the-box on Etherscan. Hence, we choose to use the 0age pattern,
/// which saves 4 gas over the ERC1167 pattern during runtime, and has the smallest bytecode.
/// - Automatically verified on Etherscan.
///
/// @dev Minimal proxy (PUSH0 variant):
/// This is a new minimal proxy that uses the PUSH0 opcode introduced during Shanghai.
/// It is optimized first for minimal runtime gas, then for minimal bytecode.
/// The PUSH0 clone functions are intentionally postfixed with a jarring "_PUSH0" as
/// many EVM chains may not support the PUSH0 opcode in the early months after Shanghai.
/// Please use with caution.
/// - Automatically verified on Etherscan.
///
/// @dev Clones with immutable args (CWIA):
/// The implementation of CWIA here is does NOT append the immutable args into the calldata
/// passed into delegatecall. It is simply an ERC1167 minimal proxy with the immutable arguments
/// appended to the back of the runtime bytecode.
/// - Uses the identity precompile (0x4) to copy args during deployment.
///
/// @dev Minimal ERC1967 proxy:
/// An minimal ERC1967 proxy, intended to be upgraded with UUPS.
/// This is NOT the same as ERC1967Factory's transparent proxy, which includes admin logic.
/// - Automatically verified on Etherscan.
///
/// @dev Minimal ERC1967 proxy with immutable args:
/// - Uses the identity precompile (0x4) to copy args during deployment.
/// - Automatically verified on Etherscan.
///
/// @dev ERC1967I proxy:
/// An variant of the minimal ERC1967 proxy, with a special code path that activates
/// if `calldatasize() == 1`. This code path skips the delegatecall and directly returns the
/// `implementation` address. The returned implementation is guaranteed to be valid if the
/// keccak256 of the proxy's code is equal to `ERC1967I_CODE_HASH`.
///
/// @dev ERC1967I proxy with immutable args:
/// An variant of the minimal ERC1967 proxy, with a special code path that activates
/// if `calldatasize() == 1`. This code path skips the delegatecall and directly returns the
/// - Uses the identity precompile (0x4) to copy args during deployment.
///
/// @dev Minimal ERC1967 beacon proxy:
/// A minimal beacon proxy, intended to be upgraded with an upgradable beacon.
/// - Automatically verified on Etherscan.
///
/// @dev Minimal ERC1967 beacon proxy with immutable args:
/// - Uses the identity precompile (0x4) to copy args during deployment.
/// - Automatically verified on Etherscan.
///
/// @dev ERC1967I beacon proxy:
/// An variant of the minimal ERC1967 beacon proxy, with a special code path that activates
/// if `calldatasize() == 1`. This code path skips the delegatecall and directly returns the
/// `implementation` address. The returned implementation is guaranteed to be valid if the
/// keccak256 of the proxy's code is equal to `ERC1967I_CODE_HASH`.
///
/// @dev ERC1967I proxy with immutable args:
/// An variant of the minimal ERC1967 beacon proxy, with a special code path that activates
/// if `calldatasize() == 1`. This code path skips the delegatecall and directly returns the
/// - Uses the identity precompile (0x4) to copy args during deployment.
library LibClone {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The keccak256 of deployed code for the clone proxy,
    /// with the implementation set to `address(0)`.
    bytes32 internal constant CLONE_CODE_HASH =
        0x48db2cfdb2853fce0b464f1f93a1996469459df3ab6c812106074c4106a1eb1f;

    /// @dev The keccak256 of deployed code for the PUSH0 proxy,
    /// with the implementation set to `address(0)`.
    bytes32 internal constant PUSH0_CLONE_CODE_HASH =
        0x67bc6bde1b84d66e267c718ba44cf3928a615d29885537955cb43d44b3e789dc;

    /// @dev The keccak256 of deployed code for the ERC-1167 CWIA proxy,
    /// with the implementation set to `address(0)`.
    bytes32 internal constant CWIA_CODE_HASH =
        0x3cf92464268225a4513da40a34d967354684c32cd0edd67b5f668dfe3550e940;

    /// @dev The keccak256 of the deployed code for the ERC1967 proxy.
    bytes32 internal constant ERC1967_CODE_HASH =
        0xaaa52c8cc8a0e3fd27ce756cc6b4e70c51423e9b597b11f32d3e49f8b1fc890d;

    /// @dev The keccak256 of the deployed code for the ERC1967I proxy.
    bytes32 internal constant ERC1967I_CODE_HASH =
        0xce700223c0d4cea4583409accfc45adac4a093b3519998a9cbbe1504dadba6f7;

    /// @dev The keccak256 of the deployed code for the ERC1967 beacon proxy.
    bytes32 internal constant ERC1967_BEACON_PROXY_CODE_HASH =
        0x14044459af17bc4f0f5aa2f658cb692add77d1302c29fe2aebab005eea9d1162;

    /// @dev The keccak256 of the deployed code for the ERC1967 beacon proxy.
    bytes32 internal constant ERC1967I_BEACON_PROXY_CODE_HASH =
        0xf8c46d2793d5aa984eb827aeaba4b63aedcab80119212fce827309788735519a;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Unable to deploy the clone.
    error DeploymentFailed();

    /// @dev The salt must start with either the zero address or `by`.
    error SaltDoesNotStartWith();

    /// @dev The ETH transfer has failed.
    error ETHTransferFailed();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  MINIMAL PROXY OPERATIONS                  */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Deploys a clone of `implementation`.
    function clone(address implementation) internal returns (address instance) {
        instance = clone(0, implementation);
    }

    /// @dev Deploys a clone of `implementation`.
    /// Deposits `value` ETH during deployment.
    function clone(uint256 value, address implementation) internal returns (address instance) {
        /// @solidity memory-safe-assembly
        assembly {
            /**
             * --------------------------------------------------------------------------+
             * CREATION (9 bytes)                                                        |
             * --------------------------------------------------------------------------|
             * Opcode     | Mnemonic          | Stack     | Memory                       |
             * --------------------------------------------------------------------------|
             * 60 runSize | PUSH1 runSize     | r         |                              |
             * 3d         | RETURNDATASIZE    | 0 r       |                              |
             * 81         | DUP2              | r 0 r     |                              |
             * 60 offset  | PUSH1 offset      | o r 0 r   |                              |
             * 3d         | RETURNDATASIZE    | 0 o r 0 r |                              |
             * 39         | CODECOPY          | 0 r       | [0..runSize): runtime code   |
             * f3         | RETURN            |           | [0..runSize): runtime code   |
             * --------------------------------------------------------------------------|
             * RUNTIME (44 bytes)                                                        |
             * --------------------------------------------------------------------------|
             * Opcode  | Mnemonic       | Stack                  | Memory                |
             * --------------------------------------------------------------------------|
             *                                                                           |
             * ::: keep some values in stack ::::::::::::::::::::::::::::::::::::::::::: |
             * 3d      | RETURNDATASIZE | 0                      |                       |
             * 3d      | RETURNDATASIZE | 0 0                    |                       |
             * 3d      | RETURNDATASIZE | 0 0 0                  |                       |
             * 3d      | RETURNDATASIZE | 0 0 0 0                |                       |
             *                                                                           |
             * ::: copy calldata to memory ::::::::::::::::::::::::::::::::::::::::::::: |
             * 36      | CALLDATASIZE   | cds 0 0 0 0            |                       |
             * 3d      | RETURNDATASIZE | 0 cds 0 0 0 0          |                       |
             * 3d      | RETURNDATASIZE | 0 0 cds 0 0 0 0        |                       |
             * 37      | CALLDATACOPY   | 0 0 0 0                | [0..cds): calldata    |
             *                                                                           |
             * ::: delegate call to the implementation contract :::::::::::::::::::::::: |
             * 36      | CALLDATASIZE   | cds 0 0 0 0            | [0..cds): calldata    |
             * 3d      | RETURNDATASIZE | 0 cds 0 0 0 0          | [0..cds): calldata    |
             * 73 addr | PUSH20 addr    | addr 0 cds 0 0 0 0     | [0..cds): calldata    |
             * 5a      | GAS            | gas addr 0 cds 0 0 0 0 | [0..cds): calldata    |
             * f4      | DELEGATECALL   | success 0 0            | [0..cds): calldata    |
             *                                                                           |
             * ::: copy return data to memory :::::::::::::::::::::::::::::::::::::::::: |
             * 3d      | RETURNDATASIZE | rds success 0 0        | [0..cds): calldata    |
             * 3d      | RETURNDATASIZE | rds rds success 0 0    | [0..cds): calldata    |
             * 93      | SWAP4          | 0 rds success 0 rds    | [0..cds): calldata    |
             * 80      | DUP1           | 0 0 rds success 0 rds  | [0..cds): calldata    |
             * 3e      | RETURNDATACOPY | success 0 rds          | [0..rds): returndata  |
             *                                                                           |
             * 60 0x2a | PUSH1 0x2a     | 0x2a success 0 rds     | [0..rds): returndata  |
             * 57      | JUMPI          | 0 rds                  | [0..rds): returndata  |
             *                                                                           |
             * ::: revert :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: |
             * fd      | REVERT         |                        | [0..rds): returndata  |
             *                                                                           |
             * ::: return :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: |
             * 5b      | JUMPDEST       | 0 rds                  | [0..rds): returndata  |
             * f3      | RETURN         |                        | [0..rds): returndata  |
             * --------------------------------------------------------------------------+
             */
            mstore(0x21, 0x5af43d3d93803e602a57fd5bf3)
            mstore(0x14, implementation)
            mstore(0x00, 0x602c3d8160093d39f33d3d3d3d363d3d37363d73)
            instance := create(value, 0x0c, 0x35)
            if iszero(instance) {
                mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x21, 0) // Restore the overwritten part of the free memory pointer.
        }
    }

    /// @dev Deploys a deterministic clone of `implementation` with `salt`.
    function cloneDeterministic(address implementation, bytes32 salt)
        internal
        returns (address instance)
    {
        instance = cloneDeterministic(0, implementation, salt);
    }

    /// @dev Deploys a deterministic clone of `implementation` with `salt`.
    /// Deposits `value` ETH during deployment.
    function cloneDeterministic(uint256 value, address implementation, bytes32 salt)
        internal
        returns (address instance)
    {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x21, 0x5af43d3d93803e602a57fd5bf3)
            mstore(0x14, implementation)
            mstore(0x00, 0x602c3d8160093d39f33d3d3d3d363d3d37363d73)
            instance := create2(value, 0x0c, 0x35, salt)
            if iszero(instance) {
                mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x21, 0) // Restore the overwritten part of the free memory pointer.
        }
    }

    /// @dev Returns the initialization code of the clone of `implementation`.
    function initCode(address implementation) internal pure returns (bytes memory c) {
        /// @solidity memory-safe-assembly
        assembly {
            c := mload(0x40)
            mstore(add(c, 0x40), 0x5af43d3d93803e602a57fd5bf30000000000000000000000)
            mstore(add(c, 0x28), implementation)
            mstore(add(c, 0x14), 0x602c3d8160093d39f33d3d3d3d363d3d37363d73)
            mstore(c, 0x35) // Store the length.
            mstore(0x40, add(c, 0x60)) // Allocate memory.
        }
    }

    /// @dev Returns the initialization code hash of the clone of `implementation`.
    function initCodeHash(address implementation) internal pure returns (bytes32 hash) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x21, 0x5af43d3d93803e602a57fd5bf3)
            mstore(0x14, implementation)
            mstore(0x00, 0x602c3d8160093d39f33d3d3d3d363d3d37363d73)
            hash := keccak256(0x0c, 0x35)
            mstore(0x21, 0) // Restore the overwritten part of the free memory pointer.
        }
    }

    /// @dev Returns the address of the clone of `implementation`, with `salt` by `deployer`.
    /// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly.
    function predictDeterministicAddress(address implementation, bytes32 salt, address deployer)
        internal
        pure
        returns (address predicted)
    {
        bytes32 hash = initCodeHash(implementation);
        predicted = predictDeterministicAddress(hash, salt, deployer);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*          MINIMAL PROXY OPERATIONS (PUSH0 VARIANT)          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Deploys a PUSH0 clone of `implementation`.
    function clone_PUSH0(address implementation) internal returns (address instance) {
        instance = clone_PUSH0(0, implementation);
    }

    /// @dev Deploys a PUSH0 clone of `implementation`.
    /// Deposits `value` ETH during deployment.
    function clone_PUSH0(uint256 value, address implementation)
        internal
        returns (address instance)
    {
        /// @solidity memory-safe-assembly
        assembly {
            /**
             * --------------------------------------------------------------------------+
             * CREATION (9 bytes)                                                        |
             * --------------------------------------------------------------------------|
             * Opcode     | Mnemonic          | Stack     | Memory                       |
             * --------------------------------------------------------------------------|
             * 60 runSize | PUSH1 runSize     | r         |                              |
             * 5f         | PUSH0             | 0 r       |                              |
             * 81         | DUP2              | r 0 r     |                              |
             * 60 offset  | PUSH1 offset      | o r 0 r   |                              |
             * 5f         | PUSH0             | 0 o r 0 r |                              |
             * 39         | CODECOPY          | 0 r       | [0..runSize): runtime code   |
             * f3         | RETURN            |           | [0..runSize): runtime code   |
             * --------------------------------------------------------------------------|
             * RUNTIME (45 bytes)                                                        |
             * --------------------------------------------------------------------------|
             * Opcode  | Mnemonic       | Stack                  | Memory                |
             * --------------------------------------------------------------------------|
             *                                                                           |
             * ::: keep some values in stack ::::::::::::::::::::::::::::::::::::::::::: |
             * 5f      | PUSH0          | 0                      |                       |
             * 5f      | PUSH0          | 0 0                    |                       |
             *                                                                           |
             * ::: copy calldata to memory ::::::::::::::::::::::::::::::::::::::::::::: |
             * 36      | CALLDATASIZE   | cds 0 0                |                       |
             * 5f      | PUSH0          | 0 cds 0 0              |                       |
             * 5f      | PUSH0          | 0 0 cds 0 0            |                       |
             * 37      | CALLDATACOPY   | 0 0                    | [0..cds): calldata    |
             *                                                                           |
             * ::: delegate call to the implementation contract :::::::::::::::::::::::: |
             * 36      | CALLDATASIZE   | cds 0 0                | [0..cds): calldata    |
             * 5f      | PUSH0          | 0 cds 0 0              | [0..cds): calldata    |
             * 73 addr | PUSH20 addr    | addr 0 cds 0 0         | [0..cds): calldata    |
             * 5a      | GAS            | gas addr 0 cds 0 0     | [0..cds): calldata    |
             * f4      | DELEGATECALL   | success                | [0..cds): calldata    |
             *                                                                           |
             * ::: copy return data to memory :::::::::::::::::::::::::::::::::::::::::: |
             * 3d      | RETURNDATASIZE | rds success            | [0..cds): calldata    |
             * 5f      | PUSH0          | 0 rds success          | [0..cds): calldata    |
             * 5f      | PUSH0          | 0 0 rds success        | [0..cds): calldata    |
             * 3e      | RETURNDATACOPY | success                | [0..rds): returndata  |
             *                                                                           |
             * 60 0x29 | PUSH1 0x29     | 0x29 success           | [0..rds): returndata  |
             * 57      | JUMPI          |                        | [0..rds): returndata  |
             *                                                                           |
             * ::: revert :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: |
             * 3d      | RETURNDATASIZE | rds                    | [0..rds): returndata  |
             * 5f      | PUSH0          | 0 rds                  | [0..rds): returndata  |
             * fd      | REVERT         |                        | [0..rds): returndata  |
             *                                                                           |
             * ::: return :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: |
             * 5b      | JUMPDEST       |                        | [0..rds): returndata  |
             * 3d      | RETURNDATASIZE | rds                    | [0..rds): returndata  |
             * 5f      | PUSH0          | 0 rds                  | [0..rds): returndata  |
             * f3      | RETURN         |                        | [0..rds): returndata  |
             * --------------------------------------------------------------------------+
             */
            mstore(0x24, 0x5af43d5f5f3e6029573d5ffd5b3d5ff3) // 16
            mstore(0x14, implementation) // 20
            mstore(0x00, 0x602d5f8160095f39f35f5f365f5f37365f73) // 9 + 9
            instance := create(value, 0x0e, 0x36)
            if iszero(instance) {
                mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x24, 0) // Restore the overwritten part of the free memory pointer.
        }
    }

    /// @dev Deploys a deterministic PUSH0 clone of `implementation` with `salt`.
    function cloneDeterministic_PUSH0(address implementation, bytes32 salt)
        internal
        returns (address instance)
    {
        instance = cloneDeterministic_PUSH0(0, implementation, salt);
    }

    /// @dev Deploys a deterministic PUSH0 clone of `implementation` with `salt`.
    /// Deposits `value` ETH during deployment.
    function cloneDeterministic_PUSH0(uint256 value, address implementation, bytes32 salt)
        internal
        returns (address instance)
    {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x24, 0x5af43d5f5f3e6029573d5ffd5b3d5ff3) // 16
            mstore(0x14, implementation) // 20
            mstore(0x00, 0x602d5f8160095f39f35f5f365f5f37365f73) // 9 + 9
            instance := create2(value, 0x0e, 0x36, salt)
            if iszero(instance) {
                mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x24, 0) // Restore the overwritten part of the free memory pointer.
        }
    }

    /// @dev Returns the initialization code of the PUSH0 clone of `implementation`.
    function initCode_PUSH0(address implementation) internal pure returns (bytes memory c) {
        /// @solidity memory-safe-assembly
        assembly {
            c := mload(0x40)
            mstore(add(c, 0x40), 0x5af43d5f5f3e6029573d5ffd5b3d5ff300000000000000000000) // 16
            mstore(add(c, 0x26), implementation) // 20
            mstore(add(c, 0x12), 0x602d5f8160095f39f35f5f365f5f37365f73) // 9 + 9
            mstore(c, 0x36) // Store the length.
            mstore(0x40, add(c, 0x60)) // Allocate memory.
        }
    }

    /// @dev Returns the initialization code hash of the PUSH0 clone of `implementation`.
    function initCodeHash_PUSH0(address implementation) internal pure returns (bytes32 hash) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x24, 0x5af43d5f5f3e6029573d5ffd5b3d5ff3) // 16
            mstore(0x14, implementation) // 20
            mstore(0x00, 0x602d5f8160095f39f35f5f365f5f37365f73) // 9 + 9
            hash := keccak256(0x0e, 0x36)
            mstore(0x24, 0) // Restore the overwritten part of the free memory pointer.
        }
    }

    /// @dev Returns the address of the PUSH0 clone of `implementation`, with `salt` by `deployer`.
    /// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly.
    function predictDeterministicAddress_PUSH0(
        address implementation,
        bytes32 salt,
        address deployer
    ) internal pure returns (address predicted) {
        bytes32 hash = initCodeHash_PUSH0(implementation);
        predicted = predictDeterministicAddress(hash, salt, deployer);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*           CLONES WITH IMMUTABLE ARGS OPERATIONS            */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Deploys a clone of `implementation` with immutable arguments encoded in `args`.
    function clone(address implementation, bytes memory args) internal returns (address instance) {
        instance = clone(0, implementation, args);
    }

    /// @dev Deploys a clone of `implementation` with immutable arguments encoded in `args`.
    /// Deposits `value` ETH during deployment.
    function clone(uint256 value, address implementation, bytes memory args)
        internal
        returns (address instance)
    {
        /// @solidity memory-safe-assembly
        assembly {
            /**
             * ---------------------------------------------------------------------------+
             * CREATION (10 bytes)                                                        |
             * ---------------------------------------------------------------------------|
             * Opcode     | Mnemonic          | Stack     | Memory                        |
             * ---------------------------------------------------------------------------|
             * 61 runSize | PUSH2 runSize     | r         |                               |
             * 3d         | RETURNDATASIZE    | 0 r       |                               |
             * 81         | DUP2              | r 0 r     |                               |
             * 60 offset  | PUSH1 offset      | o r 0 r   |                               |
             * 3d         | RETURNDATASIZE    | 0 o r 0 r |                               |
             * 39         | CODECOPY          | 0 r       | [0..runSize): runtime code    |
             * f3         | RETURN            |           | [0..runSize): runtime code    |
             * ---------------------------------------------------------------------------|
             * RUNTIME (45 bytes + extraLength)                                           |
             * ---------------------------------------------------------------------------|
             * Opcode   | Mnemonic       | Stack                  | Memory                |
             * ---------------------------------------------------------------------------|
             *                                                                            |
             * ::: copy calldata to memory :::::::::::::::::::::::::::::::::::::::::::::: |
             * 36       | CALLDATASIZE   | cds                    |                       |
             * 3d       | RETURNDATASIZE | 0 cds                  |                       |
             * 3d       | RETURNDATASIZE | 0 0 cds                |                       |
             * 37       | CALLDATACOPY   |                        | [0..cds): calldata    |
             *                                                                            |
             * ::: delegate call to the implementation contract ::::::::::::::::::::::::: |
             * 3d       | RETURNDATASIZE | 0                      | [0..cds): calldata    |
             * 3d       | RETURNDATASIZE | 0 0                    | [0..cds): calldata    |
             * 3d       | RETURNDATASIZE | 0 0 0                  | [0..cds): calldata    |
             * 36       | CALLDATASIZE   | cds 0 0 0              | [0..cds): calldata    |
             * 3d       | RETURNDATASIZE | 0 cds 0 0 0 0          | [0..cds): calldata    |
             * 73 addr  | PUSH20 addr    | addr 0 cds 0 0 0 0     | [0..cds): calldata    |
             * 5a       | GAS            | gas addr 0 cds 0 0 0 0 | [0..cds): calldata    |
             * f4       | DELEGATECALL   | success 0 0            | [0..cds): calldata    |
             *                                                                            |
             * ::: copy return data to memory ::::::::::::::::::::::::::::::::::::::::::: |
             * 3d       | RETURNDATASIZE | rds success 0          | [0..cds): calldata    |
             * 82       | DUP3           | 0 rds success 0         | [0..cds): calldata   |
             * 80       | DUP1           | 0 0 rds success 0      | [0..cds): calldata    |
             * 3e       | RETURNDATACOPY | success 0              | [0..rds): returndata  |
             * 90       | SWAP1          | 0 success              | [0..rds): returndata  |
             * 3d       | RETURNDATASIZE | rds 0 success          | [0..rds): returndata  |
             * 91       | SWAP2          | success 0 rds          | [0..rds): returndata  |
             *                                                                            |
             * 60 0x2b  | PUSH1 0x2b     | 0x2b success 0 rds     | [0..rds): returndata  |
             * 57       | JUMPI          | 0 rds                  | [0..rds): returndata  |
             *                                                                            |
             * ::: revert ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: |
             * fd       | REVERT         |                        | [0..rds): returndata  |
             *                                                                            |
             * ::: return ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: |
             * 5b       | JUMPDEST       | 0 rds                  | [0..rds): returndata  |
             * f3       | RETURN         |                        | [0..rds): returndata  |
             * ---------------------------------------------------------------------------+
             */
            let m := mload(0x40)
            let n := mload(args)
            pop(staticcall(gas(), 4, add(args, 0x20), n, add(m, 0x43), n))
            mstore(add(m, 0x23), 0x5af43d82803e903d91602b57fd5bf3)
            mstore(add(m, 0x14), implementation)
            mstore(m, add(0xfe61002d3d81600a3d39f3363d3d373d3d3d363d73, shl(136, n)))
            // Do a out-of-gas revert if `n` is greater than `0xffff - 0x2d = 0xffd2`.
            instance := create(value, add(m, add(0x0b, lt(n, 0xffd3))), add(n, 0x37))
            if iszero(instance) {
                mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                revert(0x1c, 0x04)
            }
        }
    }

    /// @dev Deploys a deterministic clone of `implementation`
    /// with immutable arguments encoded in `args` and `salt`.
    function cloneDeterministic(address implementation, bytes memory args, bytes32 salt)
        internal
        returns (address instance)
    {
        instance = cloneDeterministic(0, implementation, args, salt);
    }

    /// @dev Deploys a deterministic clone of `implementation`
    /// with immutable arguments encoded in `args` and `salt`.
    function cloneDeterministic(
        uint256 value,
        address implementation,
        bytes memory args,
        bytes32 salt
    ) internal returns (address instance) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            let n := mload(args)
            pop(staticcall(gas(), 4, add(args, 0x20), n, add(m, 0x43), n))
            mstore(add(m, 0x23), 0x5af43d82803e903d91602b57fd5bf3)
            mstore(add(m, 0x14), implementation)
            mstore(m, add(0xfe61002d3d81600a3d39f3363d3d373d3d3d363d73, shl(136, n)))
            // Do a out-of-gas revert if `n` is greater than `0xffff - 0x2d = 0xffd2`.
            instance := create2(value, add(m, add(0x0b, lt(n, 0xffd3))), add(n, 0x37), salt)
            if iszero(instance) {
                mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                revert(0x1c, 0x04)
            }
        }
    }

    /// @dev Deploys a deterministic clone of `implementation`
    /// with immutable arguments encoded in `args` and `salt`.
    /// This method does not revert if the clone has already been deployed.
    function createDeterministicClone(address implementation, bytes memory args, bytes32 salt)
        internal
        returns (bool alreadyDeployed, address instance)
    {
        return createDeterministicClone(0, implementation, args, salt);
    }

    /// @dev Deploys a deterministic clone of `implementation`
    /// with immutable arguments encoded in `args` and `salt`.
    /// This method does not revert if the clone has already been deployed.
    function createDeterministicClone(
        uint256 value,
        address implementation,
        bytes memory args,
        bytes32 salt
    ) internal returns (bool alreadyDeployed, address instance) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            let n := mload(args)
            pop(staticcall(gas(), 4, add(args, 0x20), n, add(m, 0x43), n))
            mstore(add(m, 0x23), 0x5af43d82803e903d91602b57fd5bf3)
            mstore(add(m, 0x14), implementation)
            // Do a out-of-gas revert if `n` is greater than `0xffff - 0x2d = 0xffd2`.
            // forgefmt: disable-next-item
            mstore(add(m, gt(n, 0xffd2)), add(0xfe61002d3d81600a3d39f3363d3d373d3d3d363d73, shl(136, n)))
            // Compute and store the bytecode hash.
            mstore8(0x00, 0xff) // Write the prefix.
            mstore(0x35, keccak256(add(m, 0x0c), add(n, 0x37)))
            mstore(0x01, shl(96, address()))
            mstore(0x15, salt)
            instance := keccak256(0x00, 0x55)
            for {} 1 {} {
                if iszero(extcodesize(instance)) {
                    instance := create2(value, add(m, 0x0c), add(n, 0x37), salt)
                    if iszero(instance) {
                        mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                        revert(0x1c, 0x04)
                    }
                    break
                }
                alreadyDeployed := 1
                if iszero(value) { break }
                if iszero(call(gas(), instance, value, codesize(), 0x00, codesize(), 0x00)) {
                    mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                    revert(0x1c, 0x04)
                }
                break
            }
            mstore(0x35, 0) // Restore the overwritten part of the free memory pointer.
        }
    }

    /// @dev Returns the initialization code hash of the clone of `implementation`
    /// using immutable arguments encoded in `args`.
    function initCode(address implementation, bytes memory args)
        internal
        pure
        returns (bytes memory c)
    {
        /// @solidity memory-safe-assembly
        assembly {
            c := mload(0x40)
            let n := mload(args)
            // Do a out-of-gas revert if `n` is greater than `0xffff - 0x2d = 0xffd2`.
            returndatacopy(returndatasize(), returndatasize(), gt(n, 0xffd2))
            for { let i := 0 } lt(i, n) { i := add(i, 0x20) } {
                mstore(add(add(c, 0x57), i), mload(add(add(args, 0x20), i)))
            }
            mstore(add(c, 0x37), 0x5af43d82803e903d91602b57fd5bf3)
            mstore(add(c, 0x28), implementation)
            mstore(add(c, 0x14), add(0x61002d3d81600a3d39f3363d3d373d3d3d363d73, shl(136, n)))
            mstore(c, add(0x37, n)) // Store the length.
            mstore(add(c, add(n, 0x57)), 0) // Zeroize the slot after the bytes.
            mstore(0x40, add(c, add(n, 0x77))) // Allocate memory.
        }
    }

    /// @dev Returns the initialization code hash of the clone of `implementation`
    /// using immutable arguments encoded in `args`.
    function initCodeHash(address implementation, bytes memory args)
        internal
        pure
        returns (bytes32 hash)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            let n := mload(args)
            // Do a out-of-gas revert if `n` is greater than `0xffff - 0x2d = 0xffd2`.
            returndatacopy(returndatasize(), returndatasize(), gt(n, 0xffd2))
            for { let i := 0 } lt(i, n) { i := add(i, 0x20) } {
                mstore(add(add(m, 0x43), i), mload(add(add(args, 0x20), i)))
            }
            mstore(add(m, 0x23), 0x5af43d82803e903d91602b57fd5bf3)
            mstore(add(m, 0x14), implementation)
            mstore(m, add(0x61002d3d81600a3d39f3363d3d373d3d3d363d73, shl(136, n)))
            hash := keccak256(add(m, 0x0c), add(n, 0x37))
        }
    }

    /// @dev Returns the address of the clone of
    /// `implementation` using immutable arguments encoded in `args`, with `salt`, by `deployer`.
    /// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly.
    function predictDeterministicAddress(
        address implementation,
        bytes memory data,
        bytes32 salt,
        address deployer
    ) internal pure returns (address predicted) {
        bytes32 hash = initCodeHash(implementation, data);
        predicted = predictDeterministicAddress(hash, salt, deployer);
    }

    /// @dev Equivalent to `argsOnClone(instance, 0, 2 ** 256 - 1)`.
    function argsOnClone(address instance) internal view returns (bytes memory args) {
        /// @solidity memory-safe-assembly
        assembly {
            args := mload(0x40)
            mstore(args, and(0xffffffffff, sub(extcodesize(instance), 0x2d))) // Store the length.
            extcodecopy(instance, add(args, 0x20), 0x2d, add(mload(args), 0x20))
            mstore(0x40, add(mload(args), add(args, 0x40))) // Allocate memory.
        }
    }

    /// @dev Equivalent to `argsOnClone(instance, start, 2 ** 256 - 1)`.
    function argsOnClone(address instance, uint256 start)
        internal
        view
        returns (bytes memory args)
    {
        /// @solidity memory-safe-assembly
        assembly {
            args := mload(0x40)
            let n := and(0xffffffffff, sub(extcodesize(instance), 0x2d))
            extcodecopy(instance, add(args, 0x20), add(start, 0x2d), add(n, 0x20))
            mstore(args, mul(sub(n, start), lt(start, n))) // Store the length.
            mstore(0x40, add(args, add(0x40, mload(args)))) // Allocate memory.
        }
    }

    /// @dev Returns a slice of the immutable arguments on `instance` from `start` to `end`.
    /// `start` and `end` will be clamped to the range `[0, args.length]`.
    /// The `instance` MUST be deployed via the clone with immutable args functions.
    /// Otherwise, the behavior is undefined.
    /// Out-of-gas reverts if `instance` does not have any code.
    function argsOnClone(address instance, uint256 start, uint256 end)
        internal
        view
        returns (bytes memory args)
    {
        /// @solidity memory-safe-assembly
        assembly {
            args := mload(0x40)
            if iszero(lt(end, 0xffff)) { end := 0xffff }
            let d := mul(sub(end, start), lt(start, end))
            extcodecopy(instance, args, add(start, 0x0d), add(d, 0x20))
            if iszero(and(0xff, mload(add(args, d)))) {
                let n := sub(extcodesize(instance), 0x2d)
                returndatacopy(returndatasize(), returndatasize(), shr(40, n))
                d := mul(gt(n, start), sub(d, mul(gt(end, n), sub(end, n))))
            }
            mstore(args, d) // Store the length.
            mstore(add(add(args, 0x20), d), 0) // Zeroize the slot after the bytes.
            mstore(0x40, add(add(args, 0x40), d)) // Allocate memory.
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*              MINIMAL ERC1967 PROXY OPERATIONS              */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    // Note: The ERC1967 proxy here is intended to be upgraded with UUPS.
    // This is NOT the same as ERC1967Factory's transparent proxy, which includes admin logic.

    /// @dev Deploys a minimal ERC1967 proxy with `implementation`.
    function deployERC1967(address implementation) internal returns (address instance) {
        instance = deployERC1967(0, implementation);
    }

    /// @dev Deploys a minimal ERC1967 proxy with `implementation`.
    /// Deposits `value` ETH during deployment.
    function deployERC1967(uint256 value, address implementation)
        internal
        returns (address instance)
    {
        /// @solidity memory-safe-assembly
        assembly {
            /**
             * ---------------------------------------------------------------------------------+
             * CREATION (34 bytes)                                                              |
             * ---------------------------------------------------------------------------------|
             * Opcode     | Mnemonic       | Stack            | Memory                          |
             * ---------------------------------------------------------------------------------|
             * 60 runSize | PUSH1 runSize  | r                |                                 |
             * 3d         | RETURNDATASIZE | 0 r              |                                 |
             * 81         | DUP2           | r 0 r            |                                 |
             * 60 offset  | PUSH1 offset   | o r 0 r          |                                 |
             * 3d         | RETURNDATASIZE | 0 o r 0 r        |                                 |
             * 39         | CODECOPY       | 0 r              | [0..runSize): runtime code      |
             * 73 impl    | PUSH20 impl    | impl 0 r         | [0..runSize): runtime code      |
             * 60 slotPos | PUSH1 slotPos  | slotPos impl 0 r | [0..runSize): runtime code      |
             * 51         | MLOAD          | slot impl 0 r    | [0..runSize): runtime code      |
             * 55         | SSTORE         | 0 r              | [0..runSize): runtime code      |
             * f3         | RETURN         |                  | [0..runSize): runtime code      |
             * ---------------------------------------------------------------------------------|
             * RUNTIME (61 bytes)                                                               |
             * ---------------------------------------------------------------------------------|
             * Opcode     | Mnemonic       | Stack            | Memory                          |
             * ---------------------------------------------------------------------------------|
             *                                                                                  |
             * ::: copy calldata to memory :::::::::::::::::::::::::::::::::::::::::::::::::::: |
             * 36         | CALLDATASIZE   | cds              |                                 |
             * 3d         | RETURNDATASIZE | 0 cds            |                                 |
             * 3d         | RETURNDATASIZE | 0 0 cds          |                                 |
             * 37         | CALLDATACOPY   |                  | [0..calldatasize): calldata     |
             *                                                                                  |
             * ::: delegatecall to implementation ::::::::::::::::::::::::::::::::::::::::::::: |
             * 3d         | RETURNDATASIZE | 0                |                                 |
             * 3d         | RETURNDATASIZE | 0 0              |                                 |
             * 36         | CALLDATASIZE   | cds 0 0          | [0..calldatasize): calldata     |
             * 3d         | RETURNDATASIZE | 0 cds 0 0        | [0..calldatasize): calldata     |
             * 7f slot    | PUSH32 slot    | s 0 cds 0 0      | [0..calldatasize): calldata     |
             * 54         | SLOAD          | i 0 cds 0 0      | [0..calldatasize): calldata     |
             * 5a         | GAS            | g i 0 cds 0 0    | [0..calldatasize): calldata     |
             * f4         | DELEGATECALL   | succ             | [0..calldatasize): calldata     |
             *                                                                                  |
             * ::: copy returndata to memory :::::::::::::::::::::::::::::::::::::::::::::::::: |
             * 3d         | RETURNDATASIZE | rds succ         | [0..calldatasize): calldata     |
             * 60 0x00    | PUSH1 0x00     | 0 rds succ       | [0..calldatasize): calldata     |
             * 80         | DUP1           | 0 0 rds succ     | [0..calldatasize): calldata     |
             * 3e         | RETURNDATACOPY | succ             | [0..returndatasize): returndata |
             *                                                                                  |
             * ::: branch on delegatecall status :::::::::::::::::::::::::::::::::::::::::::::: |
             * 60 0x38    | PUSH1 0x38     | dest succ        | [0..returndatasize): returndata |
             * 57         | JUMPI          |                  | [0..returndatasize): returndata |
             *                                                                                  |
             * ::: delegatecall failed, revert :::::::::::::::::::::::::::::::::::::::::::::::: |
             * 3d         | RETURNDATASIZE | rds              | [0..returndatasize): returndata |
             * 60 0x00    | PUSH1 0x00     | 0 rds            | [0..returndatasize): returndata |
             * fd         | REVERT         |                  | [0..returndatasize): returndata |
             *                                                                                  |
             * ::: delegatecall succeeded, return ::::::::::::::::::::::::::::::::::::::::::::: |
             * 5b         | JUMPDEST       |                  | [0..returndatasize): returndata |
             * 3d         | RETURNDATASIZE | rds              | [0..returndatasize): returndata |
             * 60 0x00    | PUSH1 0x00     | 0 rds            | [0..returndatasize): returndata |
             * f3         | RETURN         |                  | [0..returndatasize): returndata |
             * ---------------------------------------------------------------------------------+
             */
            let m := mload(0x40) // Cache the free memory pointer.
            mstore(0x60, 0xcc3735a920a3ca505d382bbc545af43d6000803e6038573d6000fd5b3d6000f3)
            mstore(0x40, 0x5155f3363d3d373d3d363d7f360894a13ba1a3210667c828492db98dca3e2076)
            mstore(0x20, 0x6009)
            mstore(0x1e, implementation)
            mstore(0x0a, 0x603d3d8160223d3973)
            instance := create(value, 0x21, 0x5f)
            if iszero(instance) {
                mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x40, m) // Restore the free memory pointer.
            mstore(0x60, 0) // Restore the zero slot.
        }
    }

    /// @dev Deploys a deterministic minimal ERC1967 proxy with `implementation` and `salt`.
    function deployDeterministicERC1967(address implementation, bytes32 salt)
        internal
        returns (address instance)
    {
        instance = deployDeterministicERC1967(0, implementation, salt);
    }

    /// @dev Deploys a deterministic minimal ERC1967 proxy with `implementation` and `salt`.
    /// Deposits `value` ETH during deployment.
    function deployDeterministicERC1967(uint256 value, address implementation, bytes32 salt)
        internal
        returns (address instance)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Cache the free memory pointer.
            mstore(0x60, 0xcc3735a920a3ca505d382bbc545af43d6000803e6038573d6000fd5b3d6000f3)
            mstore(0x40, 0x5155f3363d3d373d3d363d7f360894a13ba1a3210667c828492db98dca3e2076)
            mstore(0x20, 0x6009)
            mstore(0x1e, implementation)
            mstore(0x0a, 0x603d3d8160223d3973)
            instance := create2(value, 0x21, 0x5f, salt)
            if iszero(instance) {
                mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x40, m) // Restore the free memory pointer.
            mstore(0x60, 0) // Restore the zero slot.
        }
    }

    /// @dev Creates a deterministic minimal ERC1967 proxy with `implementation` and `salt`.
    /// Note: This method is intended for use in ERC4337 factories,
    /// which are expected to NOT revert if the proxy is already deployed.
    function createDeterministicERC1967(address implementation, bytes32 salt)
        internal
        returns (bool alreadyDeployed, address instance)
    {
        return createDeterministicERC1967(0, implementation, salt);
    }

    /// @dev Creates a deterministic minimal ERC1967 proxy with `implementation` and `salt`.
    /// Deposits `value` ETH during deployment.
    /// Note: This method is intended for use in ERC4337 factories,
    /// which are expected to NOT revert if the proxy is already deployed.
    function createDeterministicERC1967(uint256 value, address implementation, bytes32 salt)
        internal
        returns (bool alreadyDeployed, address instance)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Cache the free memory pointer.
            mstore(0x60, 0xcc3735a920a3ca505d382bbc545af43d6000803e6038573d6000fd5b3d6000f3)
            mstore(0x40, 0x5155f3363d3d373d3d363d7f360894a13ba1a3210667c828492db98dca3e2076)
            mstore(0x20, 0x6009)
            mstore(0x1e, implementation)
            mstore(0x0a, 0x603d3d8160223d3973)
            // Compute and store the bytecode hash.
            mstore(add(m, 0x35), keccak256(0x21, 0x5f))
            mstore(m, shl(88, address()))
            mstore8(m, 0xff) // Write the prefix.
            mstore(add(m, 0x15), salt)
            instance := keccak256(m, 0x55)
            for {} 1 {} {
                if iszero(extcodesize(instance)) {
                    instance := create2(value, 0x21, 0x5f, salt)
                    if iszero(instance) {
                        mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                        revert(0x1c, 0x04)
                    }
                    break
                }
                alreadyDeployed := 1
                if iszero(value) { break }
                if iszero(call(gas(), instance, value, codesize(), 0x00, codesize(), 0x00)) {
                    mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                    revert(0x1c, 0x04)
                }
                break
            }
            mstore(0x40, m) // Restore the free memory pointer.
            mstore(0x60, 0) // Restore the zero slot.
        }
    }

    /// @dev Returns the initialization code of the minimal ERC1967 proxy of `implementation`.
    function initCodeERC1967(address implementation) internal pure returns (bytes memory c) {
        /// @solidity memory-safe-assembly
        assembly {
            c := mload(0x40)
            mstore(add(c, 0x60), 0x3735a920a3ca505d382bbc545af43d6000803e6038573d6000fd5b3d6000f300)
            mstore(add(c, 0x40), 0x55f3363d3d373d3d363d7f360894a13ba1a3210667c828492db98dca3e2076cc)
            mstore(add(c, 0x20), or(shl(24, implementation), 0x600951))
            mstore(add(c, 0x09), 0x603d3d8160223d3973)
            mstore(c, 0x5f) // Store the length.
            mstore(0x40, add(c, 0x80)) // Allocate memory.
        }
    }

    /// @dev Returns the initialization code hash of the minimal ERC1967 proxy of `implementation`.
    function initCodeHashERC1967(address implementation) internal pure returns (bytes32 hash) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Cache the free memory pointer.
            mstore(0x60, 0xcc3735a920a3ca505d382bbc545af43d6000803e6038573d6000fd5b3d6000f3)
            mstore(0x40, 0x5155f3363d3d373d3d363d7f360894a13ba1a3210667c828492db98dca3e2076)
            mstore(0x20, 0x6009)
            mstore(0x1e, implementation)
            mstore(0x0a, 0x603d3d8160223d3973)
            hash := keccak256(0x21, 0x5f)
            mstore(0x40, m) // Restore the free memory pointer.
            mstore(0x60, 0) // Restore the zero slot.
        }
    }

    /// @dev Returns the address of the ERC1967 proxy of `implementation`, with `salt` by `deployer`.
    /// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly.
    function predictDeterministicAddressERC1967(
        address implementation,
        bytes32 salt,
        address deployer
    ) internal pure returns (address predicted) {
        bytes32 hash = initCodeHashERC1967(implementation);
        predicted = predictDeterministicAddress(hash, salt, deployer);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*    MINIMAL ERC1967 PROXY WITH IMMUTABLE ARGS OPERATIONS    */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Deploys a minimal ERC1967 proxy with `implementation` and `args`.
    function deployERC1967(address implementation, bytes memory args)
        internal
        returns (address instance)
    {
        instance = deployERC1967(0, implementation, args);
    }

    /// @dev Deploys a minimal ERC1967 proxy with `implementation` and `args`.
    /// Deposits `value` ETH during deployment.
    function deployERC1967(uint256 value, address implementation, bytes memory args)
        internal
        returns (address instance)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            let n := mload(args)
            pop(staticcall(gas(), 4, add(args, 0x20), n, add(m, 0x60), n))
            mstore(add(m, 0x40), 0xcc3735a920a3ca505d382bbc545af43d6000803e6038573d6000fd5b3d6000f3)
            mstore(add(m, 0x20), 0x5155f3363d3d373d3d363d7f360894a13ba1a3210667c828492db98dca3e2076)
            mstore(0x16, 0x6009)
            mstore(0x14, implementation)
            // Do a out-of-gas revert if `n` is greater than `0xffff - 0x3d = 0xffc2`.
            mstore(gt(n, 0xffc2), add(0xfe61003d3d8160233d3973, shl(56, n)))
            mstore(m, mload(0x16))
            instance := create(value, m, add(n, 0x60))
            if iszero(instance) {
                mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                revert(0x1c, 0x04)
            }
        }
    }

    /// @dev Deploys a deterministic minimal ERC1967 proxy with `implementation`, `args` and `salt`.
    function deployDeterministicERC1967(address implementation, bytes memory args, bytes32 salt)
        internal
        returns (address instance)
    {
        instance = deployDeterministicERC1967(0, implementation, args, salt);
    }

    /// @dev Deploys a deterministic minimal ERC1967 proxy with `implementation`, `args` and `salt`.
    /// Deposits `value` ETH during deployment.
    function deployDeterministicERC1967(
        uint256 value,
        address implementation,
        bytes memory args,
        bytes32 salt
    ) internal returns (address instance) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            let n := mload(args)
            pop(staticcall(gas(), 4, add(args, 0x20), n, add(m, 0x60), n))
            mstore(add(m, 0x40), 0xcc3735a920a3ca505d382bbc545af43d6000803e6038573d6000fd5b3d6000f3)
            mstore(add(m, 0x20), 0x5155f3363d3d373d3d363d7f360894a13ba1a3210667c828492db98dca3e2076)
            mstore(0x16, 0x6009)
            mstore(0x14, implementation)
            // Do a out-of-gas revert if `n` is greater than `0xffff - 0x3d = 0xffc2`.
            mstore(gt(n, 0xffc2), add(0xfe61003d3d8160233d3973, shl(56, n)))
            mstore(m, mload(0x16))
            instance := create2(value, m, add(n, 0x60), salt)
            if iszero(instance) {
                mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                revert(0x1c, 0x04)
            }
        }
    }

    /// @dev Creates a deterministic minimal ERC1967 proxy with `implementation`, `args` and `salt`.
    /// Note: This method is intended for use in ERC4337 factories,
    /// which are expected to NOT revert if the proxy is already deployed.
    function createDeterministicERC1967(address implementation, bytes memory args, bytes32 salt)
        internal
        returns (bool alreadyDeployed, address instance)
    {
        return createDeterministicERC1967(0, implementation, args, salt);
    }

    /// @dev Creates a deterministic minimal ERC1967 proxy with `implementation`, `args` and `salt`.
    /// Deposits `value` ETH during deployment.
    /// Note: This method is intended for use in ERC4337 factories,
    /// which are expected to NOT revert if the proxy is already deployed.
    function createDeterministicERC1967(
        uint256 value,
        address implementation,
        bytes memory args,
        bytes32 salt
    ) internal returns (bool alreadyDeployed, address instance) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            let n := mload(args)
            pop(staticcall(gas(), 4, add(args, 0x20), n, add(m, 0x60), n))
            mstore(add(m, 0x40), 0xcc3735a920a3ca505d382bbc545af43d6000803e6038573d6000fd5b3d6000f3)
            mstore(add(m, 0x20), 0x5155f3363d3d373d3d363d7f360894a13ba1a3210667c828492db98dca3e2076)
            mstore(0x16, 0x6009)
            mstore(0x14, implementation)
            // Do a out-of-gas revert if `n` is greater than `0xffff - 0x3d = 0xffc2`.
            mstore(gt(n, 0xffc2), add(0xfe61003d3d8160233d3973, shl(56, n)))
            mstore(m, mload(0x16))
            // Compute and store the bytecode hash.
            mstore8(0x00, 0xff) // Write the prefix.
            mstore(0x35, keccak256(m, add(n, 0x60)))
            mstore(0x01, shl(96, address()))
            mstore(0x15, salt)
            instance := keccak256(0x00, 0x55)
            for {} 1 {} {
                if iszero(extcodesize(instance)) {
                    instance := create2(value, m, add(n, 0x60), salt)
                    if iszero(instance) {
                        mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                        revert(0x1c, 0x04)
                    }
                    break
                }
                alreadyDeployed := 1
                if iszero(value) { break }
                if iszero(call(gas(), instance, value, codesize(), 0x00, codesize(), 0x00)) {
                    mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                    revert(0x1c, 0x04)
                }
                break
            }
            mstore(0x35, 0) // Restore the overwritten part of the free memory pointer.
        }
    }

    /// @dev Returns the initialization code of the minimal ERC1967 proxy of `implementation` and `args`.
    function initCodeERC1967(address implementation, bytes memory args)
        internal
        pure
        returns (bytes memory c)
    {
        /// @solidity memory-safe-assembly
        assembly {
            c := mload(0x40)
            let n := mload(args)
            // Do a out-of-gas revert if `n` is greater than `0xffff - 0x3d = 0xffc2`.
            returndatacopy(returndatasize(), returndatasize(), gt(n, 0xffc2))
            for { let i := 0 } lt(i, n) { i := add(i, 0x20) } {
                mstore(add(add(c, 0x80), i), mload(add(add(args, 0x20), i)))
            }
            mstore(add(c, 0x60), 0xcc3735a920a3ca505d382bbc545af43d6000803e6038573d6000fd5b3d6000f3)
            mstore(add(c, 0x40), 0x5155f3363d3d373d3d363d7f360894a13ba1a3210667c828492db98dca3e2076)
            mstore(add(c, 0x20), 0x6009)
            mstore(add(c, 0x1e), implementation)
            mstore(add(c, 0x0a), add(0x61003d3d8160233d3973, shl(56, n)))
            mstore(c, add(n, 0x60)) // Store the length.
            mstore(add(c, add(n, 0x80)), 0) // Zeroize the slot after the bytes.
            mstore(0x40, add(c, add(n, 0xa0))) // Allocate memory.
        }
    }

    /// @dev Returns the initialization code hash of the minimal ERC1967 proxy of `implementation` and `args`.
    function initCodeHashERC1967(address implementation, bytes memory args)
        internal
        pure
        returns (bytes32 hash)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            let n := mload(args)
            // Do a out-of-gas revert if `n` is greater than `0xffff - 0x3d = 0xffc2`.
            returndatacopy(returndatasize(), returndatasize(), gt(n, 0xffc2))
            for { let i := 0 } lt(i, n) { i := add(i, 0x20) } {
                mstore(add(add(m, 0x60), i), mload(add(add(args, 0x20), i)))
            }
            mstore(add(m, 0x40), 0xcc3735a920a3ca505d382bbc545af43d6000803e6038573d6000fd5b3d6000f3)
            mstore(add(m, 0x20), 0x5155f3363d3d373d3d363d7f360894a13ba1a3210667c828492db98dca3e2076)
            mstore(0x16, 0x6009)
            mstore(0x14, implementation)
            mstore(0x00, add(0x61003d3d8160233d3973, shl(56, n)))
            mstore(m, mload(0x16))
            hash := keccak256(m, add(n, 0x60))
        }
    }

    /// @dev Returns the address of the ERC1967 proxy of `implementation`, `args`, with `salt` by `deployer`.
    /// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly.
    function predictDeterministicAddressERC1967(
        address implementation,
        bytes memory args,
        bytes32 salt,
        address deployer
    ) internal pure returns (address predicted) {
        bytes32 hash = initCodeHashERC1967(implementation, args);
        predicted = predictDeterministicAddress(hash, salt, deployer);
    }

    /// @dev Equivalent to `argsOnERC1967(instance, start, 2 ** 256 - 1)`.
    function argsOnERC1967(address instance) internal view returns (bytes memory args) {
        /// @solidity memory-safe-assembly
        assembly {
            args := mload(0x40)
            mstore(args, and(0xffffffffff, sub(extcodesize(instance), 0x3d))) // Store the length.
            extcodecopy(instance, add(args, 0x20), 0x3d, add(mload(args), 0x20))
            mstore(0x40, add(mload(args), add(args, 0x40))) // Allocate memory.
        }
    }

    /// @dev Equivalent to `argsOnERC1967(instance, start, 2 ** 256 - 1)`.
    function argsOnERC1967(address instance, uint256 start)
        internal
        view
        returns (bytes memory args)
    {
        /// @solidity memory-safe-assembly
        assembly {
            args := mload(0x40)
            let n := and(0xffffffffff, sub(extcodesize(instance), 0x3d))
            extcodecopy(instance, add(args, 0x20), add(start, 0x3d), add(n, 0x20))
            mstore(args, mul(sub(n, start), lt(start, n))) // Store the length.
            mstore(0x40, add(args, add(0x40, mload(args)))) // Allocate memory.
        }
    }

    /// @dev Returns a slice of the immutable arguments on `instance` from `start` to `end`.
    /// `start` and `end` will be clamped to the range `[0, args.length]`.
    /// The `instance` MUST be deployed via the ERC1967 with immutable args functions.
    /// Otherwise, the behavior is undefined.
    /// Out-of-gas reverts if `instance` does not have any code.
    function argsOnERC1967(address instance, uint256 start, uint256 end)
        internal
        view
        returns (bytes memory args)
    {
        /// @solidity memory-safe-assembly
        assembly {
            args := mload(0x40)
            if iszero(lt(end, 0xffff)) { end := 0xffff }
            let d := mul(sub(end, start), lt(start, end))
            extcodecopy(instance, args, add(start, 0x1d), add(d, 0x20))
            if iszero(and(0xff, mload(add(args, d)))) {
                let n := sub(extcodesize(instance), 0x3d)
                returndatacopy(returndatasize(), returndatasize(), shr(40, n))
                d := mul(gt(n, start), sub(d, mul(gt(end, n), sub(end, n))))
            }
            mstore(args, d) // Store the length.
            mstore(add(add(args, 0x20), d), 0) // Zeroize the slot after the bytes.
            mstore(0x40, add(add(args, 0x40), d)) // Allocate memory.
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                 ERC1967I PROXY OPERATIONS                  */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    // Note: This proxy has a special code path that activates if `calldatasize() == 1`.
    // This code path skips the delegatecall and directly returns the `implementation` address.
    // The returned implementation is guaranteed to be valid if the keccak256 of the
    // proxy's code is equal to `ERC1967I_CODE_HASH`.

    /// @dev Deploys a ERC1967I proxy with `implementation`.
    function deployERC1967I(address implementation) internal returns (address instance) {
        instance = deployERC1967I(0, implementation);
    }

    /// @dev Deploys a ERC1967I proxy with `implementation`.
    /// Deposits `value` ETH during deployment.
    function deployERC1967I(uint256 value, address implementation)
        internal
        returns (address instance)
    {
        /// @solidity memory-safe-assembly
        assembly {
            /**
             * ---------------------------------------------------------------------------------+
             * CREATION (34 bytes)                                                              |
             * ---------------------------------------------------------------------------------|
             * Opcode     | Mnemonic       | Stack            | Memory                          |
             * ---------------------------------------------------------------------------------|
             * 60 runSize | PUSH1 runSize  | r                |                                 |
             * 3d         | RETURNDATASIZE | 0 r              |                                 |
             * 81         | DUP2           | r 0 r            |                                 |
             * 60 offset  | PUSH1 offset   | o r 0 r          |                                 |
             * 3d         | RETURNDATASIZE | 0 o r 0 r        |                                 |
             * 39         | CODECOPY       | 0 r              | [0..runSize): runtime code      |
             * 73 impl    | PUSH20 impl    | impl 0 r         | [0..runSize): runtime code      |
             * 60 slotPos | PUSH1 slotPos  | slotPos impl 0 r | [0..runSize): runtime code      |
             * 51         | MLOAD          | slot impl 0 r    | [0..runSize): runtime code      |
             * 55         | SSTORE         | 0 r              | [0..runSize): runtime code      |
             * f3         | RETURN         |                  | [0..runSize): runtime code      |
             * ---------------------------------------------------------------------------------|
             * RUNTIME (82 bytes)                                                               |
             * ---------------------------------------------------------------------------------|
             * Opcode     | Mnemonic       | Stack            | Memory                          |
             * ---------------------------------------------------------------------------------|
             *                                                                                  |
             * ::: check calldatasize ::::::::::::::::::::::::::::::::::::::::::::::::::::::::: |
             * 36         | CALLDATASIZE   | cds              |                                 |
             * 58         | PC             | 1 cds            |                                 |
             * 14         | EQ             | eqs              |                                 |
             * 60 0x43    | PUSH1 0x43     | dest eqs         |                                 |
             * 57         | JUMPI          |                  |                                 |
             *                                                                                  |
             * ::: copy calldata to memory :::::::::::::::::::::::::::::::::::::::::::::::::::: |
             * 36         | CALLDATASIZE   | cds              |                                 |
             * 3d         | RETURNDATASIZE | 0 cds            |                                 |
             * 3d         | RETURNDATASIZE | 0 0 cds          |                                 |
             * 37         | CALLDATACOPY   |                  | [0..calldatasize): calldata     |
             *                                                                                  |
             * ::: delegatecall to implementation ::::::::::::::::::::::::::::::::::::::::::::: |
             * 3d         | RETURNDATASIZE | 0                |                                 |
             * 3d         | RETURNDATASIZE | 0 0              |                                 |
             * 36         | CALLDATASIZE   | cds 0 0          | [0..calldatasize): calldata     |
             * 3d         | RETURNDATASIZE | 0 cds 0 0        | [0..calldatasize): calldata     |
             * 7f slot    | PUSH32 slot    | s 0 cds 0 0      | [0..calldatasize): calldata     |
             * 54         | SLOAD          | i 0 cds 0 0      | [0..calldatasize): calldata     |
             * 5a         | GAS            | g i 0 cds 0 0    | [0..calldatasize): calldata     |
             * f4         | DELEGATECALL   | succ             | [0..calldatasize): calldata     |
             *                                                                                  |
             * ::: copy returndata to memory :::::::::::::::::::::::::::::::::::::::::::::::::: |
             * 3d         | RETURNDATASIZE | rds succ         | [0..calldatasize): calldata     |
             * 60 0x00    | PUSH1 0x00     | 0 rds succ       | [0..calldatasize): calldata     |
             * 80         | DUP1           | 0 0 rds succ     | [0..calldatasize): calldata     |
             * 3e         | RETURNDATACOPY | succ             | [0..returndatasize): returndata |
             *                                                                                  |
             * ::: branch on delegatecall status :::::::::::::::::::::::::::::::::::::::::::::: |
             * 60 0x3E    | PUSH1 0x3E     | dest succ        | [0..returndatasize): returndata |
             * 57         | JUMPI          |                  | [0..returndatasize): returndata |
             *                                                                                  |
             * ::: delegatecall failed, revert :::::::::::::::::::::::::::::::::::::::::::::::: |
             * 3d         | RETURNDATASIZE | rds              | [0..returndatasize): returndata |
             * 60 0x00    | PUSH1 0x00     | 0 rds            | [0..returndatasize): returndata |
             * fd         | REVERT         |                  | [0..returndatasize): returndata |
             *                                                                                  |
             * ::: delegatecall succeeded, return ::::::::::::::::::::::::::::::::::::::::::::: |
             * 5b         | JUMPDEST       |                  | [0..returndatasize): returndata |
             * 3d         | RETURNDATASIZE | rds              | [0..returndatasize): returndata |
             * 60 0x00    | PUSH1 0x00     | 0 rds            | [0..returndatasize): returndata |
             * f3         | RETURN         |                  | [0..returndatasize): returndata |
             *                                                                                  |
             * ::: implementation , return :::::::::::::::::::::::::::::::::::::::::::::::::::: |
             * 5b         | JUMPDEST       |                  |                                 |
             * 60 0x20    | PUSH1 0x20     | 32               |                                 |
             * 60 0x0F    | PUSH1 0x0F     | o 32             |                                 |
             * 3d         | RETURNDATASIZE | 0 o 32           |                                 |
             * 39         | CODECOPY       |                  | [0..32): implementation slot    |
             * 3d         | RETURNDATASIZE | 0                | [0..32): implementation slot    |
             * 51         | MLOAD          | slot             | [0..32): implementation slot    |
             * 54         | SLOAD          | impl             | [0..32): implementation slot    |
             * 3d         | RETURNDATASIZE | 0 impl           | [0..32): implementation slot    |
             * 52         | MSTORE         |                  | [0..32): implementation address |
             * 59         | MSIZE          | 32               | [0..32): implementation address |
             * 3d         | RETURNDATASIZE | 0 32             | [0..32): implementation address |
             * f3         | RETURN         |                  | [0..32): implementation address |
             * ---------------------------------------------------------------------------------+
             */
            let m := mload(0x40) // Cache the free memory pointer.
            mstore(0x60, 0x3d6000803e603e573d6000fd5b3d6000f35b6020600f3d393d51543d52593df3)
            mstore(0x40, 0xa13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc545af4)
            mstore(0x20, 0x600f5155f3365814604357363d3d373d3d363d7f360894)
            mstore(0x09, or(shl(160, 0x60523d8160223d3973), shr(96, shl(96, implementation))))
            instance := create(value, 0x0c, 0x74)
            if iszero(instance) {
                mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x40, m) // Restore the free memory pointer.
            mstore(0x60, 0) // Restore the zero slot.
        }
    }

    /// @dev Deploys a deterministic ERC1967I proxy with `implementation` and `salt`.
    function deployDeterministicERC1967I(address implementation, bytes32 salt)
        internal
        returns (address instance)
    {
        instance = deployDeterministicERC1967I(0, implementation, salt);
    }

    /// @dev Deploys a deterministic ERC1967I proxy with `implementation` and `salt`.
    /// Deposits `value` ETH during deployment.
    function deployDeterministicERC1967I(uint256 value, address implementation, bytes32 salt)
        internal
        returns (address instance)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Cache the free memory pointer.
            mstore(0x60, 0x3d6000803e603e573d6000fd5b3d6000f35b6020600f3d393d51543d52593df3)
            mstore(0x40, 0xa13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc545af4)
            mstore(0x20, 0x600f5155f3365814604357363d3d373d3d363d7f360894)
            mstore(0x09, or(shl(160, 0x60523d8160223d3973), shr(96, shl(96, implementation))))
            instance := create2(value, 0x0c, 0x74, salt)
            if iszero(instance) {
                mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x40, m) // Restore the free memory pointer.
            mstore(0x60, 0) // Restore the zero slot.
        }
    }

    /// @dev Creates a deterministic ERC1967I proxy with `implementation` and `salt`.
    /// Note: This method is intended for use in ERC4337 factories,
    /// which are expected to NOT revert if the proxy is already deployed.
    function createDeterministicERC1967I(address implementation, bytes32 salt)
        internal
        returns (bool alreadyDeployed, address instance)
    {
        return createDeterministicERC1967I(0, implementation, salt);
    }

    /// @dev Creates a deterministic ERC1967I proxy with `implementation` and `salt`.
    /// Deposits `value` ETH during deployment.
    /// Note: This method is intended for use in ERC4337 factories,
    /// which are expected to NOT revert if the proxy is already deployed.
    function createDeterministicERC1967I(uint256 value, address implementation, bytes32 salt)
        internal
        returns (bool alreadyDeployed, address instance)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Cache the free memory pointer.
            mstore(0x60, 0x3d6000803e603e573d6000fd5b3d6000f35b6020600f3d393d51543d52593df3)
            mstore(0x40, 0xa13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc545af4)
            mstore(0x20, 0x600f5155f3365814604357363d3d373d3d363d7f360894)
            mstore(0x09, or(shl(160, 0x60523d8160223d3973), shr(96, shl(96, implementation))))
            // Compute and store the bytecode hash.
            mstore(add(m, 0x35), keccak256(0x0c, 0x74))
            mstore(m, shl(88, address()))
            mstore8(m, 0xff) // Write the prefix.
            mstore(add(m, 0x15), salt)
            instance := keccak256(m, 0x55)
            for {} 1 {} {
                if iszero(extcodesize(instance)) {
                    instance := create2(value, 0x0c, 0x74, salt)
                    if iszero(instance) {
                        mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                        revert(0x1c, 0x04)
                    }
                    break
                }
                alreadyDeployed := 1
                if iszero(value) { break }
                if iszero(call(gas(), instance, value, codesize(), 0x00, codesize(), 0x00)) {
                    mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                    revert(0x1c, 0x04)
                }
                break
            }
            mstore(0x40, m) // Restore the free memory pointer.
            mstore(0x60, 0) // Restore the zero slot.
        }
    }

    /// @dev Returns the initialization code of the ERC1967I proxy of `implementation`.
    function initCodeERC1967I(address implementation) internal pure returns (bytes memory c) {
        /// @solidity memory-safe-assembly
        assembly {
            c := mload(0x40)
            mstore(add(c, 0x74), 0x3d6000803e603e573d6000fd5b3d6000f35b6020600f3d393d51543d52593df3)
            mstore(add(c, 0x54), 0xa13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc545af4)
            mstore(add(c, 0x34), 0x600f5155f3365814604357363d3d373d3d363d7f360894)
            mstore(add(c, 0x1d), implementation)
            mstore(add(c, 0x09), 0x60523d8160223d3973)
            mstore(add(c, 0x94), 0)
            mstore(c, 0x74) // Store the length.
            mstore(0x40, add(c, 0xa0)) // Allocate memory.
        }
    }

    /// @dev Returns the initialization code hash of the ERC1967I proxy of `implementation`.
    function initCodeHashERC1967I(address implementation) internal pure returns (bytes32 hash) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Cache the free memory pointer.
            mstore(0x60, 0x3d6000803e603e573d6000fd5b3d6000f35b6020600f3d393d51543d52593df3)
            mstore(0x40, 0xa13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc545af4)
            mstore(0x20, 0x600f5155f3365814604357363d3d373d3d363d7f360894)
            mstore(0x09, or(shl(160, 0x60523d8160223d3973), shr(96, shl(96, implementation))))
            hash := keccak256(0x0c, 0x74)
            mstore(0x40, m) // Restore the free memory pointer.
            mstore(0x60, 0) // Restore the zero slot.
        }
    }

    /// @dev Returns the address of the ERC1967I proxy of `implementation`, with `salt` by `deployer`.
    /// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly.
    function predictDeterministicAddressERC1967I(
        address implementation,
        bytes32 salt,
        address deployer
    ) internal pure returns (address predicted) {
        bytes32 hash = initCodeHashERC1967I(implementation);
        predicted = predictDeterministicAddress(hash, salt, deployer);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*       ERC1967I PROXY WITH IMMUTABLE ARGS OPERATIONS        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Deploys a minimal ERC1967I proxy with `implementation` and `args`.
    function deployERC1967I(address implementation, bytes memory args) internal returns (address) {
        return deployERC1967I(0, implementation, args);
    }

    /// @dev Deploys a minimal ERC1967I proxy with `implementation` and `args`.
    /// Deposits `value` ETH during deployment.
    function deployERC1967I(uint256 value, address implementation, bytes memory args)
        internal
        returns (address instance)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            let n := mload(args)
            pop(staticcall(gas(), 4, add(args, 0x20), n, add(m, 0x8b), n))

            mstore(add(m, 0x6b), 0x3d6000803e603e573d6000fd5b3d6000f35b6020600f3d393d51543d52593df3)
            mstore(add(m, 0x4b), 0xa13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc545af4)
            mstore(add(m, 0x2b), 0x600f5155f3365814604357363d3d373d3d363d7f360894)
            mstore(add(m, 0x14), implementation)
            mstore(m, add(0xfe6100523d8160233d3973, shl(56, n)))

            // Do a out-of-gas revert if `n` is greater than `0xffff - 0x52 = 0xffad`.
            instance := create(value, add(m, add(0x15, lt(n, 0xffae))), add(0x75, n))
            if iszero(instance) {
                mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                revert(0x1c, 0x04)
            }
        }
    }

    /// @dev Deploys a deterministic ERC1967I proxy with `implementation`, `args`, and `salt`.
    function deployDeterministicERC1967I(address implementation, bytes memory args, bytes32 salt)
        internal
        returns (address instance)
    {
        instance = deployDeterministicERC1967I(0, implementation, args, salt);
    }

    /// @dev Deploys a deterministic ERC1967I proxy with `implementation`,`args`,  and `salt`.
    /// Deposits `value` ETH during deployment.
    function deployDeterministicERC1967I(
        uint256 value,
        address implementation,
        bytes memory args,
        bytes32 salt
    ) internal returns (address instance) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            let n := mload(args)
            pop(staticcall(gas(), 4, add(args, 0x20), n, add(m, 0x8b), n))

            mstore(add(m, 0x6b), 0x3d6000803e603e573d6000fd5b3d6000f35b6020600f3d393d51543d52593df3)
            mstore(add(m, 0x4b), 0xa13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc545af4)
            mstore(add(m, 0x2b), 0x600f5155f3365814604357363d3d373d3d363d7f360894)
            mstore(add(m, 0x14), implementation)
            mstore(m, add(0xfe6100523d8160233d3973, shl(56, n)))

            // Do a out-of-gas revert if `n` is greater than `0xffff - 0x52 = 0xffad`.
            instance := create2(value, add(m, add(0x15, lt(n, 0xffae))), add(0x75, n), salt)
            if iszero(instance) {
                mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                revert(0x1c, 0x04)
            }
        }
    }

    /// @dev Creates a deterministic ERC1967I proxy with `implementation`, `args` and `salt`.
    /// Note: This method is intended for use in ERC4337 factories,
    /// which are expected to NOT revert if the proxy is already deployed.
    function createDeterministicERC1967I(address implementation, bytes memory args, bytes32 salt)
        internal
        returns (bool alreadyDeployed, address instance)
    {
        return createDeterministicERC1967I(0, implementation, args, salt);
    }

    /// @dev Creates a deterministic ERC1967I proxy with `implementation`,`args` and `salt`.
    /// Deposits `value` ETH during deployment.
    /// Note: This method is intended for use in ERC4337 factories,
    /// which are expected to NOT revert if the proxy is already deployed.
    function createDeterministicERC1967I(
        uint256 value,
        address implementation,
        bytes memory args,
        bytes32 salt
    ) internal returns (bool alreadyDeployed, address instance) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            let n := mload(args)
            pop(staticcall(gas(), 4, add(args, 0x20), n, add(m, 0x75), n))
            mstore(add(m, 0x55), 0x3d6000803e603e573d6000fd5b3d6000f35b6020600f3d393d51543d52593df3)
            mstore(add(m, 0x35), 0xa13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc545af4)
            mstore(add(m, 0x15), 0x5155f3365814604357363d3d373d3d363d7f360894)
            mstore(0x16, 0x600f)
            mstore(0x14, implementation)
            // Do a out-of-gas revert if `n` is greater than `0xffff - 0x52 = 0xffad`.
            mstore(gt(n, 0xffad), add(0xfe6100523d8160233d3973, shl(56, n)))
            mstore(m, mload(0x16))
            // Compute and store the bytecode hash.
            mstore8(0x00, 0xff) // Write the prefix.
            mstore(0x35, keccak256(m, add(n, 0x75)))
            mstore(0x01, shl(96, address()))
            mstore(0x15, salt)
            instance := keccak256(0x00, 0x55)
            for {} 1 {} {
                if iszero(extcodesize(instance)) {
                    instance := create2(value, m, add(0x75, n), salt)
                    if iszero(instance) {
                        mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                        revert(0x1c, 0x04)
                    }
                    break
                }
                alreadyDeployed := 1
                if iszero(value) { break }
                if iszero(call(gas(), instance, value, codesize(), 0x00, codesize(), 0x00)) {
                    mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                    revert(0x1c, 0x04)
                }
                break
            }
            mstore(0x35, 0) // Restore the overwritten part of the free memory pointer.
        }
    }

    /// @dev Returns the initialization code of the ERC1967I proxy of `implementation`and `args`.
    function initCodeERC1967I(address implementation, bytes memory args)
        internal
        pure
        returns (bytes memory c)
    {
        /// @solidity memory-safe-assembly
        assembly {
            c := mload(0x40)
            let n := mload(args)
            // Do a out-of-gas revert if `n` is greater than `0xffff - 0x52 = 0xffad`.
            returndatacopy(returndatasize(), returndatasize(), gt(n, 0xffad))
            for { let i := 0 } lt(i, n) { i := add(i, 0x20) } {
                mstore(add(add(c, 0x95), i), mload(add(add(args, 0x20), i)))
            }

            mstore(add(c, 0x75), 0x3d6000803e603e573d6000fd5b3d6000f35b6020600f3d393d51543d52593df3)
            mstore(add(c, 0x55), 0xa13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc545af4)
            mstore(add(c, 0x35), 0x600f5155f3365814604357363d3d373d3d363d7f360894)
            mstore(add(c, 0x1e), implementation)
            mstore(add(c, 0x0a), add(0x6100523d8160233d3973, shl(56, n)))
            mstore(add(c, add(n, 0x95)), 0)
            mstore(c, add(0x75, n)) // Store the length.
            mstore(0x40, add(c, add(n, 0xb5))) // Allocate memory.
        }
    }

    /// @dev Returns the initialization code hash of the ERC1967I proxy of `implementation` and `args.
    function initCodeHashERC1967I(address implementation, bytes memory args)
        internal
        pure
        returns (bytes32 hash)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Cache the free memory pointer.
            let n := mload(args)
            // Do a out-of-gas revert if `n` is greater than `0xffff - 0x52 = 0xffad`.
            returndatacopy(returndatasize(), returndatasize(), gt(n, 0xffad))

            for { let i := 0 } lt(i, n) { i := add(i, 0x20) } {
                mstore(add(add(m, 0x75), i), mload(add(add(args, 0x20), i)))
            }

            mstore(add(m, 0x55), 0x3d6000803e603e573d6000fd5b3d6000f35b6020600f3d393d51543d52593df3)
            mstore(add(m, 0x35), 0xa13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc545af4)
            mstore(add(m, 0x15), 0x5155f3365814604357363d3d373d3d363d7f360894)
            mstore(0x16, 0x600f)
            mstore(0x14, implementation)
            mstore(0x00, add(0x6100523d8160233d3973, shl(56, n)))
            mstore(m, mload(0x16))
            hash := keccak256(m, add(0x75, n))
        }
    }

    /// @dev Returns the address of the ERC1967I proxy of `implementation`, 'args` with `salt` by `deployer`.
    /// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly.
    function predictDeterministicAddressERC1967I(
        address implementation,
        bytes memory args,
        bytes32 salt,
        address deployer
    ) internal pure returns (address predicted) {
        bytes32 hash = initCodeHashERC1967I(implementation, args);
        predicted = predictDeterministicAddress(hash, salt, deployer);
    }

    /// @dev Equivalent to `argsOnERC1967I(instance, start, 2 ** 256 - 1)`.
    function argsOnERC1967I(address instance) internal view returns (bytes memory args) {
        /// @solidity memory-safe-assembly
        assembly {
            args := mload(0x40)
            mstore(args, and(0xffffffffff, sub(extcodesize(instance), 0x52))) // Store the length.
            extcodecopy(instance, add(args, 0x20), 0x52, add(mload(args), 0x20))
            mstore(0x40, add(mload(args), add(args, 0x40))) // Allocate memory.
        }
    }

    /// @dev Equivalent to `argsOnERC1967I(instance, start, 2 ** 256 - 1)`.
    function argsOnERC1967I(address instance, uint256 start)
        internal
        view
        returns (bytes memory args)
    {
        /// @solidity memory-safe-assembly
        assembly {
            args := mload(0x40)
            let n := and(0xffffffffff, sub(extcodesize(instance), 0x52))
            extcodecopy(instance, add(args, 0x20), add(start, 0x52), add(n, 0x20))
            mstore(args, mul(sub(n, start), lt(start, n))) // Store the length.
            mstore(0x40, add(mload(args), add(args, 0x40))) // Allocate memory.
        }
    }

    /// @dev Returns a slice of the immutable arguments on `instance` from `start` to `end`.
    /// `start` and `end` will be clamped to the range `[0, args.length]`.
    /// The `instance` MUST be deployed via the ERC1967 with immutable args functions.
    /// Otherwise, the behavior is undefined.
    /// Out-of-gas reverts if `instance` does not have any code.
    function argsOnERC1967I(address instance, uint256 start, uint256 end)
        internal
        view
        returns (bytes memory args)
    {
        /// @solidity memory-safe-assembly
        assembly {
            args := mload(0x40)
            if iszero(lt(end, 0xffff)) { end := 0xffff }
            let d := mul(sub(end, start), lt(start, end))
            extcodecopy(instance, args, add(start, 0x32), add(d, 0x20))
            if iszero(and(0xff, mload(add(args, d)))) {
                let n := sub(extcodesize(instance), 0x52)
                returndatacopy(returndatasize(), returndatasize(), shr(40, n))
                d := mul(gt(n, start), sub(d, mul(gt(end, n), sub(end, n))))
            }
            mstore(args, d) // Store the length.
            mstore(add(add(args, 0x20), d), 0) // Zeroize the slot after the bytes.
            mstore(0x40, add(add(args, 0x40), d)) // Allocate memory.
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*            CONSTANT ERC1967 BOOTSTRAP OPERATIONS           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    // Note: This enables an ERC1967 proxy to be deployed at a deterministic address
    // independent of the implementation:
    // ```
    //     address bootstrap = LibClone.constantERC1967Bootstrap();
    //     address instance = LibClone.deployDeterministicERC1967(0, bootstrap, salt);
    //     LibClone.bootstrapConstantERC1967(bootstrap, implementation);
    // ```

    /// @dev Deploys the constant ERC1967 bootstrap if it has not been deployed.
    function constantERC1967Bootstrap() internal returns (address bootstrap) {
        bootstrap = constantERC1967BootstrapAddress();
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(extcodesize(bootstrap)) {
                mstore(0x20, 0x0894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc55)
                mstore(0x00, 0x60258060093d393df358357f36)
                if iszero(create2(0, 0x13, 0x2e, 0)) {
                    mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                    revert(0x1c, 0x04)
                }
            }
        }
    }

    /// @dev Returns the implementation address of the ERC1967 bootstrap for this contract.
    function constantERC1967BootstrapAddress() internal view returns (address bootstrap) {
        bytes32 hash = 0xfe1a42b9c571a6a8c083c94ac67b9cfd74e2582923426aa3b762e3431d717cd1;
        bootstrap = predictDeterministicAddress(hash, bytes32(0), address(this));
    }

    /// @dev Replaces the implementation at `instance`.
    function bootstrapERC1967(address instance, address implementation) internal {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, shr(96, shl(96, implementation)))
            if iszero(call(gas(), instance, 0, 0x00, 0x20, codesize(), 0x00)) {
                mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                revert(0x1c, 0x04)
            }
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*          MINIMAL ERC1967 BEACON PROXY OPERATIONS           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    // Note: If you use this proxy, you MUST make sure that the beacon is a
    // valid ERC1967 beacon. This means that the beacon must always return a valid
    // address upon a staticcall to `implementation()`, given sufficient gas.
    // For performance, the deployment operations and the proxy assumes that the
    // beacon is always valid and will NOT validate it.

    /// @dev Deploys a minimal ERC1967 beacon proxy.
    function deployERC1967BeaconProxy(address beacon) internal returns (address instance) {
        instance = deployERC1967BeaconProxy(0, beacon);
    }

    /// @dev Deploys a minimal ERC1967 beacon proxy.
    /// Deposits `value` ETH during deployment.
    function deployERC1967BeaconProxy(uint256 value, address beacon)
        internal
        returns (address instance)
    {
        /// @solidity memory-safe-assembly
        assembly {
            /**
             * ---------------------------------------------------------------------------------+
             * CREATION (34 bytes)                                                              |
             * ---------------------------------------------------------------------------------|
             * Opcode     | Mnemonic       | Stack            | Memory                          |
             * ---------------------------------------------------------------------------------|
             * 60 runSize | PUSH1 runSize  | r                |                                 |
             * 3d         | RETURNDATASIZE | 0 r              |                                 |
             * 81         | DUP2           | r 0 r            |                                 |
             * 60 offset  | PUSH1 offset   | o r 0 r          |                                 |
             * 3d         | RETURNDATASIZE | 0 o r 0 r        |                                 |
             * 39         | CODECOPY       | 0 r              | [0..runSize): runtime code      |
             * 73 beac    | PUSH20 beac    | beac 0 r         | [0..runSize): runtime code      |
             * 60 slotPos | PUSH1 slotPos  | slotPos beac 0 r | [0..runSize): runtime code      |
             * 51         | MLOAD          | slot beac 0 r    | [0..runSize): runtime code      |
             * 55         | SSTORE         | 0 r              | [0..runSize): runtime code      |
             * f3         | RETURN         |                  | [0..runSize): runtime code      |
             * ---------------------------------------------------------------------------------|
             * RUNTIME (82 bytes)                                                               |
             * ---------------------------------------------------------------------------------|
             * Opcode     | Mnemonic       | Stack            | Memory                          |
             * ---------------------------------------------------------------------------------|
             *                                                                                  |
             * ::: copy calldata to memory :::::::::::::::::::::::::::::::::::::::::::::::::::: |
             * 36         | CALLDATASIZE   | cds              |                                 |
             * 3d         | RETURNDATASIZE | 0 cds            |                                 |
             * 3d         | RETURNDATASIZE | 0 0 cds          |                                 |
             * 37         | CALLDATACOPY   |                  | [0..calldatasize): calldata     |
             *                                                                                  |
             * ::: delegatecall to implementation ::::::::::::::::::::::::::::::::::::::::::::: |
             * 3d         | RETURNDATASIZE | 0                |                                 |
             * 3d         | RETURNDATASIZE | 0 0              |                                 |
             * 36         | CALLDATASIZE   | cds 0 0          | [0..calldatasize): calldata     |
             * 3d         | RETURNDATASIZE | 0 cds 0 0        | [0..calldatasize): calldata     |
             *                                                                                  |
             * ~~~~~~~ beacon staticcall sub procedure ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
             * 60 0x20       | PUSH1 0x20       | 32                          |                 |
             * 36            | CALLDATASIZE     | cds 32                      |                 |
             * 60 0x04       | PUSH1 0x04       | 4 cds 32                    |                 |
             * 36            | CALLDATASIZE     | cds 4 cds 32                |                 |
             * 63 0x5c60da1b | PUSH4 0x5c60da1b | 0x5c60da1b cds 4 cds 32     |                 |
             * 60 0xe0       | PUSH1 0xe0       | 224 0x5c60da1b cds 4 cds 32 |                 |
             * 1b            | SHL              | sel cds 4 cds 32            |                 |
             * 36            | CALLDATASIZE     | cds sel cds 4 cds 32        |                 |
             * 52            | MSTORE           | cds 4 cds 32                | sel             |
             * 7f slot       | PUSH32 slot      | s cds 4 cds 32              | sel             |
             * 54            | SLOAD            | beac cds 4 cds 32           | sel             |
             * 5a            | GAS              | g beac cds 4 cds 32         | sel             |
             * fa            | STATICCALL       | succ                        | impl            |
             * 50            | POP              |                             | impl            |
             * 36            | CALLDATASIZE     | cds                         | impl            |
             * 51            | MLOAD            | impl                        | impl            |
             * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
             * 5a         | GAS            | g impl 0 cds 0 0 | [0..calldatasize): calldata     |
             * f4         | DELEGATECALL   | succ             | [0..calldatasize): calldata     |
             *                                                                                  |
             * ::: copy returndata to memory :::::::::::::::::::::::::::::::::::::::::::::::::: |
             * 3d         | RETURNDATASIZE | rds succ         | [0..calldatasize): calldata     |
             * 60 0x00    | PUSH1 0x00     | 0 rds succ       | [0..calldatasize): calldata     |
             * 80         | DUP1           | 0 0 rds succ     | [0..calldatasize): calldata     |
             * 3e         | RETURNDATACOPY | succ             | [0..returndatasize): returndata |
             *                                                                                  |
             * ::: branch on delegatecall status :::::::::::::::::::::::::::::::::::::::::::::: |
             * 60 0x4d    | PUSH1 0x4d     | dest succ        | [0..returndatasize): returndata |
             * 57         | JUMPI          |                  | [0..returndatasize): returndata |
             *                                                                                  |
             * ::: delegatecall failed, revert :::::::::::::::::::::::::::::::::::::::::::::::: |
             * 3d         | RETURNDATASIZE | rds              | [0..returndatasize): returndata |
             * 60 0x00    | PUSH1 0x00     | 0 rds            | [0..returndatasize): returndata |
             * fd         | REVERT         |                  | [0..returndatasize): returndata |
             *                                                                                  |
             * ::: delegatecall succeeded, return ::::::::::::::::::::::::::::::::::::::::::::: |
             * 5b         | JUMPDEST       |                  | [0..returndatasize): returndata |
             * 3d         | RETURNDATASIZE | rds              | [0..returndatasize): returndata |
             * 60 0x00    | PUSH1 0x00     | 0 rds            | [0..returndatasize): returndata |
             * f3         | RETURN         |                  | [0..returndatasize): returndata |
             * ---------------------------------------------------------------------------------+
             */
            let m := mload(0x40) // Cache the free memory pointer.
            mstore(0x60, 0xb3582b35133d50545afa5036515af43d6000803e604d573d6000fd5b3d6000f3)
            mstore(0x40, 0x1b60e01b36527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6c)
            mstore(0x20, 0x60195155f3363d3d373d3d363d602036600436635c60da)
            mstore(0x09, or(shl(160, 0x60523d8160223d3973), shr(96, shl(96, beacon))))
            instance := create(value, 0x0c, 0x74)
            if iszero(instance) {
                mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x40, m) // Restore the free memory pointer.
            mstore(0x60, 0) // Restore the zero slot.
        }
    }

    /// @dev Deploys a deterministic minimal ERC1967 beacon proxy with `salt`.
    function deployDeterministicERC1967BeaconProxy(address beacon, bytes32 salt)
        internal
        returns (address instance)
    {
        instance = deployDeterministicERC1967BeaconProxy(0, beacon, salt);
    }

    /// @dev Deploys a deterministic minimal ERC1967 beacon proxy with `salt`.
    /// Deposits `value` ETH during deployment.
    function deployDeterministicERC1967BeaconProxy(uint256 value, address beacon, bytes32 salt)
        internal
        returns (address instance)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Cache the free memory pointer.
            mstore(0x60, 0xb3582b35133d50545afa5036515af43d6000803e604d573d6000fd5b3d6000f3)
            mstore(0x40, 0x1b60e01b36527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6c)
            mstore(0x20, 0x60195155f3363d3d373d3d363d602036600436635c60da)
            mstore(0x09, or(shl(160, 0x60523d8160223d3973), shr(96, shl(96, beacon))))
            instance := create2(value, 0x0c, 0x74, salt)
            if iszero(instance) {
                mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x40, m) // Restore the free memory pointer.
            mstore(0x60, 0) // Restore the zero slot.
        }
    }

    /// @dev Creates a deterministic minimal ERC1967 beacon proxy with `salt`.
    /// Note: This method is intended for use in ERC4337 factories,
    /// which are expected to NOT revert if the proxy is already deployed.
    function createDeterministicERC1967BeaconProxy(address beacon, bytes32 salt)
        internal
        returns (bool alreadyDeployed, address instance)
    {
        return createDeterministicERC1967BeaconProxy(0, beacon, salt);
    }

    /// @dev Creates a deterministic minimal ERC1967 beacon proxy with `salt`.
    /// Deposits `value` ETH during deployment.
    /// Note: This method is intended for use in ERC4337 factories,
    /// which are expected to NOT revert if the proxy is already deployed.
    function createDeterministicERC1967BeaconProxy(uint256 value, address beacon, bytes32 salt)
        internal
        returns (bool alreadyDeployed, address instance)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Cache the free memory pointer.
            mstore(0x60, 0xb3582b35133d50545afa5036515af43d6000803e604d573d6000fd5b3d6000f3)
            mstore(0x40, 0x1b60e01b36527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6c)
            mstore(0x20, 0x60195155f3363d3d373d3d363d602036600436635c60da)
            mstore(0x09, or(shl(160, 0x60523d8160223d3973), shr(96, shl(96, beacon))))
            // Compute and store the bytecode hash.
            mstore(add(m, 0x35), keccak256(0x0c, 0x74))
            mstore(m, shl(88, address()))
            mstore8(m, 0xff) // Write the prefix.
            mstore(add(m, 0x15), salt)
            instance := keccak256(m, 0x55)
            for {} 1 {} {
                if iszero(extcodesize(instance)) {
                    instance := create2(value, 0x0c, 0x74, salt)
                    if iszero(instance) {
                        mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                        revert(0x1c, 0x04)
                    }
                    break
                }
                alreadyDeployed := 1
                if iszero(value) { break }
                if iszero(call(gas(), instance, value, codesize(), 0x00, codesize(), 0x00)) {
                    mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                    revert(0x1c, 0x04)
                }
                break
            }
            mstore(0x40, m) // Restore the free memory pointer.
            mstore(0x60, 0) // Restore the zero slot.
        }
    }

    /// @dev Returns the initialization code of the minimal ERC1967 beacon proxy.
    function initCodeERC1967BeaconProxy(address beacon) internal pure returns (bytes memory c) {
        /// @solidity memory-safe-assembly
        assembly {
            c := mload(0x40)
            mstore(add(c, 0x74), 0xb3582b35133d50545afa5036515af43d6000803e604d573d6000fd5b3d6000f3)
            mstore(add(c, 0x54), 0x1b60e01b36527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6c)
            mstore(add(c, 0x34), 0x60195155f3363d3d373d3d363d602036600436635c60da)
            mstore(add(c, 0x1d), beacon)
            mstore(add(c, 0x09), 0x60523d8160223d3973)
            mstore(add(c, 0x94), 0)
            mstore(c, 0x74) // Store the length.
            mstore(0x40, add(c, 0xa0)) // Allocate memory.
        }
    }

    /// @dev Returns the initialization code hash of the minimal ERC1967 beacon proxy.
    function initCodeHashERC1967BeaconProxy(address beacon) internal pure returns (bytes32 hash) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Cache the free memory pointer.
            mstore(0x60, 0xb3582b35133d50545afa5036515af43d6000803e604d573d6000fd5b3d6000f3)
            mstore(0x40, 0x1b60e01b36527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6c)
            mstore(0x20, 0x60195155f3363d3d373d3d363d602036600436635c60da)
            mstore(0x09, or(shl(160, 0x60523d8160223d3973), shr(96, shl(96, beacon))))
            hash := keccak256(0x0c, 0x74)
            mstore(0x40, m) // Restore the free memory pointer.
            mstore(0x60, 0) // Restore the zero slot.
        }
    }

    /// @dev Returns the address of the ERC1967 beacon proxy, with `salt` by `deployer`.
    /// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly.
    function predictDeterministicAddressERC1967BeaconProxy(
        address beacon,
        bytes32 salt,
        address deployer
    ) internal pure returns (address predicted) {
        bytes32 hash = initCodeHashERC1967BeaconProxy(beacon);
        predicted = predictDeterministicAddress(hash, salt, deployer);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*    ERC1967 BEACON PROXY WITH IMMUTABLE ARGS OPERATIONS     */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Deploys a minimal ERC1967 beacon proxy with `args`.
    function deployERC1967BeaconProxy(address beacon, bytes memory args)
        internal
        returns (address instance)
    {
        instance = deployERC1967BeaconProxy(0, beacon, args);
    }

    /// @dev Deploys a minimal ERC1967 beacon proxy with `args`.
    /// Deposits `value` ETH during deployment.
    function deployERC1967BeaconProxy(uint256 value, address beacon, bytes memory args)
        internal
        returns (address instance)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            let n := mload(args)
            pop(staticcall(gas(), 4, add(args, 0x20), n, add(m, 0x8b), n))
            mstore(add(m, 0x6b), 0xb3582b35133d50545afa5036515af43d6000803e604d573d6000fd5b3d6000f3)
            mstore(add(m, 0x4b), 0x1b60e01b36527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6c)
            mstore(add(m, 0x2b), 0x60195155f3363d3d373d3d363d602036600436635c60da)
            mstore(add(m, 0x14), beacon)
            // Do a out-of-gas revert if `n` is greater than `0xffff - 0x52 = 0xffad`.
            mstore(add(m, gt(n, 0xffad)), add(0xfe6100523d8160233d3973, shl(56, n)))
            instance := create(value, add(m, 0x16), add(n, 0x75))
            if iszero(instance) {
                mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                revert(0x1c, 0x04)
            }
        }
    }

    /// @dev Deploys a deterministic minimal ERC1967 beacon proxy with `args` and `salt`.
    function deployDeterministicERC1967BeaconProxy(address beacon, bytes memory args, bytes32 salt)
        internal
        returns (address instance)
    {
        instance = deployDeterministicERC1967BeaconProxy(0, beacon, args, salt);
    }

    /// @dev Deploys a deterministic minimal ERC1967 beacon proxy with `args` and `salt`.
    /// Deposits `value` ETH during deployment.
    function deployDeterministicERC1967BeaconProxy(
        uint256 value,
        address beacon,
        bytes memory args,
        bytes32 salt
    ) internal returns (address instance) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            let n := mload(args)
            pop(staticcall(gas(), 4, add(args, 0x20), n, add(m, 0x8b), n))
            mstore(add(m, 0x6b), 0xb3582b35133d50545afa5036515af43d6000803e604d573d6000fd5b3d6000f3)
            mstore(add(m, 0x4b), 0x1b60e01b36527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6c)
            mstore(add(m, 0x2b), 0x60195155f3363d3d373d3d363d602036600436635c60da)
            mstore(add(m, 0x14), beacon)
            // Do a out-of-gas revert if `n` is greater than `0xffff - 0x52 = 0xffad`.
            mstore(add(m, gt(n, 0xffad)), add(0xfe6100523d8160233d3973, shl(56, n)))
            instance := create2(value, add(m, 0x16), add(n, 0x75), salt)
            if iszero(instance) {
                mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                revert(0x1c, 0x04)
            }
        }
    }

    /// @dev Creates a deterministic minimal ERC1967 beacon proxy with `args` and `salt`.
    /// Note: This method is intended for use in ERC4337 factories,
    /// which are expected to NOT revert if the proxy is already deployed.
    function createDeterministicERC1967BeaconProxy(address beacon, bytes memory args, bytes32 salt)
        internal
        returns (bool alreadyDeployed, address instance)
    {
        return createDeterministicERC1967BeaconProxy(0, beacon, args, salt);
    }

    /// @dev Creates a deterministic minimal ERC1967 beacon proxy with `args` and `salt`.
    /// Deposits `value` ETH during deployment.
    /// Note: This method is intended for use in ERC4337 factories,
    /// which are expected to NOT revert if the proxy is already deployed.
    function createDeterministicERC1967BeaconProxy(
        uint256 value,
        address beacon,
        bytes memory args,
        bytes32 salt
    ) internal returns (bool alreadyDeployed, address instance) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            let n := mload(args)
            pop(staticcall(gas(), 4, add(args, 0x20), n, add(m, 0x8b), n))
            mstore(add(m, 0x6b), 0xb3582b35133d50545afa5036515af43d6000803e604d573d6000fd5b3d6000f3)
            mstore(add(m, 0x4b), 0x1b60e01b36527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6c)
            mstore(add(m, 0x2b), 0x60195155f3363d3d373d3d363d602036600436635c60da)
            mstore(add(m, 0x14), beacon)
            // Do a out-of-gas revert if `n` is greater than `0xffff - 0x52 = 0xffad`.
            mstore(add(m, gt(n, 0xffad)), add(0xfe6100523d8160233d3973, shl(56, n)))
            // Compute and store the bytecode hash.
            mstore8(0x00, 0xff) // Write the prefix.
            mstore(0x35, keccak256(add(m, 0x16), add(n, 0x75)))
            mstore(0x01, shl(96, address()))
            mstore(0x15, salt)
            instance := keccak256(0x00, 0x55)
            for {} 1 {} {
                if iszero(extcodesize(instance)) {
                    instance := create2(value, add(m, 0x16), add(n, 0x75), salt)
                    if iszero(instance) {
                        mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                        revert(0x1c, 0x04)
                    }
                    break
                }
                alreadyDeployed := 1
                if iszero(value) { break }
                if iszero(call(gas(), instance, value, codesize(), 0x00, codesize(), 0x00)) {
                    mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                    revert(0x1c, 0x04)
                }
                break
            }
            mstore(0x35, 0) // Restore the overwritten part of the free memory pointer.
        }
    }

    /// @dev Returns the initialization code of the minimal ERC1967 beacon proxy.
    function initCodeERC1967BeaconProxy(address beacon, bytes memory args)
        internal
        pure
        returns (bytes memory c)
    {
        /// @solidity memory-safe-assembly
        assembly {
            c := mload(0x40)
            let n := mload(args)
            // Do a out-of-gas revert if `n` is greater than `0xffff - 0x52 = 0xffad`.
            returndatacopy(returndatasize(), returndatasize(), gt(n, 0xffad))
            for { let i := 0 } lt(i, n) { i := add(i, 0x20) } {
                mstore(add(add(c, 0x95), i), mload(add(add(args, 0x20), i)))
            }
            mstore(add(c, 0x75), 0xb3582b35133d50545afa5036515af43d6000803e604d573d6000fd5b3d6000f3)
            mstore(add(c, 0x55), 0x1b60e01b36527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6c)
            mstore(add(c, 0x35), 0x60195155f3363d3d373d3d363d602036600436635c60da)
            mstore(add(c, 0x1e), beacon)
            mstore(add(c, 0x0a), add(0x6100523d8160233d3973, shl(56, n)))
            mstore(c, add(n, 0x75)) // Store the length.
            mstore(add(c, add(n, 0x95)), 0) // Zeroize the slot after the bytes.
            mstore(0x40, add(c, add(n, 0xb5))) // Allocate memory.
        }
    }

    /// @dev Returns the initialization code hash of the minimal ERC1967 beacon proxy with `args`.
    function initCodeHashERC1967BeaconProxy(address beacon, bytes memory args)
        internal
        pure
        returns (bytes32 hash)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            let n := mload(args)
            // Do a out-of-gas revert if `n` is greater than `0xffff - 0x52 = 0xffad`.
            returndatacopy(returndatasize(), returndatasize(), gt(n, 0xffad))
            for { let i := 0 } lt(i, n) { i := add(i, 0x20) } {
                mstore(add(add(m, 0x8b), i), mload(add(add(args, 0x20), i)))
            }
            mstore(add(m, 0x6b), 0xb3582b35133d50545afa5036515af43d6000803e604d573d6000fd5b3d6000f3)
            mstore(add(m, 0x4b), 0x1b60e01b36527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6c)
            mstore(add(m, 0x2b), 0x60195155f3363d3d373d3d363d602036600436635c60da)
            mstore(add(m, 0x14), beacon)
            mstore(m, add(0x6100523d8160233d3973, shl(56, n)))
            hash := keccak256(add(m, 0x16), add(n, 0x75))
        }
    }

    /// @dev Returns the address of the ERC1967 beacon proxy with `args`, with `salt` by `deployer`.
    /// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly.
    function predictDeterministicAddressERC1967BeaconProxy(
        address beacon,
        bytes memory args,
        bytes32 salt,
        address deployer
    ) internal pure returns (address predicted) {
        bytes32 hash = initCodeHashERC1967BeaconProxy(beacon, args);
        predicted = predictDeterministicAddress(hash, salt, deployer);
    }

    /// @dev Equivalent to `argsOnERC1967BeaconProxy(instance, start, 2 ** 256 - 1)`.
    function argsOnERC1967BeaconProxy(address instance) internal view returns (bytes memory args) {
        /// @solidity memory-safe-assembly
        assembly {
            args := mload(0x40)
            mstore(args, and(0xffffffffff, sub(extcodesize(instance), 0x52))) // Store the length.
            extcodecopy(instance, add(args, 0x20), 0x52, add(mload(args), 0x20))
            mstore(0x40, add(mload(args), add(args, 0x40))) // Allocate memory.
        }
    }

    /// @dev Equivalent to `argsOnERC1967BeaconProxy(instance, start, 2 ** 256 - 1)`.
    function argsOnERC1967BeaconProxy(address instance, uint256 start)
        internal
        view
        returns (bytes memory args)
    {
        /// @solidity memory-safe-assembly
        assembly {
            args := mload(0x40)
            let n := and(0xffffffffff, sub(extcodesize(instance), 0x52))
            extcodecopy(instance, add(args, 0x20), add(start, 0x52), add(n, 0x20))
            mstore(args, mul(sub(n, start), lt(start, n))) // Store the length.
            mstore(0x40, add(args, add(0x40, mload(args)))) // Allocate memory.
        }
    }

    /// @dev Returns a slice of the immutable arguments on `instance` from `start` to `end`.
    /// `start` and `end` will be clamped to the range `[0, args.length]`.
    /// The `instance` MUST be deployed via the ERC1967 beacon proxy with immutable args functions.
    /// Otherwise, the behavior is undefined.
    /// Out-of-gas reverts if `instance` does not have any code.
    function argsOnERC1967BeaconProxy(address instance, uint256 start, uint256 end)
        internal
        view
        returns (bytes memory args)
    {
        /// @solidity memory-safe-assembly
        assembly {
            args := mload(0x40)
            if iszero(lt(end, 0xffff)) { end := 0xffff }
            let d := mul(sub(end, start), lt(start, end))
            extcodecopy(instance, args, add(start, 0x32), add(d, 0x20))
            if iszero(and(0xff, mload(add(args, d)))) {
                let n := sub(extcodesize(instance), 0x52)
                returndatacopy(returndatasize(), returndatasize(), shr(40, n))
                d := mul(gt(n, start), sub(d, mul(gt(end, n), sub(end, n))))
            }
            mstore(args, d) // Store the length.
            mstore(add(add(args, 0x20), d), 0) // Zeroize the slot after the bytes.
            mstore(0x40, add(add(args, 0x40), d)) // Allocate memory.
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*              ERC1967I BEACON PROXY OPERATIONS              */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    // Note: This proxy has a special code path that activates if `calldatasize() == 1`.
    // This code path skips the delegatecall and directly returns the `implementation` address.
    // The returned implementation is guaranteed to be valid if the keccak256 of the
    // proxy's code is equal to `ERC1967_BEACON_PROXY_CODE_HASH`.
    //
    // If you use this proxy, you MUST make sure that the beacon is a
    // valid ERC1967 beacon. This means that the beacon must always return a valid
    // address upon a staticcall to `implementation()`, given sufficient gas.
    // For performance, the deployment operations and the proxy assumes that the
    // beacon is always valid and will NOT validate it.

    /// @dev Deploys a ERC1967I beacon proxy.
    function deployERC1967IBeaconProxy(address beacon) internal returns (address instance) {
        instance = deployERC1967IBeaconProxy(0, beacon);
    }

    /// @dev Deploys a ERC1967I beacon proxy.
    /// Deposits `value` ETH during deployment.
    function deployERC1967IBeaconProxy(uint256 value, address beacon)
        internal
        returns (address instance)
    {
        /// @solidity memory-safe-assembly
        assembly {
            /**
             * ---------------------------------------------------------------------------------+
             * CREATION (34 bytes)                                                              |
             * ---------------------------------------------------------------------------------|
             * Opcode     | Mnemonic       | Stack            | Memory                          |
             * ---------------------------------------------------------------------------------|
             * 60 runSize | PUSH1 runSize  | r                |                                 |
             * 3d         | RETURNDATASIZE | 0 r              |                                 |
             * 81         | DUP2           | r 0 r            |                                 |
             * 60 offset  | PUSH1 offset   | o r 0 r          |                                 |
             * 3d         | RETURNDATASIZE | 0 o r 0 r        |                                 |
             * 39         | CODECOPY       | 0 r              | [0..runSize): runtime code      |
             * 73 beac    | PUSH20 beac    | beac 0 r         | [0..runSize): runtime code      |
             * 60 slotPos | PUSH1 slotPos  | slotPos beac 0 r | [0..runSize): runtime code      |
             * 51         | MLOAD          | slot beac 0 r    | [0..runSize): runtime code      |
             * 55         | SSTORE         | 0 r              | [0..runSize): runtime code      |
             * f3         | RETURN         |                  | [0..runSize): runtime code      |
             * ---------------------------------------------------------------------------------|
             * RUNTIME (87 bytes)                                                               |
             * ---------------------------------------------------------------------------------|
             * Opcode     | Mnemonic       | Stack            | Memory                          |
             * ---------------------------------------------------------------------------------|
             *                                                                                  |
             * ::: copy calldata to memory :::::::::::::::::::::::::::::::::::::::::::::::::::: |
             * 36         | CALLDATASIZE   | cds              |                                 |
             * 3d         | RETURNDATASIZE | 0 cds            |                                 |
             * 3d         | RETURNDATASIZE | 0 0 cds          |                                 |
             * 37         | CALLDATACOPY   |                  | [0..calldatasize): calldata     |
             *                                                                                  |
             * ::: delegatecall to implementation ::::::::::::::::::::::::::::::::::::::::::::: |
             * 3d         | RETURNDATASIZE | 0                |                                 |
             * 3d         | RETURNDATASIZE | 0 0              |                                 |
             * 36         | CALLDATASIZE   | cds 0 0          | [0..calldatasize): calldata     |
             * 3d         | RETURNDATASIZE | 0 cds 0 0        | [0..calldatasize): calldata     |
             *                                                                                  |
             * ~~~~~~~ beacon staticcall sub procedure ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
             * 60 0x20       | PUSH1 0x20       | 32                          |                 |
             * 36            | CALLDATASIZE     | cds 32                      |                 |
             * 60 0x04       | PUSH1 0x04       | 4 cds 32                    |                 |
             * 36            | CALLDATASIZE     | cds 4 cds 32                |                 |
             * 63 0x5c60da1b | PUSH4 0x5c60da1b | 0x5c60da1b cds 4 cds 32     |                 |
             * 60 0xe0       | PUSH1 0xe0       | 224 0x5c60da1b cds 4 cds 32 |                 |
             * 1b            | SHL              | sel cds 4 cds 32            |                 |
             * 36            | CALLDATASIZE     | cds sel cds 4 cds 32        |                 |
             * 52            | MSTORE           | cds 4 cds 32                | sel             |
             * 7f slot       | PUSH32 slot      | s cds 4 cds 32              | sel             |
             * 54            | SLOAD            | beac cds 4 cds 32           | sel             |
             * 5a            | GAS              | g beac cds 4 cds 32         | sel             |
             * fa            | STATICCALL       | succ                        | impl            |
             * ~~~~~~ check calldatasize ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
             * 36            | CALLDATASIZE     | cds succ                    |                 |
             * 14            | EQ               |                             | impl            |
             * 60 0x52       | PUSH1 0x52       |                             | impl            |
             * 57            | JUMPI            |                             | impl            |
             * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
             * 36            | CALLDATASIZE     | cds                         | impl            |
             * 51            | MLOAD            | impl                        | impl            |
             * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
             * 5a         | GAS            | g impl 0 cds 0 0 | [0..calldatasize): calldata     |
             * f4         | DELEGATECALL   | succ             | [0..calldatasize): calldata     |
             *                                                                                  |
             * ::: copy returndata to memory :::::::::::::::::::::::::::::::::::::::::::::::::: |
             * 3d         | RETURNDATASIZE | rds succ         | [0..calldatasize): calldata     |
             * 60 0x00    | PUSH1 0x00     | 0 rds succ       | [0..calldatasize): calldata     |
             * 60 0x01    | PUSH1 0x01     | 1 0 rds succ     | [0..calldatasize): calldata     |
             * 3e         | RETURNDATACOPY | succ             | [1..returndatasize): returndata |
             *                                                                                  |
             * ::: branch on delegatecall status :::::::::::::::::::::::::::::::::::::::::::::: |
             * 60 0x52    | PUSH1 0x52     | dest succ        | [1..returndatasize): returndata |
             * 57         | JUMPI          |                  | [1..returndatasize): returndata |
             *                                                                                  |
             * ::: delegatecall failed, revert :::::::::::::::::::::::::::::::::::::::::::::::: |
             * 3d         | RETURNDATASIZE | rds              | [1..returndatasize): returndata |
             * 60 0x01    | PUSH1 0x01     | 1 rds            | [1..returndatasize): returndata |
             * fd         | REVERT         |                  | [1..returndatasize): returndata |
             *                                                                                  |
             * ::: delegatecall succeeded, return ::::::::::::::::::::::::::::::::::::::::::::: |
             * 5b         | JUMPDEST       |                  | [1..returndatasize): returndata |
             * 3d         | RETURNDATASIZE | rds              | [1..returndatasize): returndata |
             * 60 0x01    | PUSH1 0x01     | 1 rds            | [1..returndatasize): returndata |
             * f3         | RETURN         |                  | [1..returndatasize): returndata |
             * ---------------------------------------------------------------------------------+
             */
            let m := mload(0x40) // Cache the free memory pointer.
            mstore(0x60, 0x3d50545afa361460525736515af43d600060013e6052573d6001fd5b3d6001f3)
            mstore(0x40, 0x527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b3513)
            mstore(0x20, 0x60195155f3363d3d373d3d363d602036600436635c60da1b60e01b36)
            mstore(0x04, or(shl(160, 0x60573d8160223d3973), shr(96, shl(96, beacon))))
            instance := create(value, 0x07, 0x79)
            if iszero(instance) {
                mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x40, m) // Restore the free memory pointer.
            mstore(0x60, 0) // Restore the zero slot.
        }
    }

    /// @dev Deploys a deterministic ERC1967I beacon proxy with `salt`.
    function deployDeterministicERC1967IBeaconProxy(address beacon, bytes32 salt)
        internal
        returns (address instance)
    {
        instance = deployDeterministicERC1967IBeaconProxy(0, beacon, salt);
    }

    /// @dev Deploys a deterministic ERC1967I beacon proxy with `salt`.
    /// Deposits `value` ETH during deployment.
    function deployDeterministicERC1967IBeaconProxy(uint256 value, address beacon, bytes32 salt)
        internal
        returns (address instance)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Cache the free memory pointer.
            mstore(0x60, 0x3d50545afa361460525736515af43d600060013e6052573d6001fd5b3d6001f3)
            mstore(0x40, 0x527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b3513)
            mstore(0x20, 0x60195155f3363d3d373d3d363d602036600436635c60da1b60e01b36)
            mstore(0x04, or(shl(160, 0x60573d8160223d3973), shr(96, shl(96, beacon))))
            instance := create2(value, 0x07, 0x79, salt)
            if iszero(instance) {
                mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x40, m) // Restore the free memory pointer.
            mstore(0x60, 0) // Restore the zero slot.
        }
    }

    /// @dev Creates a deterministic ERC1967I beacon proxy with `salt`.
    /// Note: This method is intended for use in ERC4337 factories,
    /// which are expected to NOT revert if the proxy is already deployed.
    function createDeterministicERC1967IBeaconProxy(address beacon, bytes32 salt)
        internal
        returns (bool alreadyDeployed, address instance)
    {
        return createDeterministicERC1967IBeaconProxy(0, beacon, salt);
    }

    /// @dev Creates a deterministic ERC1967I beacon proxy with `salt`.
    /// Deposits `value` ETH during deployment.
    /// Note: This method is intended for use in ERC4337 factories,
    /// which are expected to NOT revert if the proxy is already deployed.
    function createDeterministicERC1967IBeaconProxy(uint256 value, address beacon, bytes32 salt)
        internal
        returns (bool alreadyDeployed, address instance)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Cache the free memory pointer.
            mstore(0x60, 0x3d50545afa361460525736515af43d600060013e6052573d6001fd5b3d6001f3)
            mstore(0x40, 0x527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b3513)
            mstore(0x20, 0x60195155f3363d3d373d3d363d602036600436635c60da1b60e01b36)
            mstore(0x04, or(shl(160, 0x60573d8160223d3973), shr(96, shl(96, beacon))))
            // Compute and store the bytecode hash.
            mstore(add(m, 0x35), keccak256(0x07, 0x79))
            mstore(m, shl(88, address()))
            mstore8(m, 0xff) // Write the prefix.
            mstore(add(m, 0x15), salt)
            instance := keccak256(m, 0x55)
            for {} 1 {} {
                if iszero(extcodesize(instance)) {
                    instance := create2(value, 0x07, 0x79, salt)
                    if iszero(instance) {
                        mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                        revert(0x1c, 0x04)
                    }
                    break
                }
                alreadyDeployed := 1
                if iszero(value) { break }
                if iszero(call(gas(), instance, value, codesize(), 0x00, codesize(), 0x00)) {
                    mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                    revert(0x1c, 0x04)
                }
                break
            }
            mstore(0x40, m) // Restore the free memory pointer.
            mstore(0x60, 0) // Restore the zero slot.
        }
    }

    /// @dev Returns the initialization code of the ERC1967I beacon proxy.
    function initCodeERC1967IBeaconProxy(address beacon) internal pure returns (bytes memory c) {
        /// @solidity memory-safe-assembly
        assembly {
            c := mload(0x40)
            mstore(add(c, 0x79), 0x3d50545afa361460525736515af43d600060013e6052573d6001fd5b3d6001f3)
            mstore(add(c, 0x59), 0x527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b3513)
            mstore(add(c, 0x39), 0x60195155f3363d3d373d3d363d602036600436635c60da1b60e01b36)
            mstore(add(c, 0x1d), beacon)
            mstore(add(c, 0x09), 0x60573d8160223d3973)
            mstore(add(c, 0x99), 0)
            mstore(c, 0x79) // Store the length.
            mstore(0x40, add(c, 0xa0)) // Allocate memory.
        }
    }

    /// @dev Returns the initialization code hash of the ERC1967I beacon proxy.
    function initCodeHashERC1967IBeaconProxy(address beacon) internal pure returns (bytes32 hash) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Cache the free memory pointer.
            mstore(0x60, 0x3d50545afa361460525736515af43d600060013e6052573d6001fd5b3d6001f3)
            mstore(0x40, 0x527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b3513)
            mstore(0x20, 0x60195155f3363d3d373d3d363d602036600436635c60da1b60e01b36)
            mstore(0x04, or(shl(160, 0x60573d8160223d3973), shr(96, shl(96, beacon))))
            hash := keccak256(0x07, 0x79)
            mstore(0x40, m) // Restore the free memory pointer.
            mstore(0x60, 0) // Restore the zero slot.
        }
    }

    /// @dev Returns the address of the ERC1967I beacon proxy, with `salt` by `deployer`.
    /// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly.
    function predictDeterministicAddressERC1967IBeaconProxy(
        address beacon,
        bytes32 salt,
        address deployer
    ) internal pure returns (address predicted) {
        bytes32 hash = initCodeHashERC1967IBeaconProxy(beacon);
        predicted = predictDeterministicAddress(hash, salt, deployer);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*    ERC1967I BEACON PROXY WITH IMMUTABLE ARGS OPERATIONS    */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Deploys a ERC1967I beacon proxy with `args.
    function deployERC1967IBeaconProxy(address beacon, bytes memory args)
        internal
        returns (address instance)
    {
        instance = deployERC1967IBeaconProxy(0, beacon, args);
    }

    /// @dev Deploys a ERC1967I beacon proxy with `args.
    /// Deposits `value` ETH during deployment.
    function deployERC1967IBeaconProxy(uint256 value, address beacon, bytes memory args)
        internal
        returns (address instance)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Cache the free memory pointer.
            let n := mload(args)
            pop(staticcall(gas(), 4, add(args, 0x20), n, add(m, 0x90), n))
            mstore(add(m, 0x70), 0x3d50545afa361460525736515af43d600060013e6052573d6001fd5b3d6001f3)
            mstore(add(m, 0x50), 0x527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b3513)
            mstore(add(m, 0x30), 0x60195155f3363d3d373d3d363d602036600436635c60da1b60e01b36)
            mstore(add(m, 0x14), beacon)
            // Do a out-of-gas revert if `n` is greater than `0xffff - 0x57 = 0xffa8`.
            mstore(add(m, gt(n, 0xffa8)), add(0xfe6100573d8160233d3973, shl(56, n)))
            instance := create(value, add(m, 0x16), add(n, 0x7a))
            if iszero(instance) {
                mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                revert(0x1c, 0x04)
            }
        }
    }

    /// @dev Deploys a deterministic ERC1967I beacon proxy with `args` and `salt`.
    function deployDeterministicERC1967IBeaconProxy(address beacon, bytes memory args, bytes32 salt)
        internal
        returns (address instance)
    {
        instance = deployDeterministicERC1967IBeaconProxy(0, beacon, args, salt);
    }

    /// @dev Deploys a deterministic ERC1967I beacon proxy with `args` and `salt`.
    /// Deposits `value` ETH during deployment.
    function deployDeterministicERC1967IBeaconProxy(
        uint256 value,
        address beacon,
        bytes memory args,
        bytes32 salt
    ) internal returns (address instance) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Cache the free memory pointer.
            let n := mload(args)
            pop(staticcall(gas(), 4, add(args, 0x20), n, add(m, 0x90), n))
            mstore(add(m, 0x70), 0x3d50545afa361460525736515af43d600060013e6052573d6001fd5b3d6001f3)
            mstore(add(m, 0x50), 0x527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b3513)
            mstore(add(m, 0x30), 0x60195155f3363d3d373d3d363d602036600436635c60da1b60e01b36)
            mstore(add(m, 0x14), beacon)
            // Do a out-of-gas revert if `n` is greater than `0xffff - 0x57 = 0xffa8`.
            mstore(add(m, gt(n, 0xffa8)), add(0xfe6100573d8160233d3973, shl(56, n)))
            instance := create2(value, add(m, 0x16), add(n, 0x7a), salt)
            if iszero(instance) {
                mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                revert(0x1c, 0x04)
            }
        }
    }

    /// @dev Creates a deterministic ERC1967I beacon proxy with `args` and `salt`.
    /// Note: This method is intended for use in ERC4337 factories,
    /// which are expected to NOT revert if the proxy is already deployed.
    function createDeterministicERC1967IBeaconProxy(address beacon, bytes memory args, bytes32 salt)
        internal
        returns (bool alreadyDeployed, address instance)
    {
        return createDeterministicERC1967IBeaconProxy(0, beacon, args, salt);
    }

    /// @dev Creates a deterministic ERC1967I beacon proxy with `args` and `salt`.
    /// Deposits `value` ETH during deployment.
    /// Note: This method is intended for use in ERC4337 factories,
    /// which are expected to NOT revert if the proxy is already deployed.
    function createDeterministicERC1967IBeaconProxy(
        uint256 value,
        address beacon,
        bytes memory args,
        bytes32 salt
    ) internal returns (bool alreadyDeployed, address instance) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            let n := mload(args)
            pop(staticcall(gas(), 4, add(args, 0x20), n, add(m, 0x90), n))
            mstore(add(m, 0x70), 0x3d50545afa361460525736515af43d600060013e6052573d6001fd5b3d6001f3)
            mstore(add(m, 0x50), 0x527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b3513)
            mstore(add(m, 0x30), 0x60195155f3363d3d373d3d363d602036600436635c60da1b60e01b36)
            mstore(add(m, 0x14), beacon)
            // Do a out-of-gas revert if `n` is greater than `0xffff - 0x57 = 0xffa8`.
            mstore(add(m, gt(n, 0xffa8)), add(0xfe6100573d8160233d3973, shl(56, n)))
            // Compute and store the bytecode hash.
            mstore8(0x00, 0xff) // Write the prefix.
            mstore(0x35, keccak256(add(m, 0x16), add(n, 0x7a)))
            mstore(0x01, shl(96, address()))
            mstore(0x15, salt)
            instance := keccak256(0x00, 0x55)
            for {} 1 {} {
                if iszero(extcodesize(instance)) {
                    instance := create2(value, add(m, 0x16), add(n, 0x7a), salt)
                    if iszero(instance) {
                        mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                        revert(0x1c, 0x04)
                    }
                    break
                }
                alreadyDeployed := 1
                if iszero(value) { break }
                if iszero(call(gas(), instance, value, codesize(), 0x00, codesize(), 0x00)) {
                    mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                    revert(0x1c, 0x04)
                }
                break
            }
            mstore(0x35, 0) // Restore the overwritten part of the free memory pointer.
        }
    }

    /// @dev Returns the initialization code of the ERC1967I beacon proxy with `args`.
    function initCodeERC1967IBeaconProxy(address beacon, bytes memory args)
        internal
        pure
        returns (bytes memory c)
    {
        /// @solidity memory-safe-assembly
        assembly {
            c := mload(0x40)
            let n := mload(args)
            // Do a out-of-gas revert if `n` is greater than `0xffff - 0x57 = 0xffa8`.
            returndatacopy(returndatasize(), returndatasize(), gt(n, 0xffa8))
            for { let i := 0 } lt(i, n) { i := add(i, 0x20) } {
                mstore(add(add(c, 0x9a), i), mload(add(add(args, 0x20), i)))
            }
            mstore(add(c, 0x7a), 0x3d50545afa361460525736515af43d600060013e6052573d6001fd5b3d6001f3)
            mstore(add(c, 0x5a), 0x527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b3513)
            mstore(add(c, 0x3a), 0x60195155f3363d3d373d3d363d602036600436635c60da1b60e01b36)
            mstore(add(c, 0x1e), beacon)
            mstore(add(c, 0x0a), add(0x6100573d8160233d3973, shl(56, n)))
            mstore(add(c, add(n, 0x9a)), 0)
            mstore(c, add(n, 0x7a)) // Store the length.
            mstore(0x40, add(c, add(n, 0xba))) // Allocate memory.
        }
    }

    /// @dev Returns the initialization code hash of the ERC1967I beacon proxy with `args`.
    function initCodeHashERC1967IBeaconProxy(address beacon, bytes memory args)
        internal
        pure
        returns (bytes32 hash)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let c := mload(0x40) // Cache the free memory pointer.
            let n := mload(args)
            // Do a out-of-gas revert if `n` is greater than `0xffff - 0x57 = 0xffa8`.
            returndatacopy(returndatasize(), returndatasize(), gt(n, 0xffa8))
            for { let i := 0 } lt(i, n) { i := add(i, 0x20) } {
                mstore(add(add(c, 0x90), i), mload(add(add(args, 0x20), i)))
            }
            mstore(add(c, 0x70), 0x3d50545afa361460525736515af43d600060013e6052573d6001fd5b3d6001f3)
            mstore(add(c, 0x50), 0x527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b3513)
            mstore(add(c, 0x30), 0x60195155f3363d3d373d3d363d602036600436635c60da1b60e01b36)
            mstore(add(c, 0x14), beacon)
            mstore(c, add(0x6100573d8160233d3973, shl(56, n)))
            hash := keccak256(add(c, 0x16), add(n, 0x7a))
        }
    }

    /// @dev Returns the address of the ERC1967I beacon proxy, with  `args` and salt` by `deployer`.
    /// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly.
    function predictDeterministicAddressERC1967IBeaconProxy(
        address beacon,
        bytes memory args,
        bytes32 salt,
        address deployer
    ) internal pure returns (address predicted) {
        bytes32 hash = initCodeHashERC1967IBeaconProxy(beacon, args);
        predicted = predictDeterministicAddress(hash, salt, deployer);
    }

    /// @dev Equivalent to `argsOnERC1967IBeaconProxy(instance, start, 2 ** 256 - 1)`.
    function argsOnERC1967IBeaconProxy(address instance)
        internal
        view
        returns (bytes memory args)
    {
        /// @solidity memory-safe-assembly
        assembly {
            args := mload(0x40)
            mstore(args, and(0xffffffffff, sub(extcodesize(instance), 0x57))) // Store the length.
            extcodecopy(instance, add(args, 0x20), 0x57, add(mload(args), 0x20))
            mstore(0x40, add(mload(args), add(args, 0x40))) // Allocate memory.
        }
    }

    /// @dev Equivalent to `argsOnERC1967IBeaconProxy(instance, start, 2 ** 256 - 1)`.
    function argsOnERC1967IBeaconProxy(address instance, uint256 start)
        internal
        view
        returns (bytes memory args)
    {
        /// @solidity memory-safe-assembly
        assembly {
            args := mload(0x40)
            let n := and(0xffffffffff, sub(extcodesize(instance), 0x57))
            extcodecopy(instance, add(args, 0x20), add(start, 0x57), add(n, 0x20))
            mstore(args, mul(sub(n, start), lt(start, n))) // Store the length.
            mstore(0x40, add(args, add(0x40, mload(args)))) // Allocate memory.
        }
    }

    /// @dev Returns a slice of the immutable arguments on `instance` from `start` to `end`.
    /// `start` and `end` will be clamped to the range `[0, args.length]`.
    /// The `instance` MUST be deployed via the ERC1967I beacon proxy with immutable args functions.
    /// Otherwise, the behavior is undefined.
    /// Out-of-gas reverts if `instance` does not have any code.
    function argsOnERC1967IBeaconProxy(address instance, uint256 start, uint256 end)
        internal
        view
        returns (bytes memory args)
    {
        /// @solidity memory-safe-assembly
        assembly {
            args := mload(0x40)
            if iszero(lt(end, 0xffff)) { end := 0xffff }
            let d := mul(sub(end, start), lt(start, end))
            extcodecopy(instance, args, add(start, 0x37), add(d, 0x20))
            if iszero(and(0xff, mload(add(args, d)))) {
                let n := sub(extcodesize(instance), 0x57)
                returndatacopy(returndatasize(), returndatasize(), shr(40, n))
                d := mul(gt(n, start), sub(d, mul(gt(end, n), sub(end, n))))
            }
            mstore(args, d) // Store the length.
            mstore(add(add(args, 0x20), d), 0) // Zeroize the slot after the bytes.
            mstore(0x40, add(add(args, 0x40), d)) // Allocate memory.
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                      OTHER OPERATIONS                      */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns `address(0)` if the implementation address cannot be determined.
    function implementationOf(address instance) internal view returns (address result) {
        /// @solidity memory-safe-assembly
        assembly {
            for { extcodecopy(instance, 0x00, 0x00, 0x57) } 1 {} {
                if mload(0x2d) {
                    // ERC1967I and ERC1967IBeaconProxy detection.
                    if or(
                        eq(keccak256(0x00, 0x52), ERC1967I_CODE_HASH),
                        eq(keccak256(0x00, 0x57), ERC1967I_BEACON_PROXY_CODE_HASH)
                    ) {
                        pop(staticcall(gas(), instance, 0x00, 0x01, 0x00, 0x20))
                        result := mload(0x0c)
                        break
                    }
                }
                // 0age clone detection.
                result := mload(0x0b)
                codecopy(0x0b, codesize(), 0x14) // Zeroize the 20 bytes for the address.
                if iszero(xor(keccak256(0x00, 0x2c), CLONE_CODE_HASH)) { break }
                mstore(0x0b, result) // Restore the zeroized memory.
                // CWIA detection.
                result := mload(0x0a)
                codecopy(0x0a, codesize(), 0x14) // Zeroize the 20 bytes for the address.
                if iszero(xor(keccak256(0x00, 0x2d), CWIA_CODE_HASH)) { break }
                mstore(0x0a, result) // Restore the zeroized memory.
                // PUSH0 clone detection.
                result := mload(0x09)
                codecopy(0x09, codesize(), 0x14) // Zeroize the 20 bytes for the address.
                result := shr(xor(keccak256(0x00, 0x2d), PUSH0_CLONE_CODE_HASH), result)
                break
            }
            result := shr(96, result)
            mstore(0x37, 0) // Restore the overwritten part of the free memory pointer.
        }
    }

    /// @dev Returns the address when a contract with initialization code hash,
    /// `hash`, is deployed with `salt`, by `deployer`.
    /// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly.
    function predictDeterministicAddress(bytes32 hash, bytes32 salt, address deployer)
        internal
        pure
        returns (address predicted)
    {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute and store the bytecode hash.
            mstore8(0x00, 0xff) // Write the prefix.
            mstore(0x35, hash)
            mstore(0x01, shl(96, deployer))
            mstore(0x15, salt)
            predicted := keccak256(0x00, 0x55)
            mstore(0x35, 0) // Restore the overwritten part of the free memory pointer.
        }
    }

    /// @dev Requires that `salt` starts with either the zero address or `by`.
    function checkStartsWith(bytes32 salt, address by) internal pure {
        /// @solidity memory-safe-assembly
        assembly {
            // If the salt does not start with the zero address or `by`.
            if iszero(or(iszero(shr(96, salt)), eq(shr(96, shl(96, by)), shr(96, salt)))) {
                mstore(0x00, 0x0c4549ef) // `SaltDoesNotStartWith()`.
                revert(0x1c, 0x04)
            }
        }
    }
}

File 32 of 33 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../utils/introspection/IERC165.sol";

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

Settings
{
  "remappings": [
    "@openzeppelin/=node_modules/@openzeppelin/",
    "@openzeppelin-upgradeable/=node_modules/@openzeppelin/contracts-upgradeable/",
    "solady/=node_modules/solady/",
    "forge-std/=lib/forge-std/src/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 1000
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "cancun",
  "viaIR": true,
  "libraries": {
    "src/entities/BeaconProofsLib.sol": {
      "BeaconProofs": "0x09C9B0C0d56684c75aFe6a1c0e4DBD4e37a1B0Db"
    },
    "src/entities/Operator.sol": {
      "Operator": "0x24368a7E7d8086009B52017C6aD2ca9B63f69aeA"
    },
    "src/utils/CommonUtils.sol": {
      "CommonUtils": "0xB61409e21cCaCc5F3A83007E6CC6286C6a8AA102"
    }
  }
}

Contract Security Audit

Contract ABI

API
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AllowanceOverflow","type":"error"},{"inputs":[],"name":"AllowanceUnderflow","type":"error"},{"inputs":[],"name":"AlreadyInitialized","type":"error"},{"inputs":[],"name":"AttemptedPauseWhileUnpausing","type":"error"},{"inputs":[],"name":"AttemptedUnpauseWhilePausing","type":"error"},{"inputs":[],"name":"DepositMoreThanMax","type":"error"},{"inputs":[],"name":"EnforcedPause","type":"error"},{"inputs":[{"internalType":"uint8","name":"functionIndex","type":"uint8"}],"name":"EnforcedPauseFunction","type":"error"},{"inputs":[],"name":"InsufficientAllowance","type":"error"},{"inputs":[],"name":"InsufficientBalance","type":"error"},{"inputs":[],"name":"InvalidInitialization","type":"error"},{"inputs":[],"name":"InvalidPermit","type":"error"},{"inputs":[],"name":"MinWithdrawDelayNotPassed","type":"error"},{"inputs":[],"name":"MintMoreThanMax","type":"error"},{"inputs":[],"name":"NewOwnerIsZeroAddress","type":"error"},{"inputs":[],"name":"NoHandoverRequest","type":"error"},{"inputs":[],"name":"NotEnoughShares","type":"error"},{"inputs":[],"name":"NotImplemented","type":"error"},{"inputs":[],"name":"NotInitializing","type":"error"},{"inputs":[],"name":"Permit2AllowanceIsFixedAtInfinity","type":"error"},{"inputs":[],"name":"PermitExpired","type":"error"},{"inputs":[],"name":"RedeemMoreThanMax","type":"error"},{"inputs":[],"name":"Reentrancy","type":"error"},{"inputs":[],"name":"TotalSupplyOverflow","type":"error"},{"inputs":[],"name":"Unauthorized","type":"error"},{"inputs":[],"name":"WithdrawMoreThanMax","type":"error"},{"inputs":[],"name":"WithdrawalNotFound","type":"error"},{"inputs":[],"name":"ZeroAddress","type":"error"},{"inputs":[],"name":"ZeroAmount","type":"error"},{"inputs":[],"name":"ZeroShares","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"by","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"staker","type":"address"},{"indexed":false,"internalType":"address","name":"beneficiary","type":"address"},{"indexed":false,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"assetsClaimed","type":"uint256"},{"indexed":false,"internalType":"bytes32","name":"withdrawRoot","type":"bytes32"}],"name":"FinishedRedeem","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"version","type":"uint64"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pendingOwner","type":"address"}],"name":"OwnershipHandoverCanceled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pendingOwner","type":"address"}],"name":"OwnershipHandoverRequested","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"map","type":"uint256"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"}],"name":"Slashed","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"staker","type":"address"},{"indexed":false,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"},{"indexed":false,"internalType":"bytes32","name":"withdrawKey","type":"bytes32"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"}],"name":"StartedRedeem","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"map","type":"uint256"}],"name":"Unpaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"by","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"result","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"VERSION","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"result","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"asset","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"result","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"cancelOwnershipHandover","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"pendingOwner","type":"address"}],"name":"completeOwnershipHandover","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"name":"convertToAssets","outputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"name":"convertToShares","outputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"},{"internalType":"address","name":"to","type":"address"}],"name":"deposit","outputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"minSharesOut","type":"uint256"}],"name":"deposit","outputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32[]","name":"slots","type":"bytes32[]"}],"name":"extSloads","outputs":[{"internalType":"bytes32[]","name":"res","type":"bytes32[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"withdrawalKey","type":"bytes32"}],"name":"finishRedeem","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"staker","type":"address"}],"name":"getNextWithdrawNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"staker","type":"address"},{"internalType":"uint256","name":"_withdrawNonce","type":"uint256"}],"name":"getQueuedWithdrawal","outputs":[{"components":[{"internalType":"address","name":"staker","type":"address"},{"internalType":"uint96","name":"start","type":"uint96"},{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"address","name":"beneficiary","type":"address"}],"internalType":"struct WithdrawLib.QueuedWithdrawal","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"internalType":"address","name":"_operator","type":"address"},{"internalType":"address","name":"_depositToken","type":"address"},{"internalType":"string","name":"_name","type":"string"},{"internalType":"string","name":"_symbol","type":"string"},{"internalType":"bytes","name":"_extraData","type":"bytes"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"staker","type":"address"},{"internalType":"uint256","name":"_withdrawNonce","type":"uint256"}],"name":"isWithdrawalPending","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"}],"name":"maxDeposit","outputs":[{"internalType":"uint256","name":"maxAssets","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"}],"name":"maxMint","outputs":[{"internalType":"uint256","name":"maxShares","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"maxRedeem","outputs":[{"internalType":"uint256","name":"maxShares","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"maxWithdraw","outputs":[{"internalType":"uint256","name":"maxAssets","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"address","name":"to","type":"address"}],"name":"mint","outputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"result","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"pendingOwner","type":"address"}],"name":"ownershipHandoverExpiresAt","outputs":[{"internalType":"uint256","name":"result","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"map","type":"uint256"}],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint8","name":"index","type":"uint8"}],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pausedMap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"name":"previewDeposit","outputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"name":"previewMint","outputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"name":"previewRedeem","outputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"name":"previewWithdraw","outputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"address","name":"to","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"redeem","outputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"requestOwnershipHandover","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"totalAssetsToSlash","type":"uint256"},{"internalType":"address","name":"slashingHandler","type":"address"}],"name":"slashAssets","outputs":[{"internalType":"uint256","name":"transferAmount","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"address","name":"beneficiary","type":"address"}],"name":"startRedeem","outputs":[{"internalType":"bytes32","name":"withdrawalKey","type":"bytes32"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalAssets","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"result","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"map","type":"uint256"}],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"vaultConfig","outputs":[{"components":[{"internalType":"address","name":"asset","type":"address"},{"internalType":"uint8","name":"decimals","type":"uint8"},{"internalType":"address","name":"operator","type":"address"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"bytes","name":"extraData","type":"bytes"}],"internalType":"struct VaultLib.Config","name":"","type":"tuple"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"},{"internalType":"address","name":"to","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"withdraw","outputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"stateMutability":"nonpayable","type":"function"}]

6080806040523460b4577ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a009081549060ff8260401c1660a557506001600160401b036002600160401b0319828216016061575b604051612b0d90816100b98239f35b6001600160401b031990911681179091556040519081527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d290602090a15f80806052565b63f92ee8a960e01b8152600490fd5b5f80fdfe60806040526004361015610011575f80fd5b5f3560e01c806301e1d114146123d557806306fdde03146123b257806307a2d13a14612019578063095ea7b3146123475780630a28a47714612306578063136439dd1461226a57806318160ddd1461224557806323b872dd146121715780632569296214612128578063313ce567146120f95780633644e5151461206957806338d52e0f14612037578063402d267d146117615780634cdad5061461201957806354d1f13d14611fd55780635ac86ab714611f965780635c975abb14611f6b5780636e553f6514611eee57806370a0823114610cde578063715018a614611eaa5780637784c68514611da75780637cc34bb414611b835780637ecebe0014611b515780638da5cb5b14611b2757806394bf804d14611aa057806395d89b4114611a6257806397eb82cb14611a03578063a9059cbb14611985578063b3d7f6b914611967578063b460af9414611906578063ba087652146118a5578063ba63277a1461184e578063bc157ac114611766578063c63d75b614611761578063c646778c14611738578063c6e6f592146107bd578063ce96cb7714611706578063d505accf14611553578063d7768ba714610d10578063d905777e14610cde578063dcb8a54d14610c17578063dd62ed3e14610bd9578063ecb9ddc21461096d578063ee6a94f1146107e3578063ef8b30f7146107bd578063f04e283e1461073f578063f2fde38b146106d4578063f49f131d146103a5578063fabc1cbc14610308578063fee81cf4146102d65763ffa1ad741461024a575f80fd5b346102d2575f3660031901126102d257604051604081019080821067ffffffffffffffff8311176102be576102ba91604052600581527f322e302e3000000000000000000000000000000000000000000000000000000060208201526040519182916020835260208301906123ef565b0390f35b634e487b7160e01b5f52604160045260245ffd5b5f80fd5b346102d25760203660031901126102d2576102ef612413565b63389a75e1600c525f52602080600c2054604051908152f35b346102d25760203660031901126102d2576004356103246128d4565b5f80516020612a9883398151915281808254160361037b578190556040805133815260208101929092527f3582d1828e26bf56bd801502bc021ac0bc8afb57c826e4986b45593c8fad389c9190819081015b0390a1005b60046040517ffdb6d55f000000000000000000000000000000000000000000000000000000008152fd5b346102d2576020806003193601126102d2576004359068929eee149b4bd2126891308354146106c75730835560105f80516020612a9883398151915254166106b0576103ef6127ad565b50805f527f5d654853f9da5c5c659891e7f7fc564033f2724663c32c175f373318f8e1e7019081835260405f20906040519261042a846124b5565b8254946001600160a01b0395868116865260a01c9381860185815287600260018401549360408a01948552015416956060880196875215610686576bffffffffffffffffffffffff905116620bdd808101809111610672574210610648578051966387a211a280600c52305f5283600c2054891161061e576104ab89612713565b94865f5284525f60026040822082815582600182015501558187511690600c52305f5283600c208054808b11610611578a900390556805345cdf77eb68f44c898154039055885f525f307fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8683a3835f6044601082865f80516020612ab88339815191525416866014528a6034526fa9059cbb00000000000000000000000082525af13d1560015f5114171615610604578160c09881927f3e7334c523edc77a635d49b7bea770110ee3b3d1fa5ff6dd0e2d2634e3299c6d9b5f603452885f5287523090307ffbde797d201c681b91056529119e0b02407c7bb96a4a2c75c01fc9667232c8db60405fa45116965116907f22a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff001541691519260405196875286015260408501526060840152608083015260a0820152a1389055005b6390b8ec185f526004601cfd5b63f4d678b85f526004601cfd5b60046040517f4656425a000000000000000000000000000000000000000000000000000000008152fd5b60046040517f4b90bbc2000000000000000000000000000000000000000000000000000000008152fd5b634e487b7160e01b5f52601160045260245ffd5b60046040517f8d0fc1dd000000000000000000000000000000000000000000000000000000008152fd5b602460405163c8ce8e3360e01b8152600480820152fd5b63ab143c065f526004601cfd5b60203660031901126102d2576106e8612413565b6106f06128d4565b8060601b15610732576001600160a01b0316638b78c6d8198181547f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a355005b637448fbae5f526004601cfd5b60203660031901126102d257610753612413565b61075b6128d4565b63389a75e1600c52805f526020600c2090815442116107b0575f6001600160a01b03925516638b78c6d8198181547f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a355005b636f5e88185f526004601cfd5b346102d25760203660031901126102d25760206107db60043561276b565b604051908152f35b346102d25760403660031901126102d2576004356107ff612429565b906108086128d4565b6108106127df565b908082101561096657505b6001600160a01b03805f80516020612ab8833981519152938185541681601452846034526f095ea7b3000000000000000000000000805f5260205f6044601082865af13d1560015f5114171615610920575b50505f60345216925416823b156102d2575f926044849260405195869384927ff148e5fc00000000000000000000000000000000000000000000000000000000845260048401528660248401525af18015610915576108fb575b6020907f0a6331e5cfe25333c065863fddcbcd3c103d07a3aaa549b327736ccb1e7b3cab82604051838152a1604051908152f35b67ffffffffffffffff82116102be576020916040526108c7565b6040513d5f823e3d90fd5b602092935060105f80936044938260345282528138858583855af150886034525af13d1560015f5114171615610959578190858061086d565b633e3f8f735f526004601cfd5b905061081b565b346102d25760403660031901126102d257600435610989612429565b9060085f80516020612a988339815191525416610bc15768929eee149b4bd21268308154146106c7573081558115610b97576001600160a01b03809316918215610b6d576109d681612713565b90335f526020947f5d654853f9da5c5c659891e7f7fc564033f2724663c32c175f373318f8e1e7008652610a1b60405f20805490610a13826127d1565b905533612908565b94855f527f5d654853f9da5c5c659891e7f7fc564033f2724663c32c175f373318f8e1e701875260405f2090600273ffffffffffffffffffffffffffffffffffffffff1992834260a01b163317815585600182015501918254161790556040517f23b872dd00000000000000000000000000000000000000000000000000000000815233600482015230602482015282604482015286816064815f305af1801561091557610b36575b50907f27e68995434d20932c6776eaf0833fa5060ceb34f9e3b55c6b137f39361436029260a0927f22a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff001541691604051923384528884015260408301528560608301526080820152a1389055604051908152f35b8681819493943d8311610b66575b610b4e81836124d1565b810103126102d25751801515036102d2579086610ac4565b503d610b44565b60046040517fd92e233d000000000000000000000000000000000000000000000000000000008152fd5b60046040517f9811e0c7000000000000000000000000000000000000000000000000000000008152fd5b602460405163c8ce8e3360e01b815260036004820152fd5b346102d25760403660031901126102d257610bf2612413565b610bfa612429565b602052637f5e9f20600c525f5260206034600c2054604051908152f35b346102d25760403660031901126102d257610c45610c33612413565b610c3b6127ad565b5060243590612908565b5f527f5d654853f9da5c5c659891e7f7fc564033f2724663c32c175f373318f8e1e701602052608060405f2060405190610c7e826124b5565b8054916001600160a01b03916bffffffffffffffffffffffff83851694858452602084019060a01c815260608560026001860154956040880196875201541694019384526040519586525116602085015251604084015251166060820152f35b346102d25760203660031901126102d257610cf7612413565b6387a211a2600c525f52602080600c2054604051908152f35b346102d25760c03660031901126102d257610d29612413565b610d31612429565b90604435906001600160a01b038216928383036102d25760643567ffffffffffffffff81116102d257610d68903690600401612539565b9360843567ffffffffffffffff81116102d257610d89903690600401612539565b60a43567ffffffffffffffff81116102d257366023820112156102d257610dba9036906024816004013591016124f3565b957ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a009586549567ffffffffffffffff871680159081611543575b6001149081611539575b159081611530575b50611506576004601c6020936001600160a01b035f94600167ffffffffffffffff198d16178d5560ff8c60401c16156114e7575b1680638b78c6d81955847f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08180a3610e70612a3e565b610e78612a3e565b835f80516020612a988339815191525563313ce56784525afa91601f3d11915f519473ffffffffffffffffffffffffffffffffffffffff195f80516020612ab88339815191525416175f80516020612ab88339815191525580519067ffffffffffffffff82116102be57610f0c7f22a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff00254612557565b601f811161147a575b50602090601f83116001146113b557610f4592915f91836113aa575b50508160011b915f199060031b1c19161790565b7f22a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff002555b80519067ffffffffffffffff82116102be57610fa47f22a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff00354612557565b601f811161133d575b50602090601f831160011461127857610fdc92915f918361126d5750508160011b915f199060031b1c19161790565b7f22a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff003555b610100831081168216156112635761010083101616025b7fffffffffffffffffffffff00ffffffffffffffffffffffffffffffffffffffff74ff00000000000000000000000000000000000000005f80516020612ab8833981519152549260a01b169116175f80516020612ab8833981519152556001600160a01b037f22a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff001911673ffffffffffffffffffffffffffffffffffffffff19825416179055825167ffffffffffffffff81116102be577f22a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff004906110f78254612557565b601f811161120b575b506020601f82116001146111885790806111329260ff96975f9261117d5750508160011b915f199060031b1c19161790565b90555b60401c161561114057005b68ff00000000000000001981541690557fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d2602060405160018152a1005b015190508780610f31565b601f19821695835f527fea483344d6cf51005d246b38f5abc35002ebbaae1992413267a18dc566220542965f5b8181106111f357509160ff9697918460019594106111db575b505050811b019055611135565b01515f1960f88460031b161c191690558680806111ce565b838301518955600190980197602093840193016111b5565b61125390835f527fea483344d6cf51005d246b38f5abc35002ebbaae1992413267a18dc566220542601f840160051c81019160208510611259575b601f0160051c0190612797565b85611100565b9091508190611246565b5050506012611016565b015190508a80610f31565b91907f22a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff0035f527faf828aa0bfb005b9919dfb245322145bccc44c5316fc263a449d455233742993905f935b601f1984168510611322576001945083601f1981161061130a575b505050811b017f22a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff00355610fff565b01515f1960f88460031b161c191690558980806112dd565b818101518355602094850194600190930192909101906112c2565b6113a4907f22a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff0035f527faf828aa0bfb005b9919dfb245322145bccc44c5316fc263a449d455233742993601f850160051c8101916020861061125957601f0160051c0190612797565b89610fad565b015190508b80610f31565b91907f22a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff0025f527fa5242dc986d19d56f8b875ad0cbe66ea3fca9b6eeb053181879d6d301ab4ac7a905f935b601f198416851061145f576001945083601f19811610611447575b505050811b017f22a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff00255610f68565b01515f1960f88460031b161c191690558a808061141a565b818101518355602094850194600190930192909101906113ff565b6114e1907f22a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff0025f527fa5242dc986d19d56f8b875ad0cbe66ea3fca9b6eeb053181879d6d301ab4ac7a601f850160051c8101916020861061125957601f0160051c0190612797565b8a610f15565b68ffffffffffffffffff198c1668010000000000000001178d55610e3a565b60046040517ff92ee8a9000000000000000000000000000000000000000000000000000000008152fd5b9050158a610e06565b303b159150610dfe565b604089901c60ff16159150610df4565b346102d25760e03660031901126102d25761156c612413565b611574612429565b604435606435906084359360ff851685036102d257604051916115a18361159a8161258f565b03846124d1565b8251602080940120918442116116f957604051906001600160a01b0380911696169665383775081901600e52865f5260c085600c20928354977f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f82528782019687528860408301977fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc689528c6060850199468b528d608087019330855260a08820602e527f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9885252528789525260a082015220604e526042602c205f5260ff16845260a43560405260c435606052838060805f60015afa863d51036116ec577f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b9259501905585777f5e9f200000000000000000000000000000000000000000176040526034602c2055a3005b63ddafbaef5f526004601cfd5b631a15a3cc5f526004601cfd5b346102d25760203660031901126102d25761171f612413565b6387a211a2600c525f5260206107db81600c2054612713565b346102d2575f3660031901126102d25760205f80516020612a9883398151915254604051908152f35b61243f565b346102d25760603660031901126102d257600435611782612429565b9068929eee149b4bd2126891308354146106c75730835560025f80516020612a98833981519152541661183657811561180c576117cb906117c28361276b565b92839133612939565b60443581106117e257602091389055604051908152f35b60046040517ff15ed214000000000000000000000000000000000000000000000000000000008152fd5b60046040517f1f2a2005000000000000000000000000000000000000000000000000000000008152fd5b602460405163c8ce8e3360e01b815260016004820152fd5b346102d25760203660031901126102d2576001600160a01b0361186f612413565b165f527f5d654853f9da5c5c659891e7f7fc564033f2724663c32c175f373318f8e1e700602052602060405f2054604051908152f35b346102d2576118b336612464565b50505060405f80516020612a9883398151915254166118ee573068929eee149b4bd2126854146106c757600460405163d623472560e01b8152fd5b602460405163c8ce8e3360e01b815260066004820152fd5b346102d25761191436612464565b50505060205f80516020612a98833981519152541661194f573068929eee149b4bd2126854146106c757600460405163d623472560e01b8152fd5b602460405163c8ce8e3360e01b815260056004820152fd5b346102d25760203660031901126102d25760206107db60043561273f565b346102d25760403660031901126102d25761199e612413565b6024356387a211a2600c52335f5260209182600c2080548084116106115783900390555f5281600c208181540190558152600c5160601c337fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8380a360405160018152f35b346102d25760403660031901126102d257611a28611a1f612413565b60243590612908565b5f527f5d654853f9da5c5c659891e7f7fc564033f2724663c32c175f373318f8e1e701602052602060405f205460a01c1515604051908152f35b346102d2575f3660031901126102d2576102ba604051611a8c81611a8581612665565b03826124d1565b6040519182916020835260208301906123ef565b346102d25760403660031901126102d257600435611abc612429565b60045f80516020612a988339815191525416611b0f5768929eee149b4bd21268308154146106c7573081558215610b9757611b0483611afc60209561273f565b809433612939565b389055604051908152f35b602460405163c8ce8e3360e01b815260026004820152fd5b346102d2575f3660031901126102d2576020638b78c6d819546001600160a01b0360405191168152f35b346102d25760203660031901126102d257611b6a612413565b6338377508600c525f52602080600c2054604051908152f35b346102d2575f3660031901126102d25760a0604051611ba181612499565b5f81526020905f828201525f604082015260609281848080940152826080820152015260405191611bd183612499565b5f80516020612ab883398151915254906001600160a01b03808316855260ff8486019360a01c168352807f22a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff0015416916040860192835260405191611c378361159a8161258f565b81870192835260405193611c5585611c4e81612665565b03866124d1565b60808801948552604051955f7f22a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff0048054611c8d81612557565b91828b526001918c6001821691825f14611d81575050600114611d29575b505050928796959260ff611d189693611ccc6102ba9b611d0298038b6124d1565b60a08d01998a528b846040519e8f9e8f525116908d0152511660408b01525116908801525160c0608088015260e08701906123ef565b915191601f1992838783030160a08801526123ef565b9151908483030160c08501526123ef565b5f9081528b935091907fea483344d6cf51005d246b38f5abc35002ebbaae1992413267a18dc5662205425b828410611d6c575050508801018260ff611d18611cab565b80548c85018601528c94909301928101611d54565b60ff19168d82015293151560051b8c01909301935085925060ff9150611d189050611cab565b346102d2576020806003193601126102d25760043567ffffffffffffffff8082116102d257366023830112156102d25781600401359081116102d2576024906005903660248260051b860101116102d257611e01816128f0565b92611e0f60405194856124d1565b818452611e1b826128f0565b8487019590601f19013687375f5b838110611e725787868860405192839281840190828552518091526040840192915f5b828110611e5b57505050500390f35b835185528695509381019392810192600101611e4c565b611e7b816127d1565b9084811015611e9757851b82018301355481861b870152611e29565b83634e487b7160e01b5f5260326004525ffd5b5f3660031901126102d257611ebd6128d4565b5f638b78c6d8198181547f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a355005b346102d25760403660031901126102d257600435611f0a612429565b9060015f80516020612a988339815191525416611f545768929eee149b4bd21268308154146106c757308155811561180c57611b04602093611f4b8461276b565b93849133612939565b602460405163c8ce8e3360e01b81525f6004820152fd5b346102d2575f3660031901126102d25760205f80516020612a98833981519152541515604051908152f35b346102d25760203660031901126102d25760043560ff81168091036102d25760016020911b5f80516020612a9883398151915254161515604051908152f35b5f3660031901126102d25763389a75e1600c52335f525f6020600c2055337ffa7b8eab7da67f412cc9575ed43464468f9bfbae89d1675917346ca6d8fe3c925f80a2005b346102d25760203660031901126102d25760206107db600435612713565b346102d2575f3660031901126102d25760206001600160a01b035f80516020612ab88339815191525416604051908152f35b346102d2575f3660031901126102d257602060a060405161208d81611a858161258f565b828151910120604051907f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f8252838201527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc6604082015246606082015230608082015220604051908152f35b346102d2575f3660031901126102d257602060ff5f80516020612ab88339815191525460a01c16604051908152f35b5f3660031901126102d25763389a75e1600c52335f526202a30042016020600c2055337fdbf36a107da19e49527a7176a1babf963b4b0ff8cde35ee35d6cd8f1f9ac7e1d5f80a2005b346102d25760603660031901126102d25761218a612413565b612192612429565b90604435918160601b602093338552600c91637f5e9f208117835260348320908154918219612221575b506387a211a2178352508482208054939084831161061157826001600160a01b03950390555f5284822081815401905584525160601c91167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8380a360405160018152f35b82841161223857836387a211a293039055876121bc565b6313be252b5f526004601cfd5b346102d2575f3660031901126102d25760206805345cdf77eb68f44c54604051908152f35b346102d25760203660031901126102d2576004356122866128d4565b5f80516020612a988339815191528054828116036122dc578190556040805133815260208101929092527fab40a374bc51de372200a8bc981af8c9ecdc08dfdaef0bb6e09f88f3c616ef3d919081908101610376565b60046040517f9bb0aa93000000000000000000000000000000000000000000000000000000008152fd5b346102d25760203660031901126102d2576805345cdf77eb68f44c5460018101809111610672576107db602091600161233d6127df565b01906004356128b1565b346102d25760403660031901126102d257612360612413565b60243590602052637f5e9f20600c52335f52806034600c20555f52602c5160601c337f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560205fa3602060405160018152f35b346102d2575f3660031901126102d2576102ba604051611a8c81611a858161258f565b346102d2575f3660031901126102d25760206107db6127df565b805180835260209291819084018484015e5f828201840152601f01601f1916010190565b600435906001600160a01b03821682036102d257565b602435906001600160a01b03821682036102d257565b346102d25760203660031901126102d257612458612413565b5060206040515f198152f35b60609060031901126102d257600435906001600160a01b039060243582811681036102d2579160443590811681036102d25790565b60c0810190811067ffffffffffffffff8211176102be57604052565b6080810190811067ffffffffffffffff8211176102be57604052565b90601f8019910116810190811067ffffffffffffffff8211176102be57604052565b92919267ffffffffffffffff82116102be576040519161251d601f8201601f1916602001846124d1565b8294818452818301116102d2578281602093845f960137010152565b9080601f830112156102d257816020612554933591016124f3565b90565b90600182811c92168015612585575b602083101461257157565b634e487b7160e01b5f52602260045260245ffd5b91607f1691612566565b905f917f22a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff002908154916125c083612557565b8083529260209160019182811690811561263e57506001146125e4575b5050505050565b90939495505f527fa5242dc986d19d56f8b875ad0cbe66ea3fca9b6eeb053181879d6d301ab4ac7a925f935b85851061262b57505050602092500101905f808080806125dd565b8054858501840152938201938101612610565b9350505050602093945060ff929192191683830152151560051b0101905f808080806125dd565b905f917f22a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff0039081549161269683612557565b8083529260209160019182811690811561263e57506001146126b9575050505050565b90939495505f527faf828aa0bfb005b9919dfb245322145bccc44c5316fc263a449d455233742993925f935b85851061270057505050602092500101905f808080806125dd565b80548585018401529382019381016126e5565b61271b6127df565b9060018201809211610672576125549160016805345cdf77eb68f44c540191612823565b6127476127df565b9060018201809211610672576125549160016805345cdf77eb68f44c5401916128b1565b6805345cdf77eb68f44c549060018201809211610672576125549160016127906127df565b0191612823565b8181106127a2575050565b5f8155600101612797565b604051906127ba826124b5565b5f6060838281528260208201528260408201520152565b5f1981146106725760010190565b602080602460106001600160a01b035f80516020612ab88339815191525416306014526f70a082310000000000000000000000005f525afa601f3d11166020510290565b8181029291811582850482141783021561283e575050900490565b82905f1981840985811086019003920990825f03831692818111156128a4578390046002816003028118808302820302808302820302808302820302808302820302808302820302809202900302936001848483030494805f0304019211900302170290565b63ae47f7025f526004601cfd5b9291906128bf828286612823565b93096128c757565b906001019081156128a457565b638b78c6d8195433036128e357565b6382b429005f526004601cfd5b67ffffffffffffffff81116102be5760051b60200190565b604080516001600160a01b0392909216602083019081528282019390935281526129336060826124d1565b51902090565b916001600160a01b0393845f80516020612ab8833981519152541660205f6064601c826040519588606052306040528a60601b602c526f23b872dd000000000000000000000000600c525af13d1560015f5114171615612a31575f6060526040526805345cdf77eb68f44c805490828201918210612a2457556387a211a2600c52825f526020600c20818154019055602052600c5160601c5f7fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef602080a35f52821691167fdcbc1c05240f31ff3ad067ef1ee35ce4997762752e3a095284754544f4c709d760405fa3565b63e5cfe9575f526004601cfd5b637939f4245f526004601cfd5b60ff7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a005460401c1615612a6d57565b60046040517fd7e6bcf8000000000000000000000000000000000000000000000000000000008152fdfe271441cddf42198c20456f920f5dac04f245854c82f280f2e59e7095958d0b0022a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff000a2646970667358221220265ac40386a503717d88da8f4d2528853a3ccc831f97c5248ff1f1cf5b157b1b64736f6c63430008190033

Deployed Bytecode

0x60806040526004361015610011575f80fd5b5f3560e01c806301e1d114146123d557806306fdde03146123b257806307a2d13a14612019578063095ea7b3146123475780630a28a47714612306578063136439dd1461226a57806318160ddd1461224557806323b872dd146121715780632569296214612128578063313ce567146120f95780633644e5151461206957806338d52e0f14612037578063402d267d146117615780634cdad5061461201957806354d1f13d14611fd55780635ac86ab714611f965780635c975abb14611f6b5780636e553f6514611eee57806370a0823114610cde578063715018a614611eaa5780637784c68514611da75780637cc34bb414611b835780637ecebe0014611b515780638da5cb5b14611b2757806394bf804d14611aa057806395d89b4114611a6257806397eb82cb14611a03578063a9059cbb14611985578063b3d7f6b914611967578063b460af9414611906578063ba087652146118a5578063ba63277a1461184e578063bc157ac114611766578063c63d75b614611761578063c646778c14611738578063c6e6f592146107bd578063ce96cb7714611706578063d505accf14611553578063d7768ba714610d10578063d905777e14610cde578063dcb8a54d14610c17578063dd62ed3e14610bd9578063ecb9ddc21461096d578063ee6a94f1146107e3578063ef8b30f7146107bd578063f04e283e1461073f578063f2fde38b146106d4578063f49f131d146103a5578063fabc1cbc14610308578063fee81cf4146102d65763ffa1ad741461024a575f80fd5b346102d2575f3660031901126102d257604051604081019080821067ffffffffffffffff8311176102be576102ba91604052600581527f322e302e3000000000000000000000000000000000000000000000000000000060208201526040519182916020835260208301906123ef565b0390f35b634e487b7160e01b5f52604160045260245ffd5b5f80fd5b346102d25760203660031901126102d2576102ef612413565b63389a75e1600c525f52602080600c2054604051908152f35b346102d25760203660031901126102d2576004356103246128d4565b5f80516020612a9883398151915281808254160361037b578190556040805133815260208101929092527f3582d1828e26bf56bd801502bc021ac0bc8afb57c826e4986b45593c8fad389c9190819081015b0390a1005b60046040517ffdb6d55f000000000000000000000000000000000000000000000000000000008152fd5b346102d2576020806003193601126102d2576004359068929eee149b4bd2126891308354146106c75730835560105f80516020612a9883398151915254166106b0576103ef6127ad565b50805f527f5d654853f9da5c5c659891e7f7fc564033f2724663c32c175f373318f8e1e7019081835260405f20906040519261042a846124b5565b8254946001600160a01b0395868116865260a01c9381860185815287600260018401549360408a01948552015416956060880196875215610686576bffffffffffffffffffffffff905116620bdd808101809111610672574210610648578051966387a211a280600c52305f5283600c2054891161061e576104ab89612713565b94865f5284525f60026040822082815582600182015501558187511690600c52305f5283600c208054808b11610611578a900390556805345cdf77eb68f44c898154039055885f525f307fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8683a3835f6044601082865f80516020612ab88339815191525416866014528a6034526fa9059cbb00000000000000000000000082525af13d1560015f5114171615610604578160c09881927f3e7334c523edc77a635d49b7bea770110ee3b3d1fa5ff6dd0e2d2634e3299c6d9b5f603452885f5287523090307ffbde797d201c681b91056529119e0b02407c7bb96a4a2c75c01fc9667232c8db60405fa45116965116907f22a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff001541691519260405196875286015260408501526060840152608083015260a0820152a1389055005b6390b8ec185f526004601cfd5b63f4d678b85f526004601cfd5b60046040517f4656425a000000000000000000000000000000000000000000000000000000008152fd5b60046040517f4b90bbc2000000000000000000000000000000000000000000000000000000008152fd5b634e487b7160e01b5f52601160045260245ffd5b60046040517f8d0fc1dd000000000000000000000000000000000000000000000000000000008152fd5b602460405163c8ce8e3360e01b8152600480820152fd5b63ab143c065f526004601cfd5b60203660031901126102d2576106e8612413565b6106f06128d4565b8060601b15610732576001600160a01b0316638b78c6d8198181547f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a355005b637448fbae5f526004601cfd5b60203660031901126102d257610753612413565b61075b6128d4565b63389a75e1600c52805f526020600c2090815442116107b0575f6001600160a01b03925516638b78c6d8198181547f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a355005b636f5e88185f526004601cfd5b346102d25760203660031901126102d25760206107db60043561276b565b604051908152f35b346102d25760403660031901126102d2576004356107ff612429565b906108086128d4565b6108106127df565b908082101561096657505b6001600160a01b03805f80516020612ab8833981519152938185541681601452846034526f095ea7b3000000000000000000000000805f5260205f6044601082865af13d1560015f5114171615610920575b50505f60345216925416823b156102d2575f926044849260405195869384927ff148e5fc00000000000000000000000000000000000000000000000000000000845260048401528660248401525af18015610915576108fb575b6020907f0a6331e5cfe25333c065863fddcbcd3c103d07a3aaa549b327736ccb1e7b3cab82604051838152a1604051908152f35b67ffffffffffffffff82116102be576020916040526108c7565b6040513d5f823e3d90fd5b602092935060105f80936044938260345282528138858583855af150886034525af13d1560015f5114171615610959578190858061086d565b633e3f8f735f526004601cfd5b905061081b565b346102d25760403660031901126102d257600435610989612429565b9060085f80516020612a988339815191525416610bc15768929eee149b4bd21268308154146106c7573081558115610b97576001600160a01b03809316918215610b6d576109d681612713565b90335f526020947f5d654853f9da5c5c659891e7f7fc564033f2724663c32c175f373318f8e1e7008652610a1b60405f20805490610a13826127d1565b905533612908565b94855f527f5d654853f9da5c5c659891e7f7fc564033f2724663c32c175f373318f8e1e701875260405f2090600273ffffffffffffffffffffffffffffffffffffffff1992834260a01b163317815585600182015501918254161790556040517f23b872dd00000000000000000000000000000000000000000000000000000000815233600482015230602482015282604482015286816064815f305af1801561091557610b36575b50907f27e68995434d20932c6776eaf0833fa5060ceb34f9e3b55c6b137f39361436029260a0927f22a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff001541691604051923384528884015260408301528560608301526080820152a1389055604051908152f35b8681819493943d8311610b66575b610b4e81836124d1565b810103126102d25751801515036102d2579086610ac4565b503d610b44565b60046040517fd92e233d000000000000000000000000000000000000000000000000000000008152fd5b60046040517f9811e0c7000000000000000000000000000000000000000000000000000000008152fd5b602460405163c8ce8e3360e01b815260036004820152fd5b346102d25760403660031901126102d257610bf2612413565b610bfa612429565b602052637f5e9f20600c525f5260206034600c2054604051908152f35b346102d25760403660031901126102d257610c45610c33612413565b610c3b6127ad565b5060243590612908565b5f527f5d654853f9da5c5c659891e7f7fc564033f2724663c32c175f373318f8e1e701602052608060405f2060405190610c7e826124b5565b8054916001600160a01b03916bffffffffffffffffffffffff83851694858452602084019060a01c815260608560026001860154956040880196875201541694019384526040519586525116602085015251604084015251166060820152f35b346102d25760203660031901126102d257610cf7612413565b6387a211a2600c525f52602080600c2054604051908152f35b346102d25760c03660031901126102d257610d29612413565b610d31612429565b90604435906001600160a01b038216928383036102d25760643567ffffffffffffffff81116102d257610d68903690600401612539565b9360843567ffffffffffffffff81116102d257610d89903690600401612539565b60a43567ffffffffffffffff81116102d257366023820112156102d257610dba9036906024816004013591016124f3565b957ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a009586549567ffffffffffffffff871680159081611543575b6001149081611539575b159081611530575b50611506576004601c6020936001600160a01b035f94600167ffffffffffffffff198d16178d5560ff8c60401c16156114e7575b1680638b78c6d81955847f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08180a3610e70612a3e565b610e78612a3e565b835f80516020612a988339815191525563313ce56784525afa91601f3d11915f519473ffffffffffffffffffffffffffffffffffffffff195f80516020612ab88339815191525416175f80516020612ab88339815191525580519067ffffffffffffffff82116102be57610f0c7f22a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff00254612557565b601f811161147a575b50602090601f83116001146113b557610f4592915f91836113aa575b50508160011b915f199060031b1c19161790565b7f22a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff002555b80519067ffffffffffffffff82116102be57610fa47f22a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff00354612557565b601f811161133d575b50602090601f831160011461127857610fdc92915f918361126d5750508160011b915f199060031b1c19161790565b7f22a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff003555b610100831081168216156112635761010083101616025b7fffffffffffffffffffffff00ffffffffffffffffffffffffffffffffffffffff74ff00000000000000000000000000000000000000005f80516020612ab8833981519152549260a01b169116175f80516020612ab8833981519152556001600160a01b037f22a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff001911673ffffffffffffffffffffffffffffffffffffffff19825416179055825167ffffffffffffffff81116102be577f22a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff004906110f78254612557565b601f811161120b575b506020601f82116001146111885790806111329260ff96975f9261117d5750508160011b915f199060031b1c19161790565b90555b60401c161561114057005b68ff00000000000000001981541690557fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d2602060405160018152a1005b015190508780610f31565b601f19821695835f527fea483344d6cf51005d246b38f5abc35002ebbaae1992413267a18dc566220542965f5b8181106111f357509160ff9697918460019594106111db575b505050811b019055611135565b01515f1960f88460031b161c191690558680806111ce565b838301518955600190980197602093840193016111b5565b61125390835f527fea483344d6cf51005d246b38f5abc35002ebbaae1992413267a18dc566220542601f840160051c81019160208510611259575b601f0160051c0190612797565b85611100565b9091508190611246565b5050506012611016565b015190508a80610f31565b91907f22a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff0035f527faf828aa0bfb005b9919dfb245322145bccc44c5316fc263a449d455233742993905f935b601f1984168510611322576001945083601f1981161061130a575b505050811b017f22a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff00355610fff565b01515f1960f88460031b161c191690558980806112dd565b818101518355602094850194600190930192909101906112c2565b6113a4907f22a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff0035f527faf828aa0bfb005b9919dfb245322145bccc44c5316fc263a449d455233742993601f850160051c8101916020861061125957601f0160051c0190612797565b89610fad565b015190508b80610f31565b91907f22a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff0025f527fa5242dc986d19d56f8b875ad0cbe66ea3fca9b6eeb053181879d6d301ab4ac7a905f935b601f198416851061145f576001945083601f19811610611447575b505050811b017f22a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff00255610f68565b01515f1960f88460031b161c191690558a808061141a565b818101518355602094850194600190930192909101906113ff565b6114e1907f22a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff0025f527fa5242dc986d19d56f8b875ad0cbe66ea3fca9b6eeb053181879d6d301ab4ac7a601f850160051c8101916020861061125957601f0160051c0190612797565b8a610f15565b68ffffffffffffffffff198c1668010000000000000001178d55610e3a565b60046040517ff92ee8a9000000000000000000000000000000000000000000000000000000008152fd5b9050158a610e06565b303b159150610dfe565b604089901c60ff16159150610df4565b346102d25760e03660031901126102d25761156c612413565b611574612429565b604435606435906084359360ff851685036102d257604051916115a18361159a8161258f565b03846124d1565b8251602080940120918442116116f957604051906001600160a01b0380911696169665383775081901600e52865f5260c085600c20928354977f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f82528782019687528860408301977fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc689528c6060850199468b528d608087019330855260a08820602e527f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9885252528789525260a082015220604e526042602c205f5260ff16845260a43560405260c435606052838060805f60015afa863d51036116ec577f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b9259501905585777f5e9f200000000000000000000000000000000000000000176040526034602c2055a3005b63ddafbaef5f526004601cfd5b631a15a3cc5f526004601cfd5b346102d25760203660031901126102d25761171f612413565b6387a211a2600c525f5260206107db81600c2054612713565b346102d2575f3660031901126102d25760205f80516020612a9883398151915254604051908152f35b61243f565b346102d25760603660031901126102d257600435611782612429565b9068929eee149b4bd2126891308354146106c75730835560025f80516020612a98833981519152541661183657811561180c576117cb906117c28361276b565b92839133612939565b60443581106117e257602091389055604051908152f35b60046040517ff15ed214000000000000000000000000000000000000000000000000000000008152fd5b60046040517f1f2a2005000000000000000000000000000000000000000000000000000000008152fd5b602460405163c8ce8e3360e01b815260016004820152fd5b346102d25760203660031901126102d2576001600160a01b0361186f612413565b165f527f5d654853f9da5c5c659891e7f7fc564033f2724663c32c175f373318f8e1e700602052602060405f2054604051908152f35b346102d2576118b336612464565b50505060405f80516020612a9883398151915254166118ee573068929eee149b4bd2126854146106c757600460405163d623472560e01b8152fd5b602460405163c8ce8e3360e01b815260066004820152fd5b346102d25761191436612464565b50505060205f80516020612a98833981519152541661194f573068929eee149b4bd2126854146106c757600460405163d623472560e01b8152fd5b602460405163c8ce8e3360e01b815260056004820152fd5b346102d25760203660031901126102d25760206107db60043561273f565b346102d25760403660031901126102d25761199e612413565b6024356387a211a2600c52335f5260209182600c2080548084116106115783900390555f5281600c208181540190558152600c5160601c337fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8380a360405160018152f35b346102d25760403660031901126102d257611a28611a1f612413565b60243590612908565b5f527f5d654853f9da5c5c659891e7f7fc564033f2724663c32c175f373318f8e1e701602052602060405f205460a01c1515604051908152f35b346102d2575f3660031901126102d2576102ba604051611a8c81611a8581612665565b03826124d1565b6040519182916020835260208301906123ef565b346102d25760403660031901126102d257600435611abc612429565b60045f80516020612a988339815191525416611b0f5768929eee149b4bd21268308154146106c7573081558215610b9757611b0483611afc60209561273f565b809433612939565b389055604051908152f35b602460405163c8ce8e3360e01b815260026004820152fd5b346102d2575f3660031901126102d2576020638b78c6d819546001600160a01b0360405191168152f35b346102d25760203660031901126102d257611b6a612413565b6338377508600c525f52602080600c2054604051908152f35b346102d2575f3660031901126102d25760a0604051611ba181612499565b5f81526020905f828201525f604082015260609281848080940152826080820152015260405191611bd183612499565b5f80516020612ab883398151915254906001600160a01b03808316855260ff8486019360a01c168352807f22a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff0015416916040860192835260405191611c378361159a8161258f565b81870192835260405193611c5585611c4e81612665565b03866124d1565b60808801948552604051955f7f22a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff0048054611c8d81612557565b91828b526001918c6001821691825f14611d81575050600114611d29575b505050928796959260ff611d189693611ccc6102ba9b611d0298038b6124d1565b60a08d01998a528b846040519e8f9e8f525116908d0152511660408b01525116908801525160c0608088015260e08701906123ef565b915191601f1992838783030160a08801526123ef565b9151908483030160c08501526123ef565b5f9081528b935091907fea483344d6cf51005d246b38f5abc35002ebbaae1992413267a18dc5662205425b828410611d6c575050508801018260ff611d18611cab565b80548c85018601528c94909301928101611d54565b60ff19168d82015293151560051b8c01909301935085925060ff9150611d189050611cab565b346102d2576020806003193601126102d25760043567ffffffffffffffff8082116102d257366023830112156102d25781600401359081116102d2576024906005903660248260051b860101116102d257611e01816128f0565b92611e0f60405194856124d1565b818452611e1b826128f0565b8487019590601f19013687375f5b838110611e725787868860405192839281840190828552518091526040840192915f5b828110611e5b57505050500390f35b835185528695509381019392810192600101611e4c565b611e7b816127d1565b9084811015611e9757851b82018301355481861b870152611e29565b83634e487b7160e01b5f5260326004525ffd5b5f3660031901126102d257611ebd6128d4565b5f638b78c6d8198181547f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a355005b346102d25760403660031901126102d257600435611f0a612429565b9060015f80516020612a988339815191525416611f545768929eee149b4bd21268308154146106c757308155811561180c57611b04602093611f4b8461276b565b93849133612939565b602460405163c8ce8e3360e01b81525f6004820152fd5b346102d2575f3660031901126102d25760205f80516020612a98833981519152541515604051908152f35b346102d25760203660031901126102d25760043560ff81168091036102d25760016020911b5f80516020612a9883398151915254161515604051908152f35b5f3660031901126102d25763389a75e1600c52335f525f6020600c2055337ffa7b8eab7da67f412cc9575ed43464468f9bfbae89d1675917346ca6d8fe3c925f80a2005b346102d25760203660031901126102d25760206107db600435612713565b346102d2575f3660031901126102d25760206001600160a01b035f80516020612ab88339815191525416604051908152f35b346102d2575f3660031901126102d257602060a060405161208d81611a858161258f565b828151910120604051907f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f8252838201527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc6604082015246606082015230608082015220604051908152f35b346102d2575f3660031901126102d257602060ff5f80516020612ab88339815191525460a01c16604051908152f35b5f3660031901126102d25763389a75e1600c52335f526202a30042016020600c2055337fdbf36a107da19e49527a7176a1babf963b4b0ff8cde35ee35d6cd8f1f9ac7e1d5f80a2005b346102d25760603660031901126102d25761218a612413565b612192612429565b90604435918160601b602093338552600c91637f5e9f208117835260348320908154918219612221575b506387a211a2178352508482208054939084831161061157826001600160a01b03950390555f5284822081815401905584525160601c91167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8380a360405160018152f35b82841161223857836387a211a293039055876121bc565b6313be252b5f526004601cfd5b346102d2575f3660031901126102d25760206805345cdf77eb68f44c54604051908152f35b346102d25760203660031901126102d2576004356122866128d4565b5f80516020612a988339815191528054828116036122dc578190556040805133815260208101929092527fab40a374bc51de372200a8bc981af8c9ecdc08dfdaef0bb6e09f88f3c616ef3d919081908101610376565b60046040517f9bb0aa93000000000000000000000000000000000000000000000000000000008152fd5b346102d25760203660031901126102d2576805345cdf77eb68f44c5460018101809111610672576107db602091600161233d6127df565b01906004356128b1565b346102d25760403660031901126102d257612360612413565b60243590602052637f5e9f20600c52335f52806034600c20555f52602c5160601c337f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560205fa3602060405160018152f35b346102d2575f3660031901126102d2576102ba604051611a8c81611a858161258f565b346102d2575f3660031901126102d25760206107db6127df565b805180835260209291819084018484015e5f828201840152601f01601f1916010190565b600435906001600160a01b03821682036102d257565b602435906001600160a01b03821682036102d257565b346102d25760203660031901126102d257612458612413565b5060206040515f198152f35b60609060031901126102d257600435906001600160a01b039060243582811681036102d2579160443590811681036102d25790565b60c0810190811067ffffffffffffffff8211176102be57604052565b6080810190811067ffffffffffffffff8211176102be57604052565b90601f8019910116810190811067ffffffffffffffff8211176102be57604052565b92919267ffffffffffffffff82116102be576040519161251d601f8201601f1916602001846124d1565b8294818452818301116102d2578281602093845f960137010152565b9080601f830112156102d257816020612554933591016124f3565b90565b90600182811c92168015612585575b602083101461257157565b634e487b7160e01b5f52602260045260245ffd5b91607f1691612566565b905f917f22a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff002908154916125c083612557565b8083529260209160019182811690811561263e57506001146125e4575b5050505050565b90939495505f527fa5242dc986d19d56f8b875ad0cbe66ea3fca9b6eeb053181879d6d301ab4ac7a925f935b85851061262b57505050602092500101905f808080806125dd565b8054858501840152938201938101612610565b9350505050602093945060ff929192191683830152151560051b0101905f808080806125dd565b905f917f22a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff0039081549161269683612557565b8083529260209160019182811690811561263e57506001146126b9575050505050565b90939495505f527faf828aa0bfb005b9919dfb245322145bccc44c5316fc263a449d455233742993925f935b85851061270057505050602092500101905f808080806125dd565b80548585018401529382019381016126e5565b61271b6127df565b9060018201809211610672576125549160016805345cdf77eb68f44c540191612823565b6127476127df565b9060018201809211610672576125549160016805345cdf77eb68f44c5401916128b1565b6805345cdf77eb68f44c549060018201809211610672576125549160016127906127df565b0191612823565b8181106127a2575050565b5f8155600101612797565b604051906127ba826124b5565b5f6060838281528260208201528260408201520152565b5f1981146106725760010190565b602080602460106001600160a01b035f80516020612ab88339815191525416306014526f70a082310000000000000000000000005f525afa601f3d11166020510290565b8181029291811582850482141783021561283e575050900490565b82905f1981840985811086019003920990825f03831692818111156128a4578390046002816003028118808302820302808302820302808302820302808302820302808302820302809202900302936001848483030494805f0304019211900302170290565b63ae47f7025f526004601cfd5b9291906128bf828286612823565b93096128c757565b906001019081156128a457565b638b78c6d8195433036128e357565b6382b429005f526004601cfd5b67ffffffffffffffff81116102be5760051b60200190565b604080516001600160a01b0392909216602083019081528282019390935281526129336060826124d1565b51902090565b916001600160a01b0393845f80516020612ab8833981519152541660205f6064601c826040519588606052306040528a60601b602c526f23b872dd000000000000000000000000600c525af13d1560015f5114171615612a31575f6060526040526805345cdf77eb68f44c805490828201918210612a2457556387a211a2600c52825f526020600c20818154019055602052600c5160601c5f7fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef602080a35f52821691167fdcbc1c05240f31ff3ad067ef1ee35ce4997762752e3a095284754544f4c709d760405fa3565b63e5cfe9575f526004601cfd5b637939f4245f526004601cfd5b60ff7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a005460401c1615612a6d57565b60046040517fd7e6bcf8000000000000000000000000000000000000000000000000000000008152fdfe271441cddf42198c20456f920f5dac04f245854c82f280f2e59e7095958d0b0022a8eb0cbcfbbbc874f794ecd9efdfeeecb09fe60d66cf9327db2eac8a1ff000a2646970667358221220265ac40386a503717d88da8f4d2528853a3ccc831f97c5248ff1f1cf5b157b1b64736f6c63430008190033

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.