FRAX Price: $0.90 (+11.72%)

Contract

0x6550284EA5dcb134a45a6F3c80afa2B30bc56fe9

Overview

FRAX Balance | FXTL Balance

0 FRAX | 102 FXTL

FRAX Value

$0.00

Token Holdings

More Info

Private Name Tags

Multichain Info

No addresses found
Amount:Between 1-100
Reset Filter

Transaction Hash
Block
From
To

There are no matching entries

1 Token Transfer found.

View more zero value Internal Transactions in Advanced View mode

Advanced mode:

Cross-Chain Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
FraxtalHopV2

Compiler Version
v0.8.23+commit.f704f362

Optimization Enabled:
Yes with 200 runs

Other Settings:
shanghai EvmVersion
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import { IOAppComposer } from "@layerzerolabs/oapp-evm/contracts/oapp/interfaces/IOAppComposer.sol";
import { OFTComposeMsgCodec } from "@layerzerolabs/oft-evm/contracts/libs/OFTComposeMsgCodec.sol";
import { OptionsBuilder } from "@fraxfinance/layerzero-v2-upgradeable/oapp/contracts/oapp/libs/OptionsBuilder.sol";
import { SendParam } from "@fraxfinance/layerzero-v2-upgradeable/oapp/contracts/oft/interfaces/IOFT.sol";

import { HopV2, HopMessage } from "src/contracts/hop/HopV2.sol";

// ====================================================================
// |     ______                   _______                             |
// |    / _____________ __  __   / ____(_____  ____ _____  ________   |
// |   / /_  / ___/ __ `| |/_/  / /_  / / __ \/ __ `/ __ \/ ___/ _ \  |
// |  / __/ / /  / /_/ _>  <   / __/ / / / / / /_/ / / / / /__/  __/  |
// | /_/   /_/   \__,_/_/|_|  /_/   /_/_/ /_/\__,_/_/ /_/\___/\___/   |
// |                                                                  |
// ====================================================================
// =========================== FraxtalHopV2 ===========================
// ====================================================================

/// @author Frax Finance: https://github.com/FraxFinance
contract FraxtalHopV2 is HopV2, IOAppComposer {
    event Hop(address oft, uint32 indexed srcEid, uint32 indexed dstEid, bytes32 indexed recipient, uint256 amount);

    error InvalidDestinationChain();
    error InvalidRemoteHop();

    constructor() {
        _disableInitializers();
    }

    function initialize(
        uint32 _localEid,
        address _endpoint,
        uint32 _numDVNs,
        address _EXECUTOR,
        address _DVN,
        address _TREASURY,
        address[] memory _approvedOfts
    ) external initializer {
        __init_HopV2(_localEid, _endpoint, _numDVNs, _EXECUTOR, _DVN, _TREASURY, _approvedOfts);
    }

    // receive ETH
    receive() external payable {}

    function sendOFT(
        address _oft,
        uint32 _dstEid,
        bytes32 _recipient,
        uint256 _amountLD,
        uint128 _dstGas,
        bytes memory _data
    ) public payable override {
        if (_dstEid != FRAXTAL_EID && remoteHop(_dstEid) == bytes32(0)) revert InvalidDestinationChain();

        super.sendOFT(_oft, _dstEid, _recipient, _amountLD, _dstGas, _data);
    }

    /// @notice Handles incoming composed messages from LayerZero.
    /// @dev Decodes the message payload to perform a token swap.
    ///      This method expects the encoded compose message to contain the swap amount and recipient address.
    /// @dev source: https://docs.layerzero.network/v2/developers/evm/protocol-gas-settings/options#lzcompose-option
    /// @param _oft The address of the originating OApp/Token.
    /// @param /*_guid*/ The globally unique identifier of the message
    /// @param _message The encoded message content in the format of the OFTComposeMsgCodec.
    /// @param /*Executor*/ Executor address
    /// @param /*Executor Data*/ Additional data for checking for a specific executor
    function lzCompose(
        address _oft,
        bytes32 /*_guid*/,
        bytes calldata _message,
        address /*Executor*/,
        bytes calldata /*Executor Data*/
    ) external payable override {
        if (paused()) revert HopPaused();

        (bool isTrustedHopMessage, bool isDuplicateMessage) = _validateComposeMessage(_oft, _message);
        if (isDuplicateMessage) return;

        // Extract the composed message from the delivered message using the MsgCodec
        HopMessage memory hopMessage = abi.decode(OFTComposeMsgCodec.composeMsg(_message), (HopMessage));
        uint256 amountLD = OFTComposeMsgCodec.amountLD(_message);

        // An untrusted hop message means that the composer on the source chain is not the RemoteHop.  When the composer
        // is not the RemoteHop, they can craft any arbitrary HopMessage.  In these cases, overwrite the srcEid and sender
        // to ensure the HopMessage data is legitimate when passed to IHopComposer.hopCompose().
        if (!isTrustedHopMessage) {
            hopMessage.srcEid = OFTComposeMsgCodec.srcEid(_message);
            hopMessage.sender = OFTComposeMsgCodec.composeFrom(_message);
        }

        if (hopMessage.dstEid == FRAXTAL_EID) {
            _sendLocal({ _oft: _oft, _amount: amountLD, _hopMessage: hopMessage });
        } else {
            _sendToDestination({
                _oft: _oft,
                _amountLD: removeDust(_oft, amountLD),
                _isTrustedHopMessage: isTrustedHopMessage,
                _hopMessage: hopMessage
            });
            emit Hop(_oft, hopMessage.srcEid, hopMessage.dstEid, hopMessage.recipient, amountLD);
        }
    }

    function _generateSendParam(
        uint256 _amountLD,
        HopMessage memory _hopMessage
    ) internal view override returns (SendParam memory sendParam) {
        sendParam.dstEid = _hopMessage.dstEid;
        sendParam.amountLD = _amountLD;
        sendParam.minAmountLD = _amountLD;

        if (_hopMessage.data.length == 0) {
            // There is no compose message to execute, therefore we know the recipeint should directly receive the tokens.
            sendParam.to = _hopMessage.recipient;
        } else {
            bytes32 to = remoteHop(_hopMessage.dstEid);

            // In sending from A => Fraxtal => B, A does not know if B has a remoteHop.
            // Therefore, revert on Fraxtal lzCompose() when there is no remoteHop to allow replays
            // rather than sending to address(0) on destination
            if (to == bytes32(0)) revert InvalidRemoteHop();
            sendParam.to = to;

            bytes memory options = OptionsBuilder.newOptions();
            options = OptionsBuilder.addExecutorLzComposeOption(options, 0, _hopMessage.dstGas, 0);
            sendParam.extraOptions = options;

            sendParam.composeMsg = abi.encode(_hopMessage);
        }
    }
}

File 2 of 48 : IOAppComposer.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

import { ILayerZeroComposer } from "@layerzerolabs/lz-evm-protocol-v2/contracts/interfaces/ILayerZeroComposer.sol";

/**
 * @title IOAppComposer
 * @dev This interface defines the OApp Composer, allowing developers to inherit only the OApp package without the protocol.
 */
// solhint-disable-next-line no-empty-blocks
interface IOAppComposer is ILayerZeroComposer {}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

library OFTComposeMsgCodec {
    // Offset constants for decoding composed messages
    uint8 private constant NONCE_OFFSET = 8;
    uint8 private constant SRC_EID_OFFSET = 12;
    uint8 private constant AMOUNT_LD_OFFSET = 44;
    uint8 private constant COMPOSE_FROM_OFFSET = 76;

    /**
     * @dev Encodes a OFT composed message.
     * @param _nonce The nonce value.
     * @param _srcEid The source endpoint ID.
     * @param _amountLD The amount in local decimals.
     * @param _composeMsg The composed message.
     * @return _msg The encoded Composed message.
     */
    function encode(
        uint64 _nonce,
        uint32 _srcEid,
        uint256 _amountLD,
        bytes memory _composeMsg // 0x[composeFrom][composeMsg]
    ) internal pure returns (bytes memory _msg) {
        _msg = abi.encodePacked(_nonce, _srcEid, _amountLD, _composeMsg);
    }

    /**
     * @dev Retrieves the nonce for the composed message.
     * @param _msg The message.
     * @return The nonce value.
     */
    function nonce(bytes calldata _msg) internal pure returns (uint64) {
        return uint64(bytes8(_msg[:NONCE_OFFSET]));
    }

    /**
     * @dev Retrieves the source endpoint ID for the composed message.
     * @param _msg The message.
     * @return The source endpoint ID.
     */
    function srcEid(bytes calldata _msg) internal pure returns (uint32) {
        return uint32(bytes4(_msg[NONCE_OFFSET:SRC_EID_OFFSET]));
    }

    /**
     * @dev Retrieves the amount in local decimals from the composed message.
     * @param _msg The message.
     * @return The amount in local decimals.
     */
    function amountLD(bytes calldata _msg) internal pure returns (uint256) {
        return uint256(bytes32(_msg[SRC_EID_OFFSET:AMOUNT_LD_OFFSET]));
    }

    /**
     * @dev Retrieves the composeFrom value from the composed message.
     * @param _msg The message.
     * @return The composeFrom value.
     */
    function composeFrom(bytes calldata _msg) internal pure returns (bytes32) {
        return bytes32(_msg[AMOUNT_LD_OFFSET:COMPOSE_FROM_OFFSET]);
    }

    /**
     * @dev Retrieves the composed message.
     * @param _msg The message.
     * @return The composed message.
     */
    function composeMsg(bytes calldata _msg) internal pure returns (bytes memory) {
        return _msg[COMPOSE_FROM_OFFSET:];
    }

    /**
     * @dev Converts an address to bytes32.
     * @param _addr The address to convert.
     * @return The bytes32 representation of the address.
     */
    function addressToBytes32(address _addr) internal pure returns (bytes32) {
        return bytes32(uint256(uint160(_addr)));
    }

    /**
     * @dev Converts bytes32 to an address.
     * @param _b The bytes32 value to convert.
     * @return The address representation of bytes32.
     */
    function bytes32ToAddress(bytes32 _b) internal pure returns (address) {
        return address(uint160(uint256(_b)));
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

import { BytesLib } from "solidity-bytes-utils/contracts/BytesLib.sol";
import { SafeCast } from "@openzeppelin/contracts/utils/math/SafeCast.sol";

import { ExecutorOptions } from "@layerzerolabs/lz-evm-protocol-v2/contracts/messagelib/libs/ExecutorOptions.sol";
import { DVNOptions } from "@layerzerolabs/lz-evm-messagelib-v2/contracts/uln/libs/DVNOptions.sol";

/**
 * @title OptionsBuilder
 * @dev Library for building and encoding various message options.
 */
library OptionsBuilder {
    using SafeCast for uint256;
    using BytesLib for bytes;

    // Constants for options types
    uint16 internal constant TYPE_1 = 1; // legacy options type 1
    uint16 internal constant TYPE_2 = 2; // legacy options type 2
    uint16 internal constant TYPE_3 = 3;

    // Custom error message
    error InvalidSize(uint256 max, uint256 actual);
    error InvalidOptionType(uint16 optionType);

    // Modifier to ensure only options of type 3 are used
    modifier onlyType3(bytes memory _options) {
        if (_options.toUint16(0) != TYPE_3) revert InvalidOptionType(_options.toUint16(0));
        _;
    }

    /**
     * @dev Creates a new options container with type 3.
     * @return options The newly created options container.
     */
    function newOptions() internal pure returns (bytes memory) {
        return abi.encodePacked(TYPE_3);
    }

    /**
     * @dev Adds an executor LZ receive option to the existing options.
     * @param _options The existing options container.
     * @param _gas The gasLimit used on the lzReceive() function in the OApp.
     * @param _value The msg.value passed to the lzReceive() function in the OApp.
     * @return options The updated options container.
     *
     * @dev When multiples of this option are added, they are summed by the executor
     * eg. if (_gas: 200k, and _value: 1 ether) AND (_gas: 100k, _value: 0.5 ether) are sent in an option to the LayerZeroEndpoint,
     * that becomes (300k, 1.5 ether) when the message is executed on the remote lzReceive() function.
     */
    function addExecutorLzReceiveOption(
        bytes memory _options,
        uint128 _gas,
        uint128 _value
    ) internal pure onlyType3(_options) returns (bytes memory) {
        bytes memory option = ExecutorOptions.encodeLzReceiveOption(_gas, _value);
        return addExecutorOption(_options, ExecutorOptions.OPTION_TYPE_LZRECEIVE, option);
    }

    /**
     * @dev Adds an executor native drop option to the existing options.
     * @param _options The existing options container.
     * @param _amount The amount for the native value that is airdropped to the 'receiver'.
     * @param _receiver The receiver address for the native drop option.
     * @return options The updated options container.
     *
     * @dev When multiples of this option are added, they are summed by the executor on the remote chain.
     */
    function addExecutorNativeDropOption(
        bytes memory _options,
        uint128 _amount,
        bytes32 _receiver
    ) internal pure onlyType3(_options) returns (bytes memory) {
        bytes memory option = ExecutorOptions.encodeNativeDropOption(_amount, _receiver);
        return addExecutorOption(_options, ExecutorOptions.OPTION_TYPE_NATIVE_DROP, option);
    }

    /**
     * @dev Adds an executor LZ compose option to the existing options.
     * @param _options The existing options container.
     * @param _index The index for the lzCompose() function call.
     * @param _gas The gasLimit for the lzCompose() function call.
     * @param _value The msg.value for the lzCompose() function call.
     * @return options The updated options container.
     *
     * @dev When multiples of this option are added, they are summed PER index by the executor on the remote chain.
     * @dev If the OApp sends N lzCompose calls on the remote, you must provide N incremented indexes starting with 0.
     * ie. When your remote OApp composes (N = 3) messages, you must set this option for index 0,1,2
     */
    function addExecutorLzComposeOption(
        bytes memory _options,
        uint16 _index,
        uint128 _gas,
        uint128 _value
    ) internal pure onlyType3(_options) returns (bytes memory) {
        bytes memory option = ExecutorOptions.encodeLzComposeOption(_index, _gas, _value);
        return addExecutorOption(_options, ExecutorOptions.OPTION_TYPE_LZCOMPOSE, option);
    }

    /**
     * @dev Adds an executor ordered execution option to the existing options.
     * @param _options The existing options container.
     * @return options The updated options container.
     */
    function addExecutorOrderedExecutionOption(
        bytes memory _options
    ) internal pure onlyType3(_options) returns (bytes memory) {
        return addExecutorOption(_options, ExecutorOptions.OPTION_TYPE_ORDERED_EXECUTION, bytes(""));
    }

    /**
     * @dev Adds a DVN pre-crime option to the existing options.
     * @param _options The existing options container.
     * @param _dvnIdx The DVN index for the pre-crime option.
     * @return options The updated options container.
     */
    function addDVNPreCrimeOption(
        bytes memory _options,
        uint8 _dvnIdx
    ) internal pure onlyType3(_options) returns (bytes memory) {
        return addDVNOption(_options, _dvnIdx, DVNOptions.OPTION_TYPE_PRECRIME, bytes(""));
    }

    /**
     * @dev Adds an executor option to the existing options.
     * @param _options The existing options container.
     * @param _optionType The type of the executor option.
     * @param _option The encoded data for the executor option.
     * @return options The updated options container.
     */
    function addExecutorOption(
        bytes memory _options,
        uint8 _optionType,
        bytes memory _option
    ) internal pure onlyType3(_options) returns (bytes memory) {
        return
            abi.encodePacked(
                _options,
                ExecutorOptions.WORKER_ID,
                _option.length.toUint16() + 1, // +1 for optionType
                _optionType,
                _option
            );
    }

    /**
     * @dev Adds a DVN option to the existing options.
     * @param _options The existing options container.
     * @param _dvnIdx The DVN index for the DVN option.
     * @param _optionType The type of the DVN option.
     * @param _option The encoded data for the DVN option.
     * @return options The updated options container.
     */
    function addDVNOption(
        bytes memory _options,
        uint8 _dvnIdx,
        uint8 _optionType,
        bytes memory _option
    ) internal pure onlyType3(_options) returns (bytes memory) {
        return
            abi.encodePacked(
                _options,
                DVNOptions.WORKER_ID,
                _option.length.toUint16() + 2, // +2 for optionType and dvnIdx
                _dvnIdx,
                _optionType,
                _option
            );
    }

    /**
     * @dev Encodes legacy options of type 1.
     * @param _executionGas The gasLimit value passed to lzReceive().
     * @return legacyOptions The encoded legacy options.
     */
    function encodeLegacyOptionsType1(uint256 _executionGas) internal pure returns (bytes memory) {
        if (_executionGas > type(uint128).max) revert InvalidSize(type(uint128).max, _executionGas);
        return abi.encodePacked(TYPE_1, _executionGas);
    }

    /**
     * @dev Encodes legacy options of type 2.
     * @param _executionGas The gasLimit value passed to lzReceive().
     * @param _nativeForDst The amount of native air dropped to the receiver.
     * @param _receiver The _nativeForDst receiver address.
     * @return legacyOptions The encoded legacy options of type 2.
     */
    function encodeLegacyOptionsType2(
        uint256 _executionGas,
        uint256 _nativeForDst,
        bytes memory _receiver // @dev Use bytes instead of bytes32 in legacy type 2 for _receiver.
    ) internal pure returns (bytes memory) {
        if (_executionGas > type(uint128).max) revert InvalidSize(type(uint128).max, _executionGas);
        if (_nativeForDst > type(uint128).max) revert InvalidSize(type(uint128).max, _nativeForDst);
        if (_receiver.length > 32) revert InvalidSize(32, _receiver.length);
        return abi.encodePacked(TYPE_2, _executionGas, _nativeForDst, _receiver);
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

import { MessagingReceipt, MessagingFee } from "../../oapp/OAppSenderUpgradeable.sol";

/**
 * @dev Struct representing token parameters for the OFT send() operation.
 */
struct SendParam {
    uint32 dstEid; // Destination endpoint ID.
    bytes32 to; // Recipient address.
    uint256 amountLD; // Amount to send in local decimals.
    uint256 minAmountLD; // Minimum amount to send in local decimals.
    bytes extraOptions; // Additional options supplied by the caller to be used in the LayerZero message.
    bytes composeMsg; // The composed message for the send() operation.
    bytes oftCmd; // The OFT command to be executed, unused in default OFT implementations.
}

/**
 * @dev Struct representing OFT limit information.
 * @dev These amounts can change dynamically and are up the the specific oft implementation.
 */
struct OFTLimit {
    uint256 minAmountLD; // Minimum amount in local decimals that can be sent to the recipient.
    uint256 maxAmountLD; // Maximum amount in local decimals that can be sent to the recipient.
}

/**
 * @dev Struct representing OFT receipt information.
 */
struct OFTReceipt {
    uint256 amountSentLD; // Amount of tokens ACTUALLY debited from the sender in local decimals.
    // @dev In non-default implementations, the amountReceivedLD COULD differ from this value.
    uint256 amountReceivedLD; // Amount of tokens to be received on the remote side.
}

/**
 * @dev Struct representing OFT fee details.
 * @dev Future proof mechanism to provide a standardized way to communicate fees to things like a UI.
 */
struct OFTFeeDetail {
    int256 feeAmountLD; // Amount of the fee in local decimals.
    string description; // Description of the fee.
}

/**
 * @title IOFT
 * @dev Interface for the OftChain (OFT) token.
 * @dev Does not inherit ERC20 to accommodate usage by OFTAdapter as well.
 * @dev This specific interface ID is '0x02e49c2c'.
 */
interface IOFT {
    // Custom error messages
    error InvalidLocalDecimals();
    error SlippageExceeded(uint256 amountLD, uint256 minAmountLD);

    // Events
    event OFTSent(
        // GUID of the OFT message.
        // Destination Endpoint ID.
        // Address of the sender on the src chain.
        // Amount of tokens sent in local decimals.
        // Amount of tokens received in local decimals.
        bytes32 indexed guid,
        uint32 dstEid,
        address indexed fromAddress,
        uint256 amountSentLD,
        uint256 amountReceivedLD
    );
    event OFTReceived(
        // GUID of the OFT message.
        // Source Endpoint ID.
        // Address of the recipient on the dst chain.
        // Amount of tokens received in local decimals.
        bytes32 indexed guid,
        uint32 srcEid,
        address indexed toAddress,
        uint256 amountReceivedLD
    );

    /**
     * @notice Retrieves interfaceID and the version of the OFT.
     * @return interfaceId The interface ID.
     * @return version The version.
     *
     * @dev interfaceId: This specific interface ID is '0x02e49c2c'.
     * @dev version: Indicates a cross-chain compatible msg encoding with other OFTs.
     * @dev If a new feature is added to the OFT cross-chain msg encoding, the version will be incremented.
     * ie. localOFT version(x,1) CAN send messages to remoteOFT version(x,1)
     */
    function oftVersion() external view returns (bytes4 interfaceId, uint64 version);

    /**
     * @notice Retrieves the address of the token associated with the OFT.
     * @return token The address of the ERC20 token implementation.
     */
    function token() external view returns (address);

    /**
     * @notice Indicates whether the OFT contract requires approval of the 'token()' to send.
     * @return requiresApproval Needs approval of the underlying token implementation.
     *
     * @dev Allows things like wallet implementers to determine integration requirements,
     * without understanding the underlying token implementation.
     */
    function approvalRequired() external view returns (bool);

    /**
     * @notice Retrieves the shared decimals of the OFT.
     * @return sharedDecimals The shared decimals of the OFT.
     */
    function sharedDecimals() external view returns (uint8);

    /**
     * @notice Provides a quote for OFT-related operations.
     * @param _sendParam The parameters for the send operation.
     * @return limit The OFT limit information.
     * @return oftFeeDetails The details of OFT fees.
     * @return receipt The OFT receipt information.
     */
    function quoteOFT(
        SendParam calldata _sendParam
    ) external view returns (OFTLimit memory, OFTFeeDetail[] memory oftFeeDetails, OFTReceipt memory);

    /**
     * @notice Provides a quote for the send() operation.
     * @param _sendParam The parameters for the send() operation.
     * @param _payInLzToken Flag indicating whether the caller is paying in the LZ token.
     * @return fee The calculated LayerZero messaging fee from the send() operation.
     *
     * @dev MessagingFee: LayerZero msg fee
     *  - nativeFee: The native fee.
     *  - lzTokenFee: The lzToken fee.
     */
    function quoteSend(SendParam calldata _sendParam, bool _payInLzToken) external view returns (MessagingFee memory);

    /**
     * @notice Executes the send() operation.
     * @param _sendParam The parameters for the send operation.
     * @param _fee The fee information supplied by the caller.
     *      - nativeFee: The native fee.
     *      - lzTokenFee: The lzToken fee.
     * @param _refundAddress The address to receive any excess funds from fees etc. on the src.
     * @return receipt The LayerZero messaging receipt from the send() operation.
     * @return oftReceipt The OFT receipt information.
     *
     * @dev MessagingReceipt: LayerZero msg receipt
     *  - guid: The unique identifier for the sent message.
     *  - nonce: The nonce of the sent message.
     *  - fee: The LayerZero fee incurred for the message.
     */
    function send(
        SendParam calldata _sendParam,
        MessagingFee calldata _fee,
        address _refundAddress
    ) external payable returns (MessagingReceipt memory, OFTReceipt memory);
}

pragma solidity ^0.8.0;

import { AccessControlEnumerableUpgradeable } from "@openzeppelin/contracts-upgradeable/access/extensions/AccessControlEnumerableUpgradeable.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

import { OFTComposeMsgCodec } from "@layerzerolabs/oft-evm/contracts/libs/OFTComposeMsgCodec.sol";

import { ILayerZeroDVN } from "src/contracts/hop/interfaces/ILayerZeroDVN.sol";
import { ILayerZeroTreasury } from "src/contracts/hop/interfaces/ILayerZeroTreasury.sol";
import { IExecutor } from "src/contracts/hop/interfaces/IExecutor.sol";

import { SendParam, MessagingFee, IOFT } from "@fraxfinance/layerzero-v2-upgradeable/oapp/contracts/oft/interfaces/IOFT.sol";
import { IOFT2 } from "src/contracts/hop/interfaces/IOFT2.sol";
import { IHopV2, HopMessage } from "src/contracts/hop/interfaces/IHopV2.sol";
import { IHopComposer } from "src/contracts/hop/interfaces/IHopComposer.sol";

contract HopV2 is AccessControlEnumerableUpgradeable, IHopV2 {
    uint32 internal constant FRAXTAL_EID = 30255;
    /// @dev keccak256("PAUSER_ROLE")
    bytes32 internal constant PAUSER_ROLE = 0x65d7a28e3265b37a6474929f336521b332c1681b933f6cb9f3376673440d862a;

    struct HopV2Storage {
        /// @dev EID of this chain
        uint32 localEid;
        /// @dev LZ endpoint on this chain
        address endpoint;
        /// @dev Admin-controlled boolean to pause hops
        bool paused;
        /// @dev Mapping to validate only trusted OFTs
        mapping(address oft => bool isApproved) approvedOft;
        /// @dev Mapping to track messages to prevent replays / duplicate messages
        mapping(bytes32 message => bool isProcessed) messageProcessed;
        /// @dev Mapping to track the Hop on a remote chain
        mapping(uint32 eid => bytes32 hop) remoteHop;
        /// @dev number of DVNs used to verify a message
        uint32 numDVNs;
        /// @dev Hop fee charged to users to use the Hop service
        uint256 hopFee; // 10_000 based so 1 = 0.01%
        /// @dev Configuration of executor options by chain EID
        mapping(uint32 eid => bytes options) executorOptions;
        /// @dev Address of LZ executor
        address EXECUTOR;
        /// @dev Address of LZ DVN
        address DVN;
        /// @dev Address of LZ treasury
        address TREASURY;
    }

    // keccak256(abi.encode(uint256(keccak256("frax.storage.HopV2")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant HopV2StorageLocation = 0x6f2b5e4a4e4e1ee6e84aeabd150e6bcb39c4b05494d47809c3cd3d998f859100;

    function _getHopV2Storage() private pure returns (HopV2Storage storage $) {
        assembly {
            $.slot := HopV2StorageLocation
        }
    }

    event SendOFT(address oft, address indexed sender, uint32 indexed dstEid, bytes32 indexed to, uint256 amount);
    event MessageHash(address oft, uint32 indexed srcEid, uint64 indexed nonce, bytes32 indexed composeFrom);

    error InvalidOFT();
    error HopPaused();
    error NotEndpoint();
    error NotAuthorized();
    error InsufficientFee();
    error RefundFailed();

    modifier onlyAuthorized() {
        if (!(hasRole(DEFAULT_ADMIN_ROLE, msg.sender) || hasRole(PAUSER_ROLE, msg.sender))) {
            revert NotAuthorized();
        }
        _;
    }

    constructor() {
        _disableInitializers();
    }

    function __init_HopV2(
        uint32 _localEid,
        address _endpoint,
        uint32 _numDVNs,
        address _EXECUTOR,
        address _DVN,
        address _TREASURY,
        address[] memory _approvedOfts
    ) internal {
        _grantRole(DEFAULT_ADMIN_ROLE, msg.sender);

        HopV2Storage storage $ = _getHopV2Storage();
        $.localEid = _localEid;
        $.endpoint = _endpoint;
        for (uint256 i = 0; i < _approvedOfts.length; i++) {
            $.approvedOft[_approvedOfts[i]] = true;
        }
        $.numDVNs = _numDVNs;
        $.EXECUTOR = _EXECUTOR;
        $.DVN = _DVN;
        $.TREASURY = _TREASURY;
    }

    // Public methods

    /// @notice Send an OFT to a destination without encoded data
    /// @param _oft Address of OFT
    /// @param _dstEid Destination EID
    /// @param _recipient bytes32 representation of recipient
    /// @param _amountLD Amount of OFT to send
    function sendOFT(address _oft, uint32 _dstEid, bytes32 _recipient, uint256 _amountLD) external payable {
        sendOFT(_oft, _dstEid, _recipient, _amountLD, 0, "");
    }

    /// @notice Send an OFT to a destination with encoded data
    /// @dev Check the FraxtalHopV2.remoteHop(_dstEid) to ensure the destination chain is supported.  If the destination
    ///      is not supported, tokens/messages would be stuck on Fraxtal and require a team intervention to recover.
    /// @param _oft Address of OFT
    /// @param _dstEid Destination EID
    /// @param _recipient bytes32 representation of recipient
    /// @param _amountLD Amount of OFT to send
    /// @param _data Encoded data to pass
    function sendOFT(
        address _oft,
        uint32 _dstEid,
        bytes32 _recipient,
        uint256 _amountLD,
        uint128 _dstGas,
        bytes memory _data
    ) public payable virtual {
        HopV2Storage storage $ = _getHopV2Storage();
        if ($.paused) revert HopPaused();
        if (!$.approvedOft[_oft]) revert InvalidOFT();

        // generate hop message
        HopMessage memory hopMessage = HopMessage({
            srcEid: $.localEid,
            dstEid: _dstEid,
            dstGas: _dstGas,
            sender: bytes32(uint256(uint160(msg.sender))),
            recipient: _recipient,
            data: _data
        });

        // Transfer the OFT token to the hop. Clean off dust for the sender that would otherwise be lost through LZ.
        _amountLD = removeDust(_oft, _amountLD);
        if (_amountLD > 0) SafeERC20.safeTransferFrom(IERC20(IOFT(_oft).token()), msg.sender, address(this), _amountLD);

        uint256 sendFee;
        if (_dstEid == $.localEid) {
            // Sending from src => src - no LZ send needed (sendFee remains 0)
            _sendLocal({ _oft: _oft, _amount: _amountLD, _hopMessage: hopMessage });
        } else {
            sendFee = _sendToDestination({
                _oft: _oft,
                _amountLD: _amountLD,
                _isTrustedHopMessage: true,
                _hopMessage: hopMessage
            });
        }

        // Validate the msg.value
        _handleMsgValue(sendFee);

        emit SendOFT(_oft, msg.sender, _dstEid, _recipient, _amountLD);
    }

    // Helper functions

    /// @notice Get the gas cost estimate of going from this chain to a destination chain
    /// @param _oft Address of OFT to send
    /// @param _dstEid Destination EID
    /// @param _recipient Address of recipient upon destination
    /// @param _amount Amount to transfer (dust will be removed)
    /// @param _dstGas Amount of gas to forward to the destination
    /// @param _data Encoded data to pass to the destination
    function quote(
        address _oft,
        uint32 _dstEid,
        bytes32 _recipient,
        uint256 _amount,
        uint128 _dstGas,
        bytes memory _data
    ) public view returns (uint256) {
        uint32 localEid_ = localEid();
        if (_dstEid == localEid_) return 0;

        // generate hop message
        HopMessage memory hopMessage = HopMessage({
            srcEid: localEid_,
            dstEid: _dstEid,
            dstGas: _dstGas,
            sender: bytes32(uint256(uint160(msg.sender))),
            recipient: _recipient,
            data: _data
        });

        SendParam memory sendParam = _generateSendParam({
            _amountLD: removeDust(_oft, _amount),
            _hopMessage: hopMessage
        });
        MessagingFee memory fee = IOFT(_oft).quoteSend(sendParam, false);
        uint256 hopFeeOnFraxtal = (_dstEid == FRAXTAL_EID || localEid_ == FRAXTAL_EID)
            ? 0
            : quoteHop(_dstEid, _dstGas, _data);
        return fee.nativeFee + hopFeeOnFraxtal;
    }

    /// @notice Get a gas cost estimate of executing a hop on Fraxtal to a destination chain
    /// @param _dstEid Destination EID
    /// @param _dstGas Amount of gas to forward to the destination
    /// @param _data Encoded data to pass to the destination
    function quoteHop(
        uint32 _dstEid,
        uint128 _dstGas,
        bytes memory _data
    ) public view override returns (uint256 finalFee) {
        HopV2Storage storage $ = _getHopV2Storage();

        uint256 dvnFee = ILayerZeroDVN($.DVN).getFee(_dstEid, 5, address(this), "");
        bytes memory options = $.executorOptions[_dstEid];
        if (options.length == 0) options = hex"01001101000000000000000000000000000493E0";
        if (_data.length != 0) {
            if (_dstGas < 400_000) _dstGas = 400_000;
            options = abi.encodePacked(options, hex"010013030000", _dstGas);
        }
        uint256 executorFee = IExecutor($.EXECUTOR).getFee(_dstEid, address(this), 36, options);
        uint256 totalFee = dvnFee * $.numDVNs + executorFee;
        uint256 treasuryFee = ILayerZeroTreasury($.TREASURY).getFee(address(this), _dstEid, totalFee, false);
        finalFee = totalFee + treasuryFee;
        finalFee = (finalFee * (10_000 + $.hopFee)) / 10_000;
    }

    /// @notice Remove the dust amount of OFT so that the message passed is the message received
    function removeDust(address oft, uint256 _amountLD) public view returns (uint256) {
        uint256 decimalConversionRate = IOFT2(oft).decimalConversionRate();
        return (_amountLD / decimalConversionRate) * decimalConversionRate;
    }

    // internal methods

    /// @dev Send the OFT and execute hopCompose on this chain (locally)
    function _sendLocal(address _oft, uint256 _amount, HopMessage memory _hopMessage) internal {
        // transfer the OFT to the recipient
        address recipient = address(uint160(uint256(_hopMessage.recipient)));
        if (_amount > 0) SafeERC20.safeTransfer(IERC20(IOFT(_oft).token()), recipient, _amount);

        // call the compose if there is data
        if (_hopMessage.data.length != 0) {
            IHopComposer(recipient).hopCompose({
                _srcEid: _hopMessage.srcEid,
                _sender: _hopMessage.sender,
                _oft: _oft,
                _amount: _amount,
                _data: _hopMessage.data
            });
        }
    }

    /// @dev Send the OFT to execute hopCompose on a destination chain
    function _sendToDestination(
        address _oft,
        uint256 _amountLD,
        bool _isTrustedHopMessage,
        HopMessage memory _hopMessage
    ) internal returns (uint256) {
        // generate sendParam
        SendParam memory sendParam = _generateSendParam({
            _amountLD: removeDust(_oft, _amountLD),
            _hopMessage: _hopMessage
        });

        MessagingFee memory fee;
        if (_isTrustedHopMessage) {
            // Executes in:
            // - sendOFT()
            // - Fraxtal lzCompose() when remote hop is sender
            fee = IOFT(_oft).quoteSend(sendParam, false);
        } else {
            // Executes when:
            // - Fraxtal lzCompose() from unregistered sender
            fee.nativeFee = msg.value;
        }

        // Send the OFT to the recipient
        if (_amountLD > 0) SafeERC20.forceApprove(IERC20(IOFT(_oft).token()), _oft, _amountLD);
        IOFT(_oft).send{ value: fee.nativeFee }(sendParam, fee, address(this));

        // Return the total amount charged in the send.  On fraxtal, this is only the native fee as there is no hop needed.
        uint256 hopFeeOnFraxtal = (_hopMessage.dstEid == FRAXTAL_EID || localEid() == FRAXTAL_EID)
            ? 0
            : quoteHop(_hopMessage.dstEid, _hopMessage.dstGas, _hopMessage.data);
        return fee.nativeFee + hopFeeOnFraxtal;
    }

    /// @dev Check the incoming message integrity
    function _validateComposeMessage(
        address _oft,
        bytes calldata _message
    ) internal returns (bool isTrustedHopMessage, bool isDuplicateMessage) {
        HopV2Storage storage $ = _getHopV2Storage();

        if (msg.sender != $.endpoint) revert NotEndpoint();
        if ($.paused) revert HopPaused();
        if (!$.approvedOft[_oft]) revert InvalidOFT();

        // Decode message
        uint32 srcEid = OFTComposeMsgCodec.srcEid(_message);
        bytes32 composeFrom = OFTComposeMsgCodec.composeFrom(_message);
        uint64 nonce = OFTComposeMsgCodec.nonce(_message);

        // Encode the unique message data to prevent replays
        bytes32 messageHash = keccak256(abi.encode(_oft, srcEid, nonce, composeFrom));

        // True if the composer is a registered RemoteHop, otherwise false
        isTrustedHopMessage = $.remoteHop[srcEid] == composeFrom;

        if ($.messageProcessed[messageHash]) {
            // The message is a duplicate, we end execution early
            return (isTrustedHopMessage, true);
        } else {
            // We process the message and continue execution
            $.messageProcessed[messageHash] = true;
            emit MessageHash(_oft, srcEid, nonce, composeFrom);
            return (isTrustedHopMessage, false);
        }
    }

    /// @dev Check the msg value of the tx
    function _handleMsgValue(uint256 _sendFee) internal {
        if (msg.value < _sendFee) {
            revert InsufficientFee();
        } else if (msg.value > _sendFee) {
            // refund redundant fee to sender
            (bool success, ) = payable(msg.sender).call{ value: msg.value - _sendFee }("");
            if (!success) revert RefundFailed();
        }
    }

    // Admin functions
    function pauseOn() external onlyAuthorized {
        HopV2Storage storage $ = _getHopV2Storage();
        $.paused = true;
    }

    function pauseOff() external onlyRole(DEFAULT_ADMIN_ROLE) {
        HopV2Storage storage $ = _getHopV2Storage();
        $.paused = false;
    }

    function setApprovedOft(address _oft, bool _isApproved) external onlyRole(DEFAULT_ADMIN_ROLE) {
        HopV2Storage storage $ = _getHopV2Storage();
        $.approvedOft[_oft] = _isApproved;
    }

    function setRemoteHop(uint32 _eid, address _remoteHop) external onlyRole(DEFAULT_ADMIN_ROLE) {
        _setRemoteHop(_eid, bytes32(uint256(uint160(_remoteHop))));
    }

    function setRemoteHop(uint32 _eid, bytes32 _remoteHop) external onlyRole(DEFAULT_ADMIN_ROLE) {
        _setRemoteHop(_eid, _remoteHop);
    }

    function _setRemoteHop(uint32 _eid, bytes32 _remoteHop) internal {
        HopV2Storage storage $ = _getHopV2Storage();
        $.remoteHop[_eid] = _remoteHop;
    }

    function setNumDVNs(uint32 _numDVNs) public onlyRole(DEFAULT_ADMIN_ROLE) {
        HopV2Storage storage $ = _getHopV2Storage();
        $.numDVNs = _numDVNs;
    }

    function setHopFee(uint256 _hopFee) public onlyRole(DEFAULT_ADMIN_ROLE) {
        HopV2Storage storage $ = _getHopV2Storage();
        $.hopFee = _hopFee;
    }

    function setExecutorOptions(uint32 eid, bytes memory _options) public onlyRole(DEFAULT_ADMIN_ROLE) {
        HopV2Storage storage $ = _getHopV2Storage();
        $.executorOptions[eid] = _options;
    }

    function recover(address _target, uint256 _value, bytes memory _data) external onlyRole(DEFAULT_ADMIN_ROLE) {
        (bool success, ) = _target.call{ value: _value }(_data);
        require(success);
    }

    function setMessageProcessed(
        address _oft,
        uint32 _srcEid,
        uint64 _nonce,
        bytes32 _composeFrom
    ) external onlyRole(DEFAULT_ADMIN_ROLE) {
        HopV2Storage storage $ = _getHopV2Storage();

        bytes32 messageHash = keccak256(abi.encode(_oft, _srcEid, _nonce, _composeFrom));
        $.messageProcessed[messageHash] = true;
        emit MessageHash(_oft, _srcEid, _nonce, _composeFrom);
    }

    // Storage views
    function localEid() public view returns (uint32) {
        HopV2Storage storage $ = _getHopV2Storage();
        return $.localEid;
    }

    function endpoint() external view returns (address) {
        HopV2Storage storage $ = _getHopV2Storage();
        return $.endpoint;
    }

    function paused() public view returns (bool) {
        HopV2Storage storage $ = _getHopV2Storage();
        return $.paused;
    }

    function approvedOft(address oft) external view returns (bool isApproved) {
        HopV2Storage storage $ = _getHopV2Storage();
        return $.approvedOft[oft];
    }

    function messageProcessed(bytes32 message) external view returns (bool isProcessed) {
        HopV2Storage storage $ = _getHopV2Storage();
        return $.messageProcessed[message];
    }

    function remoteHop(uint32 eid) public view returns (bytes32 hop) {
        HopV2Storage storage $ = _getHopV2Storage();
        return $.remoteHop[eid];
    }

    function numDVNs() external view returns (uint32) {
        HopV2Storage storage $ = _getHopV2Storage();
        return $.numDVNs;
    }

    function hopFee() external view returns (uint256) {
        HopV2Storage storage $ = _getHopV2Storage();
        return $.hopFee;
    }

    function executorOptions(uint32 eid) external view returns (bytes memory) {
        HopV2Storage storage $ = _getHopV2Storage();
        return $.executorOptions[eid];
    }

    function EXECUTOR() external view returns (address) {
        HopV2Storage storage $ = _getHopV2Storage();
        return $.EXECUTOR;
    }

    function DVN() external view returns (address) {
        HopV2Storage storage $ = _getHopV2Storage();
        return $.DVN;
    }

    function TREASURY() external view returns (address) {
        HopV2Storage storage $ = _getHopV2Storage();
        return $.TREASURY;
    }

    // virtual functions to override
    function _generateSendParam(
        uint256 _amountLD,
        HopMessage memory _hopMessage
    ) internal view virtual returns (SendParam memory) {}
}

File 7 of 48 : ILayerZeroComposer.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.8.0;

/**
 * @title ILayerZeroComposer
 */
interface ILayerZeroComposer {
    /**
     * @notice Composes a LayerZero message from an OApp.
     * @dev To ensure non-reentrancy, implementers of this interface MUST assert msg.sender is the corresponding EndpointV2 contract (i.e., onlyEndpointV2).
     * @param _from The address initiating the composition, typically the OApp where the lzReceive was called.
     * @param _guid The unique identifier for the corresponding LayerZero src/dst tx.
     * @param _message The composed message payload in bytes. NOT necessarily the same payload passed via lzReceive.
     * @param _executor The address of the executor for the composed message.
     * @param _extraData Additional arbitrary data in bytes passed by the entity who executes the lzCompose.
     */
    function lzCompose(
        address _from,
        bytes32 _guid,
        bytes calldata _message,
        address _executor,
        bytes calldata _extraData
    ) external payable;
}

// SPDX-License-Identifier: Unlicense
/*
 * @title Solidity Bytes Arrays Utils
 * @author Gonçalo Sá <[email protected]>
 *
 * @dev Bytes tightly packed arrays utility library for ethereum contracts written in Solidity.
 *      The library lets you concatenate, slice and type cast bytes arrays both in memory and storage.
 */
pragma solidity >=0.8.0 <0.9.0;


library BytesLib {
    function concat(
        bytes memory _preBytes,
        bytes memory _postBytes
    )
        internal
        pure
        returns (bytes memory)
    {
        bytes memory tempBytes;

        assembly {
            // Get a location of some free memory and store it in tempBytes as
            // Solidity does for memory variables.
            tempBytes := mload(0x40)

            // Store the length of the first bytes array at the beginning of
            // the memory for tempBytes.
            let length := mload(_preBytes)
            mstore(tempBytes, length)

            // Maintain a memory counter for the current write location in the
            // temp bytes array by adding the 32 bytes for the array length to
            // the starting location.
            let mc := add(tempBytes, 0x20)
            // Stop copying when the memory counter reaches the length of the
            // first bytes array.
            let end := add(mc, length)

            for {
                // Initialize a copy counter to the start of the _preBytes data,
                // 32 bytes into its memory.
                let cc := add(_preBytes, 0x20)
            } lt(mc, end) {
                // Increase both counters by 32 bytes each iteration.
                mc := add(mc, 0x20)
                cc := add(cc, 0x20)
            } {
                // Write the _preBytes data into the tempBytes memory 32 bytes
                // at a time.
                mstore(mc, mload(cc))
            }

            // Add the length of _postBytes to the current length of tempBytes
            // and store it as the new length in the first 32 bytes of the
            // tempBytes memory.
            length := mload(_postBytes)
            mstore(tempBytes, add(length, mload(tempBytes)))

            // Move the memory counter back from a multiple of 0x20 to the
            // actual end of the _preBytes data.
            mc := end
            // Stop copying when the memory counter reaches the new combined
            // length of the arrays.
            end := add(mc, length)

            for {
                let cc := add(_postBytes, 0x20)
            } lt(mc, end) {
                mc := add(mc, 0x20)
                cc := add(cc, 0x20)
            } {
                mstore(mc, mload(cc))
            }

            // Update the free-memory pointer by padding our last write location
            // to 32 bytes: add 31 bytes to the end of tempBytes to move to the
            // next 32 byte block, then round down to the nearest multiple of
            // 32. If the sum of the length of the two arrays is zero then add
            // one before rounding down to leave a blank 32 bytes (the length block with 0).
            mstore(0x40, and(
              add(add(end, iszero(add(length, mload(_preBytes)))), 31),
              not(31) // Round down to the nearest 32 bytes.
            ))
        }

        return tempBytes;
    }

    function concatStorage(bytes storage _preBytes, bytes memory _postBytes) internal {
        assembly {
            // Read the first 32 bytes of _preBytes storage, which is the length
            // of the array. (We don't need to use the offset into the slot
            // because arrays use the entire slot.)
            let fslot := sload(_preBytes.slot)
            // Arrays of 31 bytes or less have an even value in their slot,
            // while longer arrays have an odd value. The actual length is
            // the slot divided by two for odd values, and the lowest order
            // byte divided by two for even values.
            // If the slot is even, bitwise and the slot with 255 and divide by
            // two to get the length. If the slot is odd, bitwise and the slot
            // with -1 and divide by two.
            let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
            let mlength := mload(_postBytes)
            let newlength := add(slength, mlength)
            // slength can contain both the length and contents of the array
            // if length < 32 bytes so let's prepare for that
            // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
            switch add(lt(slength, 32), lt(newlength, 32))
            case 2 {
                // Since the new array still fits in the slot, we just need to
                // update the contents of the slot.
                // uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length
                sstore(
                    _preBytes.slot,
                    // all the modifications to the slot are inside this
                    // next block
                    add(
                        // we can just add to the slot contents because the
                        // bytes we want to change are the LSBs
                        fslot,
                        add(
                            mul(
                                div(
                                    // load the bytes from memory
                                    mload(add(_postBytes, 0x20)),
                                    // zero all bytes to the right
                                    exp(0x100, sub(32, mlength))
                                ),
                                // and now shift left the number of bytes to
                                // leave space for the length in the slot
                                exp(0x100, sub(32, newlength))
                            ),
                            // increase length by the double of the memory
                            // bytes length
                            mul(mlength, 2)
                        )
                    )
                )
            }
            case 1 {
                // The stored value fits in the slot, but the combined value
                // will exceed it.
                // get the keccak hash to get the contents of the array
                mstore(0x0, _preBytes.slot)
                let sc := add(keccak256(0x0, 0x20), div(slength, 32))

                // save new length
                sstore(_preBytes.slot, add(mul(newlength, 2), 1))

                // The contents of the _postBytes array start 32 bytes into
                // the structure. Our first read should obtain the `submod`
                // bytes that can fit into the unused space in the last word
                // of the stored array. To get this, we read 32 bytes starting
                // from `submod`, so the data we read overlaps with the array
                // contents by `submod` bytes. Masking the lowest-order
                // `submod` bytes allows us to add that value directly to the
                // stored value.

                let submod := sub(32, slength)
                let mc := add(_postBytes, submod)
                let end := add(_postBytes, mlength)
                let mask := sub(exp(0x100, submod), 1)

                sstore(
                    sc,
                    add(
                        and(
                            fslot,
                            0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00
                        ),
                        and(mload(mc), mask)
                    )
                )

                for {
                    mc := add(mc, 0x20)
                    sc := add(sc, 1)
                } lt(mc, end) {
                    sc := add(sc, 1)
                    mc := add(mc, 0x20)
                } {
                    sstore(sc, mload(mc))
                }

                mask := exp(0x100, sub(mc, end))

                sstore(sc, mul(div(mload(mc), mask), mask))
            }
            default {
                // get the keccak hash to get the contents of the array
                mstore(0x0, _preBytes.slot)
                // Start copying to the last used word of the stored array.
                let sc := add(keccak256(0x0, 0x20), div(slength, 32))

                // save new length
                sstore(_preBytes.slot, add(mul(newlength, 2), 1))

                // Copy over the first `submod` bytes of the new data as in
                // case 1 above.
                let slengthmod := mod(slength, 32)
                let mlengthmod := mod(mlength, 32)
                let submod := sub(32, slengthmod)
                let mc := add(_postBytes, submod)
                let end := add(_postBytes, mlength)
                let mask := sub(exp(0x100, submod), 1)

                sstore(sc, add(sload(sc), and(mload(mc), mask)))

                for {
                    sc := add(sc, 1)
                    mc := add(mc, 0x20)
                } lt(mc, end) {
                    sc := add(sc, 1)
                    mc := add(mc, 0x20)
                } {
                    sstore(sc, mload(mc))
                }

                mask := exp(0x100, sub(mc, end))

                sstore(sc, mul(div(mload(mc), mask), mask))
            }
        }
    }

    function slice(
        bytes memory _bytes,
        uint256 _start,
        uint256 _length
    )
        internal
        pure
        returns (bytes memory)
    {
        // We're using the unchecked block below because otherwise execution ends 
        // with the native overflow error code.
        unchecked {
            require(_length + 31 >= _length, "slice_overflow");
        }
        require(_bytes.length >= _start + _length, "slice_outOfBounds");

        bytes memory tempBytes;

        assembly {
            switch iszero(_length)
            case 0 {
                // Get a location of some free memory and store it in tempBytes as
                // Solidity does for memory variables.
                tempBytes := mload(0x40)

                // The first word of the slice result is potentially a partial
                // word read from the original array. To read it, we calculate
                // the length of that partial word and start copying that many
                // bytes into the array. The first word we copy will start with
                // data we don't care about, but the last `lengthmod` bytes will
                // land at the beginning of the contents of the new array. When
                // we're done copying, we overwrite the full first word with
                // the actual length of the slice.
                let lengthmod := and(_length, 31)

                // The multiplication in the next line is necessary
                // because when slicing multiples of 32 bytes (lengthmod == 0)
                // the following copy loop was copying the origin's length
                // and then ending prematurely not copying everything it should.
                let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                let end := add(mc, _length)

                for {
                    // The multiplication in the next line has the same exact purpose
                    // as the one above.
                    let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                } lt(mc, end) {
                    mc := add(mc, 0x20)
                    cc := add(cc, 0x20)
                } {
                    mstore(mc, mload(cc))
                }

                mstore(tempBytes, _length)

                //update free-memory pointer
                //allocating the array padded to 32 bytes like the compiler does now
                mstore(0x40, and(add(mc, 31), not(31)))
            }
            //if we want a zero-length slice let's just return a zero-length array
            default {
                tempBytes := mload(0x40)
                //zero out the 32 bytes slice we are about to return
                //we need to do it because Solidity does not garbage collect
                mstore(tempBytes, 0)

                mstore(0x40, add(tempBytes, 0x20))
            }
        }

        return tempBytes;
    }

    function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) {
        require(_bytes.length >= _start + 20, "toAddress_outOfBounds");
        address tempAddress;

        assembly {
            tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000)
        }

        return tempAddress;
    }

    function toUint8(bytes memory _bytes, uint256 _start) internal pure returns (uint8) {
        require(_bytes.length >= _start + 1 , "toUint8_outOfBounds");
        uint8 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x1), _start))
        }

        return tempUint;
    }

    function toUint16(bytes memory _bytes, uint256 _start) internal pure returns (uint16) {
        require(_bytes.length >= _start + 2, "toUint16_outOfBounds");
        uint16 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x2), _start))
        }

        return tempUint;
    }

    function toUint32(bytes memory _bytes, uint256 _start) internal pure returns (uint32) {
        require(_bytes.length >= _start + 4, "toUint32_outOfBounds");
        uint32 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x4), _start))
        }

        return tempUint;
    }

    function toUint64(bytes memory _bytes, uint256 _start) internal pure returns (uint64) {
        require(_bytes.length >= _start + 8, "toUint64_outOfBounds");
        uint64 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x8), _start))
        }

        return tempUint;
    }

    function toUint96(bytes memory _bytes, uint256 _start) internal pure returns (uint96) {
        require(_bytes.length >= _start + 12, "toUint96_outOfBounds");
        uint96 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0xc), _start))
        }

        return tempUint;
    }

    function toUint128(bytes memory _bytes, uint256 _start) internal pure returns (uint128) {
        require(_bytes.length >= _start + 16, "toUint128_outOfBounds");
        uint128 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x10), _start))
        }

        return tempUint;
    }

    function toUint256(bytes memory _bytes, uint256 _start) internal pure returns (uint256) {
        require(_bytes.length >= _start + 32, "toUint256_outOfBounds");
        uint256 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x20), _start))
        }

        return tempUint;
    }

    function toBytes32(bytes memory _bytes, uint256 _start) internal pure returns (bytes32) {
        require(_bytes.length >= _start + 32, "toBytes32_outOfBounds");
        bytes32 tempBytes32;

        assembly {
            tempBytes32 := mload(add(add(_bytes, 0x20), _start))
        }

        return tempBytes32;
    }

    function equal(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bool) {
        bool success = true;

        assembly {
            let length := mload(_preBytes)

            // if lengths don't match the arrays are not equal
            switch eq(length, mload(_postBytes))
            case 1 {
                // cb is a circuit breaker in the for loop since there's
                //  no said feature for inline assembly loops
                // cb = 1 - don't breaker
                // cb = 0 - break
                let cb := 1

                let mc := add(_preBytes, 0x20)
                let end := add(mc, length)

                for {
                    let cc := add(_postBytes, 0x20)
                // the next line is the loop condition:
                // while(uint256(mc < end) + cb == 2)
                } eq(add(lt(mc, end), cb), 2) {
                    mc := add(mc, 0x20)
                    cc := add(cc, 0x20)
                } {
                    // if any of these checks fails then arrays are not equal
                    if iszero(eq(mload(mc), mload(cc))) {
                        // unsuccess:
                        success := 0
                        cb := 0
                    }
                }
            }
            default {
                // unsuccess:
                success := 0
            }
        }

        return success;
    }

    function equalStorage(
        bytes storage _preBytes,
        bytes memory _postBytes
    )
        internal
        view
        returns (bool)
    {
        bool success = true;

        assembly {
            // we know _preBytes_offset is 0
            let fslot := sload(_preBytes.slot)
            // Decode the length of the stored array like in concatStorage().
            let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
            let mlength := mload(_postBytes)

            // if lengths don't match the arrays are not equal
            switch eq(slength, mlength)
            case 1 {
                // slength can contain both the length and contents of the array
                // if length < 32 bytes so let's prepare for that
                // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
                if iszero(iszero(slength)) {
                    switch lt(slength, 32)
                    case 1 {
                        // blank the last byte which is the length
                        fslot := mul(div(fslot, 0x100), 0x100)

                        if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) {
                            // unsuccess:
                            success := 0
                        }
                    }
                    default {
                        // cb is a circuit breaker in the for loop since there's
                        //  no said feature for inline assembly loops
                        // cb = 1 - don't breaker
                        // cb = 0 - break
                        let cb := 1

                        // get the keccak hash to get the contents of the array
                        mstore(0x0, _preBytes.slot)
                        let sc := keccak256(0x0, 0x20)

                        let mc := add(_postBytes, 0x20)
                        let end := add(mc, mlength)

                        // the next line is the loop condition:
                        // while(uint256(mc < end) + cb == 2)
                        for {} eq(add(lt(mc, end), cb), 2) {
                            sc := add(sc, 1)
                            mc := add(mc, 0x20)
                        } {
                            if iszero(eq(sload(sc), mload(mc))) {
                                // unsuccess:
                                success := 0
                                cb := 0
                            }
                        }
                    }
                }
            }
            default {
                // unsuccess:
                success := 0
            }
        }

        return success;
    }
}

File 9 of 48 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

// SPDX-License-Identifier: LZBL-1.2

pragma solidity ^0.8.20;

import { CalldataBytesLib } from "../../libs/CalldataBytesLib.sol";

library ExecutorOptions {
    using CalldataBytesLib for bytes;

    uint8 internal constant WORKER_ID = 1;

    uint8 internal constant OPTION_TYPE_LZRECEIVE = 1;
    uint8 internal constant OPTION_TYPE_NATIVE_DROP = 2;
    uint8 internal constant OPTION_TYPE_LZCOMPOSE = 3;
    uint8 internal constant OPTION_TYPE_ORDERED_EXECUTION = 4;

    error Executor_InvalidLzReceiveOption();
    error Executor_InvalidNativeDropOption();
    error Executor_InvalidLzComposeOption();

    /// @dev decode the next executor option from the options starting from the specified cursor
    /// @param _options [executor_id][executor_option][executor_id][executor_option]...
    ///        executor_option = [option_size][option_type][option]
    ///        option_size = len(option_type) + len(option)
    ///        executor_id: uint8, option_size: uint16, option_type: uint8, option: bytes
    /// @param _cursor the cursor to start decoding from
    /// @return optionType the type of the option
    /// @return option the option of the executor
    /// @return cursor the cursor to start decoding the next executor option
    function nextExecutorOption(
        bytes calldata _options,
        uint256 _cursor
    ) internal pure returns (uint8 optionType, bytes calldata option, uint256 cursor) {
        unchecked {
            // skip worker id
            cursor = _cursor + 1;

            // read option size
            uint16 size = _options.toU16(cursor);
            cursor += 2;

            // read option type
            optionType = _options.toU8(cursor);

            // startCursor and endCursor are used to slice the option from _options
            uint256 startCursor = cursor + 1; // skip option type
            uint256 endCursor = cursor + size;
            option = _options[startCursor:endCursor];
            cursor += size;
        }
    }

    function decodeLzReceiveOption(bytes calldata _option) internal pure returns (uint128 gas, uint128 value) {
        if (_option.length != 16 && _option.length != 32) revert Executor_InvalidLzReceiveOption();
        gas = _option.toU128(0);
        value = _option.length == 32 ? _option.toU128(16) : 0;
    }

    function decodeNativeDropOption(bytes calldata _option) internal pure returns (uint128 amount, bytes32 receiver) {
        if (_option.length != 48) revert Executor_InvalidNativeDropOption();
        amount = _option.toU128(0);
        receiver = _option.toB32(16);
    }

    function decodeLzComposeOption(
        bytes calldata _option
    ) internal pure returns (uint16 index, uint128 gas, uint128 value) {
        if (_option.length != 18 && _option.length != 34) revert Executor_InvalidLzComposeOption();
        index = _option.toU16(0);
        gas = _option.toU128(2);
        value = _option.length == 34 ? _option.toU128(18) : 0;
    }

    function encodeLzReceiveOption(uint128 _gas, uint128 _value) internal pure returns (bytes memory) {
        return _value == 0 ? abi.encodePacked(_gas) : abi.encodePacked(_gas, _value);
    }

    function encodeNativeDropOption(uint128 _amount, bytes32 _receiver) internal pure returns (bytes memory) {
        return abi.encodePacked(_amount, _receiver);
    }

    function encodeLzComposeOption(uint16 _index, uint128 _gas, uint128 _value) internal pure returns (bytes memory) {
        return _value == 0 ? abi.encodePacked(_index, _gas) : abi.encodePacked(_index, _gas, _value);
    }
}

// SPDX-License-Identifier: LZBL-1.2

pragma solidity ^0.8.20;

import { BytesLib } from "solidity-bytes-utils/contracts/BytesLib.sol";

import { BitMap256 } from "@layerzerolabs/lz-evm-protocol-v2/contracts/messagelib/libs/BitMaps.sol";
import { CalldataBytesLib } from "@layerzerolabs/lz-evm-protocol-v2/contracts/libs/CalldataBytesLib.sol";

library DVNOptions {
    using CalldataBytesLib for bytes;
    using BytesLib for bytes;

    uint8 internal constant WORKER_ID = 2;
    uint8 internal constant OPTION_TYPE_PRECRIME = 1;

    error DVN_InvalidDVNIdx();
    error DVN_InvalidDVNOptions(uint256 cursor);

    /// @dev group dvn options by its idx
    /// @param _options [dvn_id][dvn_option][dvn_id][dvn_option]...
    ///        dvn_option = [option_size][dvn_idx][option_type][option]
    ///        option_size = len(dvn_idx) + len(option_type) + len(option)
    ///        dvn_id: uint8, dvn_idx: uint8, option_size: uint16, option_type: uint8, option: bytes
    /// @return dvnOptions the grouped options, still share the same format of _options
    /// @return dvnIndices the dvn indices
    function groupDVNOptionsByIdx(
        bytes memory _options
    ) internal pure returns (bytes[] memory dvnOptions, uint8[] memory dvnIndices) {
        if (_options.length == 0) return (dvnOptions, dvnIndices);

        uint8 numDVNs = getNumDVNs(_options);

        // if there is only 1 dvn, we can just return the whole options
        if (numDVNs == 1) {
            dvnOptions = new bytes[](1);
            dvnOptions[0] = _options;

            dvnIndices = new uint8[](1);
            dvnIndices[0] = _options.toUint8(3); // dvn idx
            return (dvnOptions, dvnIndices);
        }

        // otherwise, we need to group the options by dvn_idx
        dvnIndices = new uint8[](numDVNs);
        dvnOptions = new bytes[](numDVNs);
        unchecked {
            uint256 cursor = 0;
            uint256 start = 0;
            uint8 lastDVNIdx = 255; // 255 is an invalid dvn_idx

            while (cursor < _options.length) {
                ++cursor; // skip worker_id

                // optionLength asserted in getNumDVNs (skip check)
                uint16 optionLength = _options.toUint16(cursor);
                cursor += 2;

                // dvnIdx asserted in getNumDVNs (skip check)
                uint8 dvnIdx = _options.toUint8(cursor);

                // dvnIdx must equal to the lastDVNIdx for the first option
                // so it is always skipped in the first option
                // this operation slices out options whenever the scan finds a different lastDVNIdx
                if (lastDVNIdx == 255) {
                    lastDVNIdx = dvnIdx;
                } else if (dvnIdx != lastDVNIdx) {
                    uint256 len = cursor - start - 3; // 3 is for worker_id and option_length
                    bytes memory opt = _options.slice(start, len);
                    _insertDVNOptions(dvnOptions, dvnIndices, lastDVNIdx, opt);

                    // reset the start and lastDVNIdx
                    start += len;
                    lastDVNIdx = dvnIdx;
                }

                cursor += optionLength;
            }

            // skip check the cursor here because the cursor is asserted in getNumDVNs
            // if we have reached the end of the options, we need to process the last dvn
            uint256 size = cursor - start;
            bytes memory op = _options.slice(start, size);
            _insertDVNOptions(dvnOptions, dvnIndices, lastDVNIdx, op);

            // revert dvnIndices to start from 0
            for (uint8 i = 0; i < numDVNs; ++i) {
                --dvnIndices[i];
            }
        }
    }

    function _insertDVNOptions(
        bytes[] memory _dvnOptions,
        uint8[] memory _dvnIndices,
        uint8 _dvnIdx,
        bytes memory _newOptions
    ) internal pure {
        // dvnIdx starts from 0 but default value of dvnIndices is 0,
        // so we tell if the slot is empty by adding 1 to dvnIdx
        if (_dvnIdx == 255) revert DVN_InvalidDVNIdx();
        uint8 dvnIdxAdj = _dvnIdx + 1;

        for (uint256 j = 0; j < _dvnIndices.length; ++j) {
            uint8 index = _dvnIndices[j];
            if (dvnIdxAdj == index) {
                _dvnOptions[j] = abi.encodePacked(_dvnOptions[j], _newOptions);
                break;
            } else if (index == 0) {
                // empty slot, that means it is the first time we see this dvn
                _dvnIndices[j] = dvnIdxAdj;
                _dvnOptions[j] = _newOptions;
                break;
            }
        }
    }

    /// @dev get the number of unique dvns
    /// @param _options the format is the same as groupDVNOptionsByIdx
    function getNumDVNs(bytes memory _options) internal pure returns (uint8 numDVNs) {
        uint256 cursor = 0;
        BitMap256 bitmap;

        // find number of unique dvn_idx
        unchecked {
            while (cursor < _options.length) {
                ++cursor; // skip worker_id

                uint16 optionLength = _options.toUint16(cursor);
                cursor += 2;
                if (optionLength < 2) revert DVN_InvalidDVNOptions(cursor); // at least 1 byte for dvn_idx and 1 byte for option_type

                uint8 dvnIdx = _options.toUint8(cursor);

                // if dvnIdx is not set, increment numDVNs
                // max num of dvns is 255, 255 is an invalid dvn_idx
                // The order of the dvnIdx is not required to be sequential, as enforcing the order may weaken
                // the composability of the options. e.g. if we refrain from enforcing the order, an OApp that has
                // already enforced certain options can append additional options to the end of the enforced
                // ones without restrictions.
                if (dvnIdx == 255) revert DVN_InvalidDVNIdx();
                if (!bitmap.get(dvnIdx)) {
                    ++numDVNs;
                    bitmap = bitmap.set(dvnIdx);
                }

                cursor += optionLength;
            }
        }
        if (cursor != _options.length) revert DVN_InvalidDVNOptions(cursor);
    }

    /// @dev decode the next dvn option from _options starting from the specified cursor
    /// @param _options the format is the same as groupDVNOptionsByIdx
    /// @param _cursor the cursor to start decoding
    /// @return optionType the type of the option
    /// @return option the option
    /// @return cursor the cursor to start decoding the next option
    function nextDVNOption(
        bytes calldata _options,
        uint256 _cursor
    ) internal pure returns (uint8 optionType, bytes calldata option, uint256 cursor) {
        unchecked {
            // skip worker id
            cursor = _cursor + 1;

            // read option size
            uint16 size = _options.toU16(cursor);
            cursor += 2;

            // read option type
            optionType = _options.toU8(cursor + 1); // skip dvn_idx

            // startCursor and endCursor are used to slice the option from _options
            uint256 startCursor = cursor + 2; // skip option type and dvn_idx
            uint256 endCursor = cursor + size;
            option = _options[startCursor:endCursor];
            cursor += size;
        }
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

import { SafeERC20, IERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { MessagingParams, MessagingFee, MessagingReceipt } from "@layerzerolabs/lz-evm-protocol-v2/contracts/interfaces/ILayerZeroEndpointV2.sol";
import { OAppCoreUpgradeable } from "./OAppCoreUpgradeable.sol";

/**
 * @title OAppSender
 * @dev Abstract contract implementing the OAppSender functionality for sending messages to a LayerZero endpoint.
 */
abstract contract OAppSenderUpgradeable is OAppCoreUpgradeable {
    using SafeERC20 for IERC20;

    // Custom error messages
    error NotEnoughNative(uint256 msgValue);
    error LzTokenUnavailable();

    // @dev The version of the OAppSender implementation.
    // @dev Version is bumped when changes are made to this contract.
    uint64 internal constant SENDER_VERSION = 1;

    /**
     * @dev Ownable is not initialized here on purpose. It should be initialized in the child contract to
     * accommodate the different version of Ownable.
     */
    function __OAppSender_init() internal onlyInitializing {}

    function __OAppSender_init_unchained() internal onlyInitializing {}

    /**
     * @notice Retrieves the OApp version information.
     * @return senderVersion The version of the OAppSender.sol contract.
     * @return receiverVersion The version of the OAppReceiver.sol contract.
     *
     * @dev Providing 0 as the default for OAppReceiver version. Indicates that the OAppReceiver is not implemented.
     * ie. this is a SEND only OApp.
     * @dev If the OApp uses both OAppSender and OAppReceiver, then this needs to be override returning the correct versions
     */
    function oAppVersion() public view virtual returns (uint64 senderVersion, uint64 receiverVersion) {
        return (SENDER_VERSION, 0);
    }

    /**
     * @dev Internal function to interact with the LayerZero EndpointV2.quote() for fee calculation.
     * @param _dstEid The destination endpoint ID.
     * @param _message The message payload.
     * @param _options Additional options for the message.
     * @param _payInLzToken Flag indicating whether to pay the fee in LZ tokens.
     * @return fee The calculated MessagingFee for the message.
     *      - nativeFee: The native fee for the message.
     *      - lzTokenFee: The LZ token fee for the message.
     */
    function _quote(
        uint32 _dstEid,
        bytes memory _message,
        bytes memory _options,
        bool _payInLzToken
    ) internal view virtual returns (MessagingFee memory fee) {
        return
            endpoint.quote(
                MessagingParams(_dstEid, _getPeerOrRevert(_dstEid), _message, _options, _payInLzToken),
                address(this)
            );
    }

    /**
     * @dev Internal function to interact with the LayerZero EndpointV2.send() for sending a message.
     * @param _dstEid The destination endpoint ID.
     * @param _message The message payload.
     * @param _options Additional options for the message.
     * @param _fee The calculated LayerZero fee for the message.
     *      - nativeFee: The native fee.
     *      - lzTokenFee: The lzToken fee.
     * @param _refundAddress The address to receive any excess fee values sent to the endpoint.
     * @return receipt The receipt for the sent message.
     *      - guid: The unique identifier for the sent message.
     *      - nonce: The nonce of the sent message.
     *      - fee: The LayerZero fee incurred for the message.
     */
    function _lzSend(
        uint32 _dstEid,
        bytes memory _message,
        bytes memory _options,
        MessagingFee memory _fee,
        address _refundAddress
    ) internal virtual returns (MessagingReceipt memory receipt) {
        // @dev Push corresponding fees to the endpoint, any excess is sent back to the _refundAddress from the endpoint.
        uint256 messageValue = _payNative(_fee.nativeFee);
        if (_fee.lzTokenFee > 0) _payLzToken(_fee.lzTokenFee);

        return
            endpoint.send{ value: messageValue }(
            // solhint-disable-next-line check-send-result
                MessagingParams(_dstEid, _getPeerOrRevert(_dstEid), _message, _options, _fee.lzTokenFee > 0),
                _refundAddress
            );
    }

    /**
     * @dev Internal function to pay the native fee associated with the message.
     * @param _nativeFee The native fee to be paid.
     * @return nativeFee The amount of native currency paid.
     *
     * @dev If the OApp needs to initiate MULTIPLE LayerZero messages in a single transaction,
     * this will need to be overridden because msg.value would contain multiple lzFees.
     * @dev Should be overridden in the event the LayerZero endpoint requires a different native currency.
     * @dev Some EVMs use an ERC20 as a method for paying transactions/gasFees.
     * @dev The endpoint is EITHER/OR, ie. it will NOT support both types of native payment at a time.
     */
    function _payNative(uint256 _nativeFee) internal virtual returns (uint256 nativeFee) {
        if (msg.value != _nativeFee) revert NotEnoughNative(msg.value);
        return _nativeFee;
    }

    /**
     * @dev Internal function to pay the LZ token fee associated with the message.
     * @param _lzTokenFee The LZ token fee to be paid.
     *
     * @dev If the caller is trying to pay in the specified lzToken, then the lzTokenFee is passed to the endpoint.
     * @dev Any excess sent, is passed back to the specified _refundAddress in the _lzSend().
     */
    function _payLzToken(uint256 _lzTokenFee) internal virtual {
        // @dev Cannot cache the token because it is not immutable in the endpoint.
        address lzToken = endpoint.lzToken();
        if (lzToken == address(0)) revert LzTokenUnavailable();

        // Pay LZ token fee by sending tokens to the endpoint.
        IERC20(lzToken).safeTransferFrom(msg.sender, address(endpoint), _lzTokenFee);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (access/extensions/AccessControlEnumerable.sol)

pragma solidity ^0.8.20;

import {IAccessControlEnumerable} from "@openzeppelin/contracts/access/extensions/IAccessControlEnumerable.sol";
import {AccessControlUpgradeable} from "../AccessControlUpgradeable.sol";
import {EnumerableSet} from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
import {IERC165} from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";

/**
 * @dev Extension of {AccessControl} that allows enumerating the members of each role.
 */
abstract contract AccessControlEnumerableUpgradeable is Initializable, IAccessControlEnumerable, AccessControlUpgradeable {
    using EnumerableSet for EnumerableSet.AddressSet;

    /// @custom:storage-location erc7201:openzeppelin.storage.AccessControlEnumerable
    struct AccessControlEnumerableStorage {
        mapping(bytes32 role => EnumerableSet.AddressSet) _roleMembers;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.AccessControlEnumerable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant AccessControlEnumerableStorageLocation = 0xc1f6fe24621ce81ec5827caf0253cadb74709b061630e6b55e82371705932000;

    function _getAccessControlEnumerableStorage() private pure returns (AccessControlEnumerableStorage storage $) {
        assembly {
            $.slot := AccessControlEnumerableStorageLocation
        }
    }

    function __AccessControlEnumerable_init() internal onlyInitializing {
    }

    function __AccessControlEnumerable_init_unchained() internal onlyInitializing {
    }
    /// @inheritdoc IERC165
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControlEnumerable).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns one of the accounts that have `role`. `index` must be a
     * value between 0 and {getRoleMemberCount}, non-inclusive.
     *
     * Role bearers are not sorted in any particular way, and their ordering may
     * change at any point.
     *
     * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
     * you perform all queries on the same block. See the following
     * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
     * for more information.
     */
    function getRoleMember(bytes32 role, uint256 index) public view virtual returns (address) {
        AccessControlEnumerableStorage storage $ = _getAccessControlEnumerableStorage();
        return $._roleMembers[role].at(index);
    }

    /**
     * @dev Returns the number of accounts that have `role`. Can be used
     * together with {getRoleMember} to enumerate all bearers of a role.
     */
    function getRoleMemberCount(bytes32 role) public view virtual returns (uint256) {
        AccessControlEnumerableStorage storage $ = _getAccessControlEnumerableStorage();
        return $._roleMembers[role].length();
    }

    /**
     * @dev Return all accounts that have `role`
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function getRoleMembers(bytes32 role) public view virtual returns (address[] memory) {
        AccessControlEnumerableStorage storage $ = _getAccessControlEnumerableStorage();
        return $._roleMembers[role].values();
    }

    /**
     * @dev Overload {AccessControl-_grantRole} to track enumerable memberships
     */
    function _grantRole(bytes32 role, address account) internal virtual override returns (bool) {
        AccessControlEnumerableStorage storage $ = _getAccessControlEnumerableStorage();
        bool granted = super._grantRole(role, account);
        if (granted) {
            $._roleMembers[role].add(account);
        }
        return granted;
    }

    /**
     * @dev Overload {AccessControl-_revokeRole} to track enumerable memberships
     */
    function _revokeRole(bytes32 role, address account) internal virtual override returns (bool) {
        AccessControlEnumerableStorage storage $ = _getAccessControlEnumerableStorage();
        bool revoked = super._revokeRole(role, account);
        if (revoked) {
            $._roleMembers[role].remove(account);
        }
        return revoked;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Variant of {safeTransfer} that returns a bool instead of reverting if the operation is not successful.
     */
    function trySafeTransfer(IERC20 token, address to, uint256 value) internal returns (bool) {
        return _callOptionalReturnBool(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Variant of {safeTransferFrom} that returns a bool instead of reverting if the operation is not successful.
     */
    function trySafeTransferFrom(IERC20 token, address from, address to, uint256 value) internal returns (bool) {
        return _callOptionalReturnBool(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     *
     * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
     * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
     * set here.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(
        IERC1363 token,
        address from,
        address to,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            // bubble errors
            if iszero(success) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }
        return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/IERC20.sol)

pragma solidity >=0.4.16;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

File 16 of 48 : ILayerZeroDVN.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface ILayerZeroDVN {
    // @notice query the dvn fee for relaying block information to the destination chain
    // @param _dstEid the destination endpoint identifier
    // @param _confirmations - block confirmation delay before relaying blocks
    // @param _sender - the source sending contract address
    // @param _options - options
    function getFee(
        uint32 _dstEid,
        uint64 _confirmations,
        address _sender,
        bytes calldata _options
    ) external view returns (uint256 fee);
}

File 17 of 48 : ILayerZeroTreasury.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface ILayerZeroTreasury {
    function getFee(
        address _sender,
        uint32 _dstEid,
        uint256 _totalNativeFee,
        bool _payInLzToken
    ) external view returns (uint256 fee);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface IExecutor {
    // @notice query the executor price for relaying the payload and its proof to the destination chain
    // @param _dstEid - the destination endpoint identifier
    // @param _sender - the source sending contract address. executors may apply price discrimination to senders
    // @param _calldataSize - dynamic data size of message + caller params
    // @param _options - optional parameters for extra service plugins, e.g. sending dust tokens at the destination chain
    function getFee(
        uint32 _dstEid,
        address _sender,
        uint256 _calldataSize,
        bytes calldata _options
    ) external view returns (uint256 price);
    function endpoint() external view returns (address);
    function localEidV2() external view returns (uint32);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface IOFT2 {
    function decimalConversionRate() external view returns (uint256);
}

pragma solidity ^0.8.0;

struct HopMessage {
    uint32 srcEid;
    uint32 dstEid;
    uint128 dstGas;
    bytes32 sender;
    bytes32 recipient;
    bytes data;
}

interface IHopV2 {
    // Mutable funcs

    function sendOFT(address _oft, uint32 _dstEid, bytes32 _recipient, uint256 _amountLD) external payable;

    function sendOFT(
        address _oft,
        uint32 _dstEid,
        bytes32 _recipient,
        uint256 _amountLD,
        uint128 _dstGas,
        bytes memory _data
    ) external payable;

    // views

    function quote(
        address _oft,
        uint32 _dstEid,
        bytes32 _recipient,
        uint256 _amountLD,
        uint128 _dstGas,
        bytes memory _data
    ) external view returns (uint256 fee);

    function quoteHop(uint32 _dstEid, uint128 _dstGas, bytes memory _data) external view returns (uint256 fee);

    // Admin

    function pauseOn() external;
    function pauseOff() external;
    function setApprovedOft(address _oft, bool _isApproved) external;
    function setRemoteHop(uint32 _eid, address _remoteHop) external;
    function setRemoteHop(uint32 _eid, bytes32 _remoteHop) external;
    function recover(address _target, uint256 _value, bytes memory _data) external;
    function setMessageProcessed(address _oft, uint32 _srcEid, uint64 _nonce, bytes32 _composeFrom) external;

    // Storage views
    function localEid() external view returns (uint32);
    function endpoint() external view returns (address);
    function paused() external view returns (bool);
    function approvedOft(address oft) external view returns (bool isApproved);
    function messageProcessed(bytes32 message) external view returns (bool isProcessed);
    function remoteHop(uint32 eid) external view returns (bytes32 hop);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface IHopComposer {
    function hopCompose(uint32 _srcEid, bytes32 _sender, address _oft, uint256 _amount, bytes memory _data) external;
}

// SPDX-License-Identifier: LZBL-1.2

pragma solidity ^0.8.20;

library CalldataBytesLib {
    function toU8(bytes calldata _bytes, uint256 _start) internal pure returns (uint8) {
        return uint8(_bytes[_start]);
    }

    function toU16(bytes calldata _bytes, uint256 _start) internal pure returns (uint16) {
        unchecked {
            uint256 end = _start + 2;
            return uint16(bytes2(_bytes[_start:end]));
        }
    }

    function toU32(bytes calldata _bytes, uint256 _start) internal pure returns (uint32) {
        unchecked {
            uint256 end = _start + 4;
            return uint32(bytes4(_bytes[_start:end]));
        }
    }

    function toU64(bytes calldata _bytes, uint256 _start) internal pure returns (uint64) {
        unchecked {
            uint256 end = _start + 8;
            return uint64(bytes8(_bytes[_start:end]));
        }
    }

    function toU128(bytes calldata _bytes, uint256 _start) internal pure returns (uint128) {
        unchecked {
            uint256 end = _start + 16;
            return uint128(bytes16(_bytes[_start:end]));
        }
    }

    function toU256(bytes calldata _bytes, uint256 _start) internal pure returns (uint256) {
        unchecked {
            uint256 end = _start + 32;
            return uint256(bytes32(_bytes[_start:end]));
        }
    }

    function toAddr(bytes calldata _bytes, uint256 _start) internal pure returns (address) {
        unchecked {
            uint256 end = _start + 20;
            return address(bytes20(_bytes[_start:end]));
        }
    }

    function toB32(bytes calldata _bytes, uint256 _start) internal pure returns (bytes32) {
        unchecked {
            uint256 end = _start + 32;
            return bytes32(_bytes[_start:end]);
        }
    }
}

// SPDX-License-Identifier: MIT

// modified from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/structs/BitMaps.sol
pragma solidity ^0.8.20;

type BitMap256 is uint256;

using BitMaps for BitMap256 global;

library BitMaps {
    /**
     * @dev Returns whether the bit at `index` is set.
     */
    function get(BitMap256 bitmap, uint8 index) internal pure returns (bool) {
        uint256 mask = 1 << index;
        return BitMap256.unwrap(bitmap) & mask != 0;
    }

    /**
     * @dev Sets the bit at `index`.
     */
    function set(BitMap256 bitmap, uint8 index) internal pure returns (BitMap256) {
        uint256 mask = 1 << index;
        return BitMap256.wrap(BitMap256.unwrap(bitmap) | mask);
    }
}

// SPDX-License-Identifier: MIT

pragma solidity >=0.8.0;

import { IMessageLibManager } from "./IMessageLibManager.sol";
import { IMessagingComposer } from "./IMessagingComposer.sol";
import { IMessagingChannel } from "./IMessagingChannel.sol";
import { IMessagingContext } from "./IMessagingContext.sol";

struct MessagingParams {
    uint32 dstEid;
    bytes32 receiver;
    bytes message;
    bytes options;
    bool payInLzToken;
}

struct MessagingReceipt {
    bytes32 guid;
    uint64 nonce;
    MessagingFee fee;
}

struct MessagingFee {
    uint256 nativeFee;
    uint256 lzTokenFee;
}

struct Origin {
    uint32 srcEid;
    bytes32 sender;
    uint64 nonce;
}

interface ILayerZeroEndpointV2 is IMessageLibManager, IMessagingComposer, IMessagingChannel, IMessagingContext {
    event PacketSent(bytes encodedPayload, bytes options, address sendLibrary);

    event PacketVerified(Origin origin, address receiver, bytes32 payloadHash);

    event PacketDelivered(Origin origin, address receiver);

    event LzReceiveAlert(
        address indexed receiver,
        address indexed executor,
        Origin origin,
        bytes32 guid,
        uint256 gas,
        uint256 value,
        bytes message,
        bytes extraData,
        bytes reason
    );

    event LzTokenSet(address token);

    event DelegateSet(address sender, address delegate);

    function quote(MessagingParams calldata _params, address _sender) external view returns (MessagingFee memory);

    function send(
        MessagingParams calldata _params,
        address _refundAddress
    ) external payable returns (MessagingReceipt memory);

    function verify(Origin calldata _origin, address _receiver, bytes32 _payloadHash) external;

    function verifiable(Origin calldata _origin, address _receiver) external view returns (bool);

    function initializable(Origin calldata _origin, address _receiver) external view returns (bool);

    function lzReceive(
        Origin calldata _origin,
        address _receiver,
        bytes32 _guid,
        bytes calldata _message,
        bytes calldata _extraData
    ) external payable;

    // oapp can burn messages partially by calling this function with its own business logic if messages are verified in order
    function clear(address _oapp, Origin calldata _origin, bytes32 _guid, bytes calldata _message) external;

    function setLzToken(address _lzToken) external;

    function lzToken() external view returns (address);

    function nativeToken() external view returns (address);

    function setDelegate(address _delegate) external;
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

import { OwnableUpgradeable } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import { IOAppCore, ILayerZeroEndpointV2 } from "./interfaces/IOAppCore.sol";

/**
 * @title OAppCore
 * @dev Abstract contract implementing the IOAppCore interface with basic OApp configurations.
 */
abstract contract OAppCoreUpgradeable is IOAppCore, OwnableUpgradeable {
    struct OAppCoreStorage {
        mapping(uint32 => bytes32) peers;
    }

    // keccak256(abi.encode(uint256(keccak256("layerzerov2.storage.oappcore")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant OAppCoreStorageLocation =
        0x72ab1bc1039b79dc4724ffca13de82c96834302d3c7e0d4252232d4b2dd8f900;

    function _getOAppCoreStorage() internal pure returns (OAppCoreStorage storage $) {
        assembly {
            $.slot := OAppCoreStorageLocation
        }
    }

    // The LayerZero endpoint associated with the given OApp
    ILayerZeroEndpointV2 public immutable endpoint;

    /**
     * @dev Constructor to initialize the OAppCore with the provided endpoint and delegate.
     * @param _endpoint The address of the LOCAL Layer Zero endpoint.
     */
    constructor(address _endpoint) {
        endpoint = ILayerZeroEndpointV2(_endpoint);
    }

    /**
     * @dev Initializes the OAppCore with the provided delegate.
     * @param _delegate The delegate capable of making OApp configurations inside of the endpoint.
     *
     * @dev The delegate typically should be set as the owner of the contract.
     * @dev Ownable is not initialized here on purpose. It should be initialized in the child contract to
     * accommodate the different version of Ownable.
     */
    function __OAppCore_init(address _delegate) internal onlyInitializing {
        __OAppCore_init_unchained(_delegate);
    }

    function __OAppCore_init_unchained(address _delegate) internal onlyInitializing {
        if (_delegate == address(0)) revert InvalidDelegate();
        endpoint.setDelegate(_delegate);
    }

    /**
     * @notice Returns the peer address (OApp instance) associated with a specific endpoint.
     * @param _eid The endpoint ID.
     * @return peer The address of the peer associated with the specified endpoint.
     */
    function peers(uint32 _eid) public view override returns (bytes32) {
        OAppCoreStorage storage $ = _getOAppCoreStorage();
        return $.peers[_eid];
    }

    /**
     * @notice Sets the peer address (OApp instance) for a corresponding endpoint.
     * @param _eid The endpoint ID.
     * @param _peer The address of the peer to be associated with the corresponding endpoint.
     *
     * @dev Only the owner/admin of the OApp can call this function.
     * @dev Indicates that the peer is trusted to send LayerZero messages to this OApp.
     * @dev Set this to bytes32(0) to remove the peer address.
     * @dev Peer is a bytes32 to accommodate non-evm chains.
     */
    function setPeer(uint32 _eid, bytes32 _peer) public virtual onlyOwner {
        OAppCoreStorage storage $ = _getOAppCoreStorage();
        $.peers[_eid] = _peer;
        emit PeerSet(_eid, _peer);
    }

    /**
     * @notice Internal function to get the peer address associated with a specific endpoint; reverts if NOT set.
     * ie. the peer is set to bytes32(0).
     * @param _eid The endpoint ID.
     * @return peer The address of the peer associated with the specified endpoint.
     */
    function _getPeerOrRevert(uint32 _eid) internal view virtual returns (bytes32) {
        OAppCoreStorage storage $ = _getOAppCoreStorage();
        bytes32 peer = $.peers[_eid];
        if (peer == bytes32(0)) revert NoPeer(_eid);
        return peer;
    }

    /**
     * @notice Sets the delegate address for the OApp.
     * @param _delegate The address of the delegate to be set.
     *
     * @dev Only the owner/admin of the OApp can call this function.
     * @dev Provides the ability for a delegate to set configs, on behalf of the OApp, directly on the Endpoint contract.
     */
    function setDelegate(address _delegate) public onlyOwner {
        endpoint.setDelegate(_delegate);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (access/extensions/IAccessControlEnumerable.sol)

pragma solidity >=0.8.4;

import {IAccessControl} from "../IAccessControl.sol";

/**
 * @dev External interface of AccessControlEnumerable declared to support ERC-165 detection.
 */
interface IAccessControlEnumerable is IAccessControl {
    /**
     * @dev Returns one of the accounts that have `role`. `index` must be a
     * value between 0 and {getRoleMemberCount}, non-inclusive.
     *
     * Role bearers are not sorted in any particular way, and their ordering may
     * change at any point.
     *
     * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
     * you perform all queries on the same block. See the following
     * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
     * for more information.
     */
    function getRoleMember(bytes32 role, uint256 index) external view returns (address);

    /**
     * @dev Returns the number of accounts that have `role`. Can be used
     * together with {getRoleMember} to enumerate all bearers of a role.
     */
    function getRoleMemberCount(bytes32 role) external view returns (uint256);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (access/AccessControl.sol)

pragma solidity ^0.8.20;

import {IAccessControl} from "@openzeppelin/contracts/access/IAccessControl.sol";
import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
import {IERC165} from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
import {ERC165Upgradeable} from "../utils/introspection/ERC165Upgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```solidity
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```solidity
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
 * to enforce additional security measures for this role.
 */
abstract contract AccessControlUpgradeable is Initializable, ContextUpgradeable, IAccessControl, ERC165Upgradeable {
    struct RoleData {
        mapping(address account => bool) hasRole;
        bytes32 adminRole;
    }

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;


    /// @custom:storage-location erc7201:openzeppelin.storage.AccessControl
    struct AccessControlStorage {
        mapping(bytes32 role => RoleData) _roles;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.AccessControl")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant AccessControlStorageLocation = 0x02dd7bc7dec4dceedda775e58dd541e08a116c6c53815c0bd028192f7b626800;

    function _getAccessControlStorage() private pure returns (AccessControlStorage storage $) {
        assembly {
            $.slot := AccessControlStorageLocation
        }
    }

    /**
     * @dev Modifier that checks that an account has a specific role. Reverts
     * with an {AccessControlUnauthorizedAccount} error including the required role.
     */
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

    function __AccessControl_init() internal onlyInitializing {
    }

    function __AccessControl_init_unchained() internal onlyInitializing {
    }
    /// @inheritdoc IERC165
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view virtual returns (bool) {
        AccessControlStorage storage $ = _getAccessControlStorage();
        return $._roles[role].hasRole[account];
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
     * is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
     */
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, _msgSender());
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
     * is missing `role`.
     */
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert AccessControlUnauthorizedAccount(account, role);
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
        AccessControlStorage storage $ = _getAccessControlStorage();
        return $._roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleGranted} event.
     */
    function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleRevoked} event.
     */
    function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     *
     * May emit a {RoleRevoked} event.
     */
    function renounceRole(bytes32 role, address callerConfirmation) public virtual {
        if (callerConfirmation != _msgSender()) {
            revert AccessControlBadConfirmation();
        }

        _revokeRole(role, callerConfirmation);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        AccessControlStorage storage $ = _getAccessControlStorage();
        bytes32 previousAdminRole = getRoleAdmin(role);
        $._roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    /**
     * @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
        AccessControlStorage storage $ = _getAccessControlStorage();
        if (!hasRole(role, account)) {
            $._roles[role].hasRole[account] = true;
            emit RoleGranted(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Attempts to revoke `role` from `account` and returns a boolean indicating if `role` was revoked.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
        AccessControlStorage storage $ = _getAccessControlStorage();
        if (hasRole(role, account)) {
            $._roles[role].hasRole[account] = false;
            emit RoleRevoked(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }
}

File 28 of 48 : EnumerableSet.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.

pragma solidity ^0.8.20;

import {Arrays} from "../Arrays.sol";
import {Math} from "../math/Math.sol";

/**
 * @dev Library for managing
 * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
 * types.
 *
 * Sets have the following properties:
 *
 * - Elements are added, removed, and checked for existence in constant time
 * (O(1)).
 * - Elements are enumerated in O(n). No guarantees are made on the ordering.
 * - Set can be cleared (all elements removed) in O(n).
 *
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using EnumerableSet for EnumerableSet.AddressSet;
 *
 *     // Declare a set state variable
 *     EnumerableSet.AddressSet private mySet;
 * }
 * ```
 *
 * The following types are supported:
 *
 * - `bytes32` (`Bytes32Set`) since v3.3.0
 * - `address` (`AddressSet`) since v3.3.0
 * - `uint256` (`UintSet`) since v3.3.0
 * - `string` (`StringSet`) since v5.4.0
 * - `bytes` (`BytesSet`) since v5.4.0
 *
 * [WARNING]
 * ====
 * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
 * unusable.
 * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
 *
 * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
 * array of EnumerableSet.
 * ====
 */
library EnumerableSet {
    // To implement this library for multiple types with as little code
    // repetition as possible, we write it in terms of a generic Set type with
    // bytes32 values.
    // The Set implementation uses private functions, and user-facing
    // implementations (such as AddressSet) are just wrappers around the
    // underlying Set.
    // This means that we can only create new EnumerableSets for types that fit
    // in bytes32.

    struct Set {
        // Storage of set values
        bytes32[] _values;
        // Position is the index of the value in the `values` array plus 1.
        // Position 0 is used to mean a value is not in the set.
        mapping(bytes32 value => uint256) _positions;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function _add(Set storage set, bytes32 value) private returns (bool) {
        if (!_contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._positions[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function _remove(Set storage set, bytes32 value) private returns (bool) {
        // We cache the value's position to prevent multiple reads from the same storage slot
        uint256 position = set._positions[value];

        if (position != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 valueIndex = position - 1;
            uint256 lastIndex = set._values.length - 1;

            if (valueIndex != lastIndex) {
                bytes32 lastValue = set._values[lastIndex];

                // Move the lastValue to the index where the value to delete is
                set._values[valueIndex] = lastValue;
                // Update the tracked position of the lastValue (that was just moved)
                set._positions[lastValue] = position;
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the tracked position for the deleted slot
            delete set._positions[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes all the values from a set. O(n).
     *
     * WARNING: This function has an unbounded cost that scales with set size. Developers should keep in mind that
     * using it may render the function uncallable if the set grows to the point where clearing it consumes too much
     * gas to fit in a block.
     */
    function _clear(Set storage set) private {
        uint256 len = _length(set);
        for (uint256 i = 0; i < len; ++i) {
            delete set._positions[set._values[i]];
        }
        Arrays.unsafeSetLength(set._values, 0);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function _contains(Set storage set, bytes32 value) private view returns (bool) {
        return set._positions[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function _length(Set storage set) private view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function _at(Set storage set, uint256 index) private view returns (bytes32) {
        return set._values[index];
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function _values(Set storage set) private view returns (bytes32[] memory) {
        return set._values;
    }

    /**
     * @dev Return a slice of the set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function _values(Set storage set, uint256 start, uint256 end) private view returns (bytes32[] memory) {
        unchecked {
            end = Math.min(end, _length(set));
            start = Math.min(start, end);

            uint256 len = end - start;
            bytes32[] memory result = new bytes32[](len);
            for (uint256 i = 0; i < len; ++i) {
                result[i] = Arrays.unsafeAccess(set._values, start + i).value;
            }
            return result;
        }
    }

    // Bytes32Set

    struct Bytes32Set {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _add(set._inner, value);
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _remove(set._inner, value);
    }

    /**
     * @dev Removes all the values from a set. O(n).
     *
     * WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
     * function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
     */
    function clear(Bytes32Set storage set) internal {
        _clear(set._inner);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
        return _contains(set._inner, value);
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(Bytes32Set storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
        return _at(set._inner, index);
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
        bytes32[] memory store = _values(set._inner);
        bytes32[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    /**
     * @dev Return a slice of the set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(Bytes32Set storage set, uint256 start, uint256 end) internal view returns (bytes32[] memory) {
        bytes32[] memory store = _values(set._inner, start, end);
        bytes32[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    // AddressSet

    struct AddressSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(AddressSet storage set, address value) internal returns (bool) {
        return _add(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(AddressSet storage set, address value) internal returns (bool) {
        return _remove(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Removes all the values from a set. O(n).
     *
     * WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
     * function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
     */
    function clear(AddressSet storage set) internal {
        _clear(set._inner);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(AddressSet storage set, address value) internal view returns (bool) {
        return _contains(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(AddressSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(AddressSet storage set, uint256 index) internal view returns (address) {
        return address(uint160(uint256(_at(set._inner, index))));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(AddressSet storage set) internal view returns (address[] memory) {
        bytes32[] memory store = _values(set._inner);
        address[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    /**
     * @dev Return a slice of the set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(AddressSet storage set, uint256 start, uint256 end) internal view returns (address[] memory) {
        bytes32[] memory store = _values(set._inner, start, end);
        address[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    // UintSet

    struct UintSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(UintSet storage set, uint256 value) internal returns (bool) {
        return _add(set._inner, bytes32(value));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(UintSet storage set, uint256 value) internal returns (bool) {
        return _remove(set._inner, bytes32(value));
    }

    /**
     * @dev Removes all the values from a set. O(n).
     *
     * WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
     * function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
     */
    function clear(UintSet storage set) internal {
        _clear(set._inner);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(UintSet storage set, uint256 value) internal view returns (bool) {
        return _contains(set._inner, bytes32(value));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(UintSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(UintSet storage set, uint256 index) internal view returns (uint256) {
        return uint256(_at(set._inner, index));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(UintSet storage set) internal view returns (uint256[] memory) {
        bytes32[] memory store = _values(set._inner);
        uint256[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    /**
     * @dev Return a slice of the set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(UintSet storage set, uint256 start, uint256 end) internal view returns (uint256[] memory) {
        bytes32[] memory store = _values(set._inner, start, end);
        uint256[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    struct StringSet {
        // Storage of set values
        string[] _values;
        // Position is the index of the value in the `values` array plus 1.
        // Position 0 is used to mean a value is not in the set.
        mapping(string value => uint256) _positions;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(StringSet storage set, string memory value) internal returns (bool) {
        if (!contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._positions[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(StringSet storage set, string memory value) internal returns (bool) {
        // We cache the value's position to prevent multiple reads from the same storage slot
        uint256 position = set._positions[value];

        if (position != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 valueIndex = position - 1;
            uint256 lastIndex = set._values.length - 1;

            if (valueIndex != lastIndex) {
                string memory lastValue = set._values[lastIndex];

                // Move the lastValue to the index where the value to delete is
                set._values[valueIndex] = lastValue;
                // Update the tracked position of the lastValue (that was just moved)
                set._positions[lastValue] = position;
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the tracked position for the deleted slot
            delete set._positions[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes all the values from a set. O(n).
     *
     * WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
     * function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
     */
    function clear(StringSet storage set) internal {
        uint256 len = length(set);
        for (uint256 i = 0; i < len; ++i) {
            delete set._positions[set._values[i]];
        }
        Arrays.unsafeSetLength(set._values, 0);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(StringSet storage set, string memory value) internal view returns (bool) {
        return set._positions[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function length(StringSet storage set) internal view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(StringSet storage set, uint256 index) internal view returns (string memory) {
        return set._values[index];
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(StringSet storage set) internal view returns (string[] memory) {
        return set._values;
    }

    /**
     * @dev Return a slice of the set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(StringSet storage set, uint256 start, uint256 end) internal view returns (string[] memory) {
        unchecked {
            end = Math.min(end, length(set));
            start = Math.min(start, end);

            uint256 len = end - start;
            string[] memory result = new string[](len);
            for (uint256 i = 0; i < len; ++i) {
                result[i] = Arrays.unsafeAccess(set._values, start + i).value;
            }
            return result;
        }
    }

    struct BytesSet {
        // Storage of set values
        bytes[] _values;
        // Position is the index of the value in the `values` array plus 1.
        // Position 0 is used to mean a value is not in the set.
        mapping(bytes value => uint256) _positions;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(BytesSet storage set, bytes memory value) internal returns (bool) {
        if (!contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._positions[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(BytesSet storage set, bytes memory value) internal returns (bool) {
        // We cache the value's position to prevent multiple reads from the same storage slot
        uint256 position = set._positions[value];

        if (position != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 valueIndex = position - 1;
            uint256 lastIndex = set._values.length - 1;

            if (valueIndex != lastIndex) {
                bytes memory lastValue = set._values[lastIndex];

                // Move the lastValue to the index where the value to delete is
                set._values[valueIndex] = lastValue;
                // Update the tracked position of the lastValue (that was just moved)
                set._positions[lastValue] = position;
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the tracked position for the deleted slot
            delete set._positions[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes all the values from a set. O(n).
     *
     * WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
     * function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
     */
    function clear(BytesSet storage set) internal {
        uint256 len = length(set);
        for (uint256 i = 0; i < len; ++i) {
            delete set._positions[set._values[i]];
        }
        Arrays.unsafeSetLength(set._values, 0);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(BytesSet storage set, bytes memory value) internal view returns (bool) {
        return set._positions[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function length(BytesSet storage set) internal view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(BytesSet storage set, uint256 index) internal view returns (bytes memory) {
        return set._values[index];
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(BytesSet storage set) internal view returns (bytes[] memory) {
        return set._values;
    }

    /**
     * @dev Return a slice of the set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(BytesSet storage set, uint256 start, uint256 end) internal view returns (bytes[] memory) {
        unchecked {
            end = Math.min(end, length(set));
            start = Math.min(start, end);

            uint256 len = end - start;
            bytes[] memory result = new bytes[](len);
            for (uint256 i = 0; i < len; ++i) {
                result[i] = Arrays.unsafeAccess(set._values, start + i).value;
            }
            return result;
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/introspection/IERC165.sol)

pragma solidity >=0.4.16;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Storage of the initializable contract.
     *
     * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
     * when using with upgradeable contracts.
     *
     * @custom:storage-location erc7201:openzeppelin.storage.Initializable
     */
    struct InitializableStorage {
        /**
         * @dev Indicates that the contract has been initialized.
         */
        uint64 _initialized;
        /**
         * @dev Indicates that the contract is in the process of being initialized.
         */
        bool _initializing;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;

    /**
     * @dev The contract is already initialized.
     */
    error InvalidInitialization();

    /**
     * @dev The contract is not initializing.
     */
    error NotInitializing();

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint64 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
     * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
     * production.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        // Cache values to avoid duplicated sloads
        bool isTopLevelCall = !$._initializing;
        uint64 initialized = $._initialized;

        // Allowed calls:
        // - initialSetup: the contract is not in the initializing state and no previous version was
        //                 initialized
        // - construction: the contract is initialized at version 1 (no reinitialization) and the
        //                 current contract is just being deployed
        bool initialSetup = initialized == 0 && isTopLevelCall;
        bool construction = initialized == 1 && address(this).code.length == 0;

        if (!initialSetup && !construction) {
            revert InvalidInitialization();
        }
        $._initialized = 1;
        if (isTopLevelCall) {
            $._initializing = true;
        }
        _;
        if (isTopLevelCall) {
            $._initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint64 version) {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing || $._initialized >= version) {
            revert InvalidInitialization();
        }
        $._initialized = version;
        $._initializing = true;
        _;
        $._initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        _checkInitializing();
        _;
    }

    /**
     * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
     */
    function _checkInitializing() internal view virtual {
        if (!_isInitializing()) {
            revert NotInitializing();
        }
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing) {
            revert InvalidInitialization();
        }
        if ($._initialized != type(uint64).max) {
            $._initialized = type(uint64).max;
            emit Initialized(type(uint64).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint64) {
        return _getInitializableStorage()._initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _getInitializableStorage()._initializing;
    }

    /**
     * @dev Pointer to storage slot. Allows integrators to override it with a custom storage location.
     *
     * NOTE: Consider following the ERC-7201 formula to derive storage locations.
     */
    function _initializableStorageSlot() internal pure virtual returns (bytes32) {
        return INITIALIZABLE_STORAGE;
    }

    /**
     * @dev Returns a pointer to the storage namespace.
     */
    // solhint-disable-next-line var-name-mixedcase
    function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
        bytes32 slot = _initializableStorageSlot();
        assembly {
            $.slot := slot
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC1363.sol)

pragma solidity >=0.6.2;

import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";

/**
 * @title IERC1363
 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
 *
 * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
 * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
 */
interface IERC1363 is IERC20, IERC165 {
    /*
     * Note: the ERC-165 identifier for this interface is 0xb0202a11.
     * 0xb0202a11 ===
     *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
     *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
     */

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @param data Additional data with no specified format, sent in call to `spender`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}

// SPDX-License-Identifier: MIT

pragma solidity >=0.8.0;

struct SetConfigParam {
    uint32 eid;
    uint32 configType;
    bytes config;
}

interface IMessageLibManager {
    struct Timeout {
        address lib;
        uint256 expiry;
    }

    event LibraryRegistered(address newLib);
    event DefaultSendLibrarySet(uint32 eid, address newLib);
    event DefaultReceiveLibrarySet(uint32 eid, address newLib);
    event DefaultReceiveLibraryTimeoutSet(uint32 eid, address oldLib, uint256 expiry);
    event SendLibrarySet(address sender, uint32 eid, address newLib);
    event ReceiveLibrarySet(address receiver, uint32 eid, address newLib);
    event ReceiveLibraryTimeoutSet(address receiver, uint32 eid, address oldLib, uint256 timeout);

    function registerLibrary(address _lib) external;

    function isRegisteredLibrary(address _lib) external view returns (bool);

    function getRegisteredLibraries() external view returns (address[] memory);

    function setDefaultSendLibrary(uint32 _eid, address _newLib) external;

    function defaultSendLibrary(uint32 _eid) external view returns (address);

    function setDefaultReceiveLibrary(uint32 _eid, address _newLib, uint256 _gracePeriod) external;

    function defaultReceiveLibrary(uint32 _eid) external view returns (address);

    function setDefaultReceiveLibraryTimeout(uint32 _eid, address _lib, uint256 _expiry) external;

    function defaultReceiveLibraryTimeout(uint32 _eid) external view returns (address lib, uint256 expiry);

    function isSupportedEid(uint32 _eid) external view returns (bool);

    function isValidReceiveLibrary(address _receiver, uint32 _eid, address _lib) external view returns (bool);

    /// ------------------- OApp interfaces -------------------
    function setSendLibrary(address _oapp, uint32 _eid, address _newLib) external;

    function getSendLibrary(address _sender, uint32 _eid) external view returns (address lib);

    function isDefaultSendLibrary(address _sender, uint32 _eid) external view returns (bool);

    function setReceiveLibrary(address _oapp, uint32 _eid, address _newLib, uint256 _gracePeriod) external;

    function getReceiveLibrary(address _receiver, uint32 _eid) external view returns (address lib, bool isDefault);

    function setReceiveLibraryTimeout(address _oapp, uint32 _eid, address _lib, uint256 _expiry) external;

    function receiveLibraryTimeout(address _receiver, uint32 _eid) external view returns (address lib, uint256 expiry);

    function setConfig(address _oapp, address _lib, SetConfigParam[] calldata _params) external;

    function getConfig(
        address _oapp,
        address _lib,
        uint32 _eid,
        uint32 _configType
    ) external view returns (bytes memory config);
}

// SPDX-License-Identifier: MIT

pragma solidity >=0.8.0;

interface IMessagingComposer {
    event ComposeSent(address from, address to, bytes32 guid, uint16 index, bytes message);
    event ComposeDelivered(address from, address to, bytes32 guid, uint16 index);
    event LzComposeAlert(
        address indexed from,
        address indexed to,
        address indexed executor,
        bytes32 guid,
        uint16 index,
        uint256 gas,
        uint256 value,
        bytes message,
        bytes extraData,
        bytes reason
    );

    function composeQueue(
        address _from,
        address _to,
        bytes32 _guid,
        uint16 _index
    ) external view returns (bytes32 messageHash);

    function sendCompose(address _to, bytes32 _guid, uint16 _index, bytes calldata _message) external;

    function lzCompose(
        address _from,
        address _to,
        bytes32 _guid,
        uint16 _index,
        bytes calldata _message,
        bytes calldata _extraData
    ) external payable;
}

// SPDX-License-Identifier: MIT

pragma solidity >=0.8.0;

interface IMessagingChannel {
    event InboundNonceSkipped(uint32 srcEid, bytes32 sender, address receiver, uint64 nonce);
    event PacketNilified(uint32 srcEid, bytes32 sender, address receiver, uint64 nonce, bytes32 payloadHash);
    event PacketBurnt(uint32 srcEid, bytes32 sender, address receiver, uint64 nonce, bytes32 payloadHash);

    function eid() external view returns (uint32);

    // this is an emergency function if a message cannot be verified for some reasons
    // required to provide _nextNonce to avoid race condition
    function skip(address _oapp, uint32 _srcEid, bytes32 _sender, uint64 _nonce) external;

    function nilify(address _oapp, uint32 _srcEid, bytes32 _sender, uint64 _nonce, bytes32 _payloadHash) external;

    function burn(address _oapp, uint32 _srcEid, bytes32 _sender, uint64 _nonce, bytes32 _payloadHash) external;

    function nextGuid(address _sender, uint32 _dstEid, bytes32 _receiver) external view returns (bytes32);

    function inboundNonce(address _receiver, uint32 _srcEid, bytes32 _sender) external view returns (uint64);

    function outboundNonce(address _sender, uint32 _dstEid, bytes32 _receiver) external view returns (uint64);

    function inboundPayloadHash(
        address _receiver,
        uint32 _srcEid,
        bytes32 _sender,
        uint64 _nonce
    ) external view returns (bytes32);

    function lazyInboundNonce(address _receiver, uint32 _srcEid, bytes32 _sender) external view returns (uint64);
}

// SPDX-License-Identifier: MIT

pragma solidity >=0.8.0;

interface IMessagingContext {
    function isSendingMessage() external view returns (bool);

    function getSendContext() external view returns (uint32 dstEid, address sender);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
    /// @custom:storage-location erc7201:openzeppelin.storage.Ownable
    struct OwnableStorage {
        address _owner;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Ownable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant OwnableStorageLocation = 0x9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c199300;

    function _getOwnableStorage() private pure returns (OwnableStorage storage $) {
        assembly {
            $.slot := OwnableStorageLocation
        }
    }

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    function __Ownable_init(address initialOwner) internal onlyInitializing {
        __Ownable_init_unchained(initialOwner);
    }

    function __Ownable_init_unchained(address initialOwner) internal onlyInitializing {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        OwnableStorage storage $ = _getOwnableStorage();
        return $._owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        OwnableStorage storage $ = _getOwnableStorage();
        address oldOwner = $._owner;
        $._owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

import { ILayerZeroEndpointV2 } from "@layerzerolabs/lz-evm-protocol-v2/contracts/interfaces/ILayerZeroEndpointV2.sol";

/**
 * @title IOAppCore
 */
interface IOAppCore {
    // Custom error messages
    error OnlyPeer(uint32 eid, bytes32 sender);
    error NoPeer(uint32 eid);
    error InvalidEndpointCall();
    error InvalidDelegate();

    // Event emitted when a peer (OApp) is set for a corresponding endpoint
    event PeerSet(uint32 eid, bytes32 peer);

    /**
     * @notice Retrieves the OApp version information.
     * @return senderVersion The version of the OAppSender.sol contract.
     * @return receiverVersion The version of the OAppReceiver.sol contract.
     */
    function oAppVersion() external view returns (uint64 senderVersion, uint64 receiverVersion);

    /**
     * @notice Retrieves the LayerZero endpoint associated with the OApp.
     * @return iEndpoint The LayerZero endpoint as an interface.
     */
    function endpoint() external view returns (ILayerZeroEndpointV2 iEndpoint);

    /**
     * @notice Retrieves the peer (OApp) associated with a corresponding endpoint.
     * @param _eid The endpoint ID.
     * @return peer The peer address (OApp instance) associated with the corresponding endpoint.
     */
    function peers(uint32 _eid) external view returns (bytes32 peer);

    /**
     * @notice Sets the peer address (OApp instance) for a corresponding endpoint.
     * @param _eid The endpoint ID.
     * @param _peer The address of the peer to be associated with the corresponding endpoint.
     */
    function setPeer(uint32 _eid, bytes32 _peer) external;

    /**
     * @notice Sets the delegate address for the OApp Core.
     * @param _delegate The address of the delegate to be set.
     */
    function setDelegate(address _delegate) external;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (access/IAccessControl.sol)

pragma solidity >=0.8.4;

/**
 * @dev External interface of AccessControl declared to support ERC-165 detection.
 */
interface IAccessControl {
    /**
     * @dev The `account` is missing a role.
     */
    error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);

    /**
     * @dev The caller of a function is not the expected one.
     *
     * NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
     */
    error AccessControlBadConfirmation();

    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted to signal this.
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call. This account bears the admin role (for the granted role).
     * Expected in cases where the role was granted using the internal {AccessControl-_grantRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     */
    function renounceRole(bytes32 role, address callerConfirmation) external;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract ContextUpgradeable is Initializable {
    function __Context_init() internal onlyInitializing {
    }

    function __Context_init_unchained() internal onlyInitializing {
    }
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/introspection/ERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165Upgradeable is Initializable, IERC165 {
    function __ERC165_init() internal onlyInitializing {
    }

    function __ERC165_init_unchained() internal onlyInitializing {
    }
    /// @inheritdoc IERC165
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

File 41 of 48 : Arrays.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/Arrays.sol)
// This file was procedurally generated from scripts/generate/templates/Arrays.js.

pragma solidity ^0.8.20;

import {Comparators} from "./Comparators.sol";
import {SlotDerivation} from "./SlotDerivation.sol";
import {StorageSlot} from "./StorageSlot.sol";
import {Math} from "./math/Math.sol";

/**
 * @dev Collection of functions related to array types.
 */
library Arrays {
    using SlotDerivation for bytes32;
    using StorageSlot for bytes32;

    /**
     * @dev Sort an array of uint256 (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        uint256[] memory array,
        function(uint256, uint256) pure returns (bool) comp
    ) internal pure returns (uint256[] memory) {
        _quickSort(_begin(array), _end(array), comp);
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of uint256 in increasing order.
     */
    function sort(uint256[] memory array) internal pure returns (uint256[] memory) {
        sort(array, Comparators.lt);
        return array;
    }

    /**
     * @dev Sort an array of address (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        address[] memory array,
        function(address, address) pure returns (bool) comp
    ) internal pure returns (address[] memory) {
        sort(_castToUint256Array(array), _castToUint256Comp(comp));
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of address in increasing order.
     */
    function sort(address[] memory array) internal pure returns (address[] memory) {
        sort(_castToUint256Array(array), Comparators.lt);
        return array;
    }

    /**
     * @dev Sort an array of bytes32 (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        bytes32[] memory array,
        function(bytes32, bytes32) pure returns (bool) comp
    ) internal pure returns (bytes32[] memory) {
        sort(_castToUint256Array(array), _castToUint256Comp(comp));
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of bytes32 in increasing order.
     */
    function sort(bytes32[] memory array) internal pure returns (bytes32[] memory) {
        sort(_castToUint256Array(array), Comparators.lt);
        return array;
    }

    /**
     * @dev Performs a quick sort of a segment of memory. The segment sorted starts at `begin` (inclusive), and stops
     * at end (exclusive). Sorting follows the `comp` comparator.
     *
     * Invariant: `begin <= end`. This is the case when initially called by {sort} and is preserved in subcalls.
     *
     * IMPORTANT: Memory locations between `begin` and `end` are not validated/zeroed. This function should
     * be used only if the limits are within a memory array.
     */
    function _quickSort(uint256 begin, uint256 end, function(uint256, uint256) pure returns (bool) comp) private pure {
        unchecked {
            if (end - begin < 0x40) return;

            // Use first element as pivot
            uint256 pivot = _mload(begin);
            // Position where the pivot should be at the end of the loop
            uint256 pos = begin;

            for (uint256 it = begin + 0x20; it < end; it += 0x20) {
                if (comp(_mload(it), pivot)) {
                    // If the value stored at the iterator's position comes before the pivot, we increment the
                    // position of the pivot and move the value there.
                    pos += 0x20;
                    _swap(pos, it);
                }
            }

            _swap(begin, pos); // Swap pivot into place
            _quickSort(begin, pos, comp); // Sort the left side of the pivot
            _quickSort(pos + 0x20, end, comp); // Sort the right side of the pivot
        }
    }

    /**
     * @dev Pointer to the memory location of the first element of `array`.
     */
    function _begin(uint256[] memory array) private pure returns (uint256 ptr) {
        assembly ("memory-safe") {
            ptr := add(array, 0x20)
        }
    }

    /**
     * @dev Pointer to the memory location of the first memory word (32bytes) after `array`. This is the memory word
     * that comes just after the last element of the array.
     */
    function _end(uint256[] memory array) private pure returns (uint256 ptr) {
        unchecked {
            return _begin(array) + array.length * 0x20;
        }
    }

    /**
     * @dev Load memory word (as a uint256) at location `ptr`.
     */
    function _mload(uint256 ptr) private pure returns (uint256 value) {
        assembly {
            value := mload(ptr)
        }
    }

    /**
     * @dev Swaps the elements memory location `ptr1` and `ptr2`.
     */
    function _swap(uint256 ptr1, uint256 ptr2) private pure {
        assembly {
            let value1 := mload(ptr1)
            let value2 := mload(ptr2)
            mstore(ptr1, value2)
            mstore(ptr2, value1)
        }
    }

    /// @dev Helper: low level cast address memory array to uint256 memory array
    function _castToUint256Array(address[] memory input) private pure returns (uint256[] memory output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast bytes32 memory array to uint256 memory array
    function _castToUint256Array(bytes32[] memory input) private pure returns (uint256[] memory output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast address comp function to uint256 comp function
    function _castToUint256Comp(
        function(address, address) pure returns (bool) input
    ) private pure returns (function(uint256, uint256) pure returns (bool) output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast bytes32 comp function to uint256 comp function
    function _castToUint256Comp(
        function(bytes32, bytes32) pure returns (bool) input
    ) private pure returns (function(uint256, uint256) pure returns (bool) output) {
        assembly {
            output := input
        }
    }

    /**
     * @dev Searches a sorted `array` and returns the first index that contains
     * a value greater or equal to `element`. If no such index exists (i.e. all
     * values in the array are strictly less than `element`), the array length is
     * returned. Time complexity O(log n).
     *
     * NOTE: The `array` is expected to be sorted in ascending order, and to
     * contain no repeated elements.
     *
     * IMPORTANT: Deprecated. This implementation behaves as {lowerBound} but lacks
     * support for repeated elements in the array. The {lowerBound} function should
     * be used instead.
     */
    function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value > element) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        // At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
        if (low > 0 && unsafeAccess(array, low - 1).value == element) {
            return low - 1;
        } else {
            return low;
        }
    }

    /**
     * @dev Searches an `array` sorted in ascending order and returns the first
     * index that contains a value greater or equal than `element`. If no such index
     * exists (i.e. all values in the array are strictly less than `element`), the array
     * length is returned. Time complexity O(log n).
     *
     * See C++'s https://en.cppreference.com/w/cpp/algorithm/lower_bound[lower_bound].
     */
    function lowerBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value < element) {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            } else {
                high = mid;
            }
        }

        return low;
    }

    /**
     * @dev Searches an `array` sorted in ascending order and returns the first
     * index that contains a value strictly greater than `element`. If no such index
     * exists (i.e. all values in the array are strictly less than `element`), the array
     * length is returned. Time complexity O(log n).
     *
     * See C++'s https://en.cppreference.com/w/cpp/algorithm/upper_bound[upper_bound].
     */
    function upperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value > element) {
                high = mid;
            } else {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            }
        }

        return low;
    }

    /**
     * @dev Same as {lowerBound}, but with an array in memory.
     */
    function lowerBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeMemoryAccess(array, mid) < element) {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            } else {
                high = mid;
            }
        }

        return low;
    }

    /**
     * @dev Same as {upperBound}, but with an array in memory.
     */
    function upperBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeMemoryAccess(array, mid) > element) {
                high = mid;
            } else {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            }
        }

        return low;
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(address[] storage arr, uint256 pos) internal pure returns (StorageSlot.AddressSlot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getAddressSlot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(bytes32[] storage arr, uint256 pos) internal pure returns (StorageSlot.Bytes32Slot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getBytes32Slot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(uint256[] storage arr, uint256 pos) internal pure returns (StorageSlot.Uint256Slot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getUint256Slot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(bytes[] storage arr, uint256 pos) internal pure returns (StorageSlot.BytesSlot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getBytesSlot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(string[] storage arr, uint256 pos) internal pure returns (StorageSlot.StringSlot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getStringSlot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(address[] memory arr, uint256 pos) internal pure returns (address res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(bytes32[] memory arr, uint256 pos) internal pure returns (bytes32 res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(uint256[] memory arr, uint256 pos) internal pure returns (uint256 res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(bytes[] memory arr, uint256 pos) internal pure returns (bytes memory res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(string[] memory arr, uint256 pos) internal pure returns (string memory res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(address[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }

    /**
     * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(bytes32[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }

    /**
     * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(uint256[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }

    /**
     * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(bytes[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }

    /**
     * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(string[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }
}

File 42 of 48 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Return the 512-bit addition of two uint256.
     *
     * The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
     */
    function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        assembly ("memory-safe") {
            low := add(a, b)
            high := lt(low, a)
        }
    }

    /**
     * @dev Return the 512-bit multiplication of two uint256.
     *
     * The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
     */
    function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        // 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
        // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = high * 2²⁵⁶ + low.
        assembly ("memory-safe") {
            let mm := mulmod(a, b, not(0))
            low := mul(a, b)
            high := sub(sub(mm, low), lt(mm, low))
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            success = c >= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a - b;
            success = c <= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a * b;
            assembly ("memory-safe") {
                // Only true when the multiplication doesn't overflow
                // (c / a == b) || (a == 0)
                success := or(eq(div(c, a), b), iszero(a))
            }
            // equivalent to: success ? c : 0
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `DIV` opcode returns zero when the denominator is 0.
                result := div(a, b)
            }
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `MOD` opcode returns zero when the denominator is 0.
                result := mod(a, b)
            }
        }
    }

    /**
     * @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryAdd(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
     */
    function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
        (, uint256 result) = trySub(a, b);
        return result;
    }

    /**
     * @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryMul(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);

            // Handle non-overflow cases, 256 by 256 division.
            if (high == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return low / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= high) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [high low].
            uint256 remainder;
            assembly ("memory-safe") {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                high := sub(high, gt(remainder, low))
                low := sub(low, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly ("memory-safe") {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [high low] by twos.
                low := div(low, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from high into low.
            low |= high * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
            // is no longer required.
            result = low * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
     */
    function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);
            if (high >= 1 << n) {
                Panic.panic(Panic.UNDER_OVERFLOW);
            }
            return (high << (256 - n)) | (low >> n);
        }
    }

    /**
     * @dev Calculates x * y >> n with full precision, following the selected rounding direction.
     */
    function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
        return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // If upper 8 bits of 16-bit half set, add 8 to result
        r |= SafeCast.toUint((x >> r) > 0xff) << 3;
        // If upper 4 bits of 8-bit half set, add 4 to result
        r |= SafeCast.toUint((x >> r) > 0xf) << 2;

        // Shifts value right by the current result and use it as an index into this lookup table:
        //
        // | x (4 bits) |  index  | table[index] = MSB position |
        // |------------|---------|-----------------------------|
        // |    0000    |    0    |        table[0] = 0         |
        // |    0001    |    1    |        table[1] = 0         |
        // |    0010    |    2    |        table[2] = 1         |
        // |    0011    |    3    |        table[3] = 1         |
        // |    0100    |    4    |        table[4] = 2         |
        // |    0101    |    5    |        table[5] = 2         |
        // |    0110    |    6    |        table[6] = 2         |
        // |    0111    |    7    |        table[7] = 2         |
        // |    1000    |    8    |        table[8] = 3         |
        // |    1001    |    9    |        table[9] = 3         |
        // |    1010    |   10    |        table[10] = 3        |
        // |    1011    |   11    |        table[11] = 3        |
        // |    1100    |   12    |        table[12] = 3        |
        // |    1101    |   13    |        table[13] = 3        |
        // |    1110    |   14    |        table[14] = 3        |
        // |    1111    |   15    |        table[15] = 3        |
        //
        // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
        assembly ("memory-safe") {
            r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
        }
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
        return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 43 of 48 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC20.sol)

pragma solidity >=0.4.16;

import {IERC20} from "../token/ERC20/IERC20.sol";

File 44 of 48 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC165.sol)

pragma solidity >=0.4.16;

import {IERC165} from "../utils/introspection/IERC165.sol";

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Comparators.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides a set of functions to compare values.
 *
 * _Available since v5.1._
 */
library Comparators {
    function lt(uint256 a, uint256 b) internal pure returns (bool) {
        return a < b;
    }

    function gt(uint256 a, uint256 b) internal pure returns (bool) {
        return a > b;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/SlotDerivation.sol)
// This file was procedurally generated from scripts/generate/templates/SlotDerivation.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for computing storage (and transient storage) locations from namespaces and deriving slots
 * corresponding to standard patterns. The derivation method for array and mapping matches the storage layout used by
 * the solidity language / compiler.
 *
 * See https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays[Solidity docs for mappings and dynamic arrays.].
 *
 * Example usage:
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using StorageSlot for bytes32;
 *     using SlotDerivation for bytes32;
 *
 *     // Declare a namespace
 *     string private constant _NAMESPACE = "<namespace>"; // eg. OpenZeppelin.Slot
 *
 *     function setValueInNamespace(uint256 key, address newValue) internal {
 *         _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value = newValue;
 *     }
 *
 *     function getValueInNamespace(uint256 key) internal view returns (address) {
 *         return _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {StorageSlot}.
 *
 * NOTE: This library provides a way to manipulate storage locations in a non-standard way. Tooling for checking
 * upgrade safety will ignore the slots accessed through this library.
 *
 * _Available since v5.1._
 */
library SlotDerivation {
    /**
     * @dev Derive an ERC-7201 slot from a string (namespace).
     */
    function erc7201Slot(string memory namespace) internal pure returns (bytes32 slot) {
        assembly ("memory-safe") {
            mstore(0x00, sub(keccak256(add(namespace, 0x20), mload(namespace)), 1))
            slot := and(keccak256(0x00, 0x20), not(0xff))
        }
    }

    /**
     * @dev Add an offset to a slot to get the n-th element of a structure or an array.
     */
    function offset(bytes32 slot, uint256 pos) internal pure returns (bytes32 result) {
        unchecked {
            return bytes32(uint256(slot) + pos);
        }
    }

    /**
     * @dev Derive the location of the first element in an array from the slot where the length is stored.
     */
    function deriveArray(bytes32 slot) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, slot)
            result := keccak256(0x00, 0x20)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, address key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, and(key, shr(96, not(0))))
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bool key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, iszero(iszero(key)))
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bytes32 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, uint256 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, int256 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, string memory key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            let length := mload(key)
            let begin := add(key, 0x20)
            let end := add(begin, length)
            let cache := mload(end)
            mstore(end, slot)
            result := keccak256(begin, add(length, 0x20))
            mstore(end, cache)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bytes memory key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            let length := mload(key)
            let begin := add(key, 0x20)
            let end := add(begin, length)
            let cache := mload(end)
            mstore(end, slot)
            result := keccak256(begin, add(length, 0x20))
            mstore(end, cache)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct Int256Slot {
        int256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Int256Slot` with member `value` located at `slot`.
     */
    function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns a `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

Settings
{
  "remappings": [
    "frax-std/=node_modules/frax-standard-solidity/src/",
    "@prb/test/=node_modules/@prb/test/",
    "forge-std/=node_modules/forge-std/src/",
    "ds-test/=node_modules/ds-test/src/",
    "@openzeppelin/=node_modules/@openzeppelin/",
    "@axelar-network/=node_modules/@axelar-network/",
    "@chainlink/=node_modules/@chainlink/",
    "@eth-optimism/=node_modules/@eth-optimism/",
    "@fraxfinance/=node_modules/@fraxfinance/",
    "@layerzerolabs/=node_modules/@layerzerolabs/",
    "frax-standard-solidity/=node_modules/frax-standard-solidity/",
    "hardhat-deploy/=node_modules/hardhat-deploy/",
    "solidity-bytes-utils/=node_modules/solidity-bytes-utils/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "none",
    "appendCBOR": false
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "shanghai",
  "viaIR": false
}

Contract Security Audit

Contract ABI

API
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AccessControlBadConfirmation","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"bytes32","name":"neededRole","type":"bytes32"}],"name":"AccessControlUnauthorizedAccount","type":"error"},{"inputs":[],"name":"HopPaused","type":"error"},{"inputs":[],"name":"InsufficientFee","type":"error"},{"inputs":[],"name":"InvalidDestinationChain","type":"error"},{"inputs":[],"name":"InvalidInitialization","type":"error"},{"inputs":[],"name":"InvalidOFT","type":"error"},{"inputs":[{"internalType":"uint16","name":"optionType","type":"uint16"}],"name":"InvalidOptionType","type":"error"},{"inputs":[],"name":"InvalidRemoteHop","type":"error"},{"inputs":[],"name":"NotAuthorized","type":"error"},{"inputs":[],"name":"NotEndpoint","type":"error"},{"inputs":[],"name":"NotInitializing","type":"error"},{"inputs":[],"name":"RefundFailed","type":"error"},{"inputs":[{"internalType":"uint8","name":"bits","type":"uint8"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"SafeCastOverflowedUintDowncast","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"oft","type":"address"},{"indexed":true,"internalType":"uint32","name":"srcEid","type":"uint32"},{"indexed":true,"internalType":"uint32","name":"dstEid","type":"uint32"},{"indexed":true,"internalType":"bytes32","name":"recipient","type":"bytes32"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Hop","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"version","type":"uint64"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"oft","type":"address"},{"indexed":true,"internalType":"uint32","name":"srcEid","type":"uint32"},{"indexed":true,"internalType":"uint64","name":"nonce","type":"uint64"},{"indexed":true,"internalType":"bytes32","name":"composeFrom","type":"bytes32"}],"name":"MessageHash","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"oft","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"uint32","name":"dstEid","type":"uint32"},{"indexed":true,"internalType":"bytes32","name":"to","type":"bytes32"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"SendOFT","type":"event"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DVN","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"EXECUTOR","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"TREASURY","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"oft","type":"address"}],"name":"approvedOft","outputs":[{"internalType":"bool","name":"isApproved","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"endpoint","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint32","name":"eid","type":"uint32"}],"name":"executorOptions","outputs":[{"internalType":"bytes","name":"","type":"bytes"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"uint256","name":"index","type":"uint256"}],"name":"getRoleMember","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleMemberCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleMembers","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"hopFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint32","name":"_localEid","type":"uint32"},{"internalType":"address","name":"_endpoint","type":"address"},{"internalType":"uint32","name":"_numDVNs","type":"uint32"},{"internalType":"address","name":"_EXECUTOR","type":"address"},{"internalType":"address","name":"_DVN","type":"address"},{"internalType":"address","name":"_TREASURY","type":"address"},{"internalType":"address[]","name":"_approvedOfts","type":"address[]"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"localEid","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_oft","type":"address"},{"internalType":"bytes32","name":"","type":"bytes32"},{"internalType":"bytes","name":"_message","type":"bytes"},{"internalType":"address","name":"","type":"address"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"lzCompose","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"message","type":"bytes32"}],"name":"messageProcessed","outputs":[{"internalType":"bool","name":"isProcessed","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"numDVNs","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pauseOff","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"pauseOn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_oft","type":"address"},{"internalType":"uint32","name":"_dstEid","type":"uint32"},{"internalType":"bytes32","name":"_recipient","type":"bytes32"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"uint128","name":"_dstGas","type":"uint128"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"quote","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint32","name":"_dstEid","type":"uint32"},{"internalType":"uint128","name":"_dstGas","type":"uint128"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"quoteHop","outputs":[{"internalType":"uint256","name":"finalFee","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_target","type":"address"},{"internalType":"uint256","name":"_value","type":"uint256"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"recover","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint32","name":"eid","type":"uint32"}],"name":"remoteHop","outputs":[{"internalType":"bytes32","name":"hop","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"oft","type":"address"},{"internalType":"uint256","name":"_amountLD","type":"uint256"}],"name":"removeDust","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"callerConfirmation","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_oft","type":"address"},{"internalType":"uint32","name":"_dstEid","type":"uint32"},{"internalType":"bytes32","name":"_recipient","type":"bytes32"},{"internalType":"uint256","name":"_amountLD","type":"uint256"}],"name":"sendOFT","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"_oft","type":"address"},{"internalType":"uint32","name":"_dstEid","type":"uint32"},{"internalType":"bytes32","name":"_recipient","type":"bytes32"},{"internalType":"uint256","name":"_amountLD","type":"uint256"},{"internalType":"uint128","name":"_dstGas","type":"uint128"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"sendOFT","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"_oft","type":"address"},{"internalType":"bool","name":"_isApproved","type":"bool"}],"name":"setApprovedOft","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint32","name":"eid","type":"uint32"},{"internalType":"bytes","name":"_options","type":"bytes"}],"name":"setExecutorOptions","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_hopFee","type":"uint256"}],"name":"setHopFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_oft","type":"address"},{"internalType":"uint32","name":"_srcEid","type":"uint32"},{"internalType":"uint64","name":"_nonce","type":"uint64"},{"internalType":"bytes32","name":"_composeFrom","type":"bytes32"}],"name":"setMessageProcessed","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint32","name":"_numDVNs","type":"uint32"}],"name":"setNumDVNs","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint32","name":"_eid","type":"uint32"},{"internalType":"address","name":"_remoteHop","type":"address"}],"name":"setRemoteHop","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint32","name":"_eid","type":"uint32"},{"internalType":"bytes32","name":"_remoteHop","type":"bytes32"}],"name":"setRemoteHop","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]

608060405234801562000010575f80fd5b506200001b6200002b565b620000256200002b565b620000df565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00805468010000000000000000900460ff16156200007c5760405163f92ee8a960e01b815260040160405180910390fd5b80546001600160401b0390811614620000dc5780546001600160401b0319166001600160401b0390811782556040519081527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d29060200160405180910390a15b50565b61358f80620000ed5f395ff3fe60806040526004361061022b575f3560e01c80637260753711610129578063b218b198116100a8578063d0a102601161006d578063d0a102601461062e578063d547741f14610641578063e6b215da14610660578063fb478f3b1461067f578063fc5f35651461069e575f80fd5b8063b218b198146105a9578063b8948dfd146105bd578063bcde5327146105dc578063ca15c873146105fb578063d01dbc621461061a575f80fd5b806391d14854116100ee57806391d148541461050d578063a217fddf1461052c578063a3246ad31461053f578063aa662ee31461056b578063b03787501461058a575f80fd5b8063726075371461045b5780638153924b146104845780638692040c146104b05780638f6b3311146104cf5780639010d07c146104ee575f80fd5b806336568abe116101b55780635c975abb1161017a5780635c975abb146103ec5780635e280f1114610400578063630dc7cb1461041457806367fb473814610428578063686dc57c14610447575f80fd5b806336568abe146103695780633e832c90146103885780634198dcf41461039b5780635135db46146103ae57806359c7c516146103cd575f80fd5b806324df604b116101fb57806324df604b146102e25780632c20e87d146102f65780632d2c5565146103175780632f2ff15d1461032b57806332fb38d91461034a575f80fd5b806301ffc9a714610236578063104db3801461026a57806321ad0b4514610296578063248a9ca3146102c3575f80fd5b3661023257005b5f80fd5b348015610241575f80fd5b50610255610250366004612716565b6106bd565b60405190151581526020015b60405180910390f35b348015610275575f80fd5b5061027e6106e7565b6040516001600160a01b039091168152602001610261565b3480156102a1575f80fd5b506102b56102b036600461274e565b610704565b604051908152602001610261565b3480156102ce575f80fd5b506102b56102dd366004612769565b61072c565b3480156102ed575f80fd5b506102b561074c565b348015610301575f80fd5b50610315610310366004612800565b610760565b005b348015610322575f80fd5b5061027e610863565b348015610336575f80fd5b5061031561034536600461291b565b610880565b348015610355575f80fd5b5061031561036436600461295d565b6108a2565b348015610374575f80fd5b5061031561038336600461291b565b61097d565b6103156103963660046129ab565b6109b5565b6103156103a9366004612a7a565b6109cd565b3480156103b9575f80fd5b506103156103c8366004612afb565b610a20565b3480156103d8575f80fd5b506102556103e7366004612b47565b610a5d565b3480156103f7575f80fd5b50610255610a8b565b34801561040b575f80fd5b5061027e610aa6565b34801561041f575f80fd5b5061027e610ac8565b348015610433575f80fd5b50610315610442366004612769565b610ae5565b348015610452575f80fd5b50610315610b03565b348015610466575f80fd5b5061046f610b77565b60405163ffffffff9091168152602001610261565b34801561048f575f80fd5b506104a361049e36600461274e565b610b8e565b6040516102619190612baf565b3480156104bb575f80fd5b506102b56104ca366004612a7a565b610c42565b3480156104da575f80fd5b506103156104e9366004612bc1565b610d85565b3480156104f9575f80fd5b5061027e610508366004612c15565b610df5565b348015610518575f80fd5b5061025561052736600461291b565b610e22565b348015610537575f80fd5b506102b55f81565b34801561054a575f80fd5b5061055e610559366004612769565b610e58565b6040516102619190612c35565b348015610576575f80fd5b50610315610585366004612c81565b610e88565b348015610595575f80fd5b506103156105a436600461274e565b610ea5565b3480156105b4575f80fd5b5061046f610ed8565b3480156105c8575f80fd5b506103156105d7366004612cad565b610ef2565b3480156105e7575f80fd5b506103156105f6366004612cdd565b610f35565b348015610606575f80fd5b506102b5610615366004612769565b610f49565b348015610625575f80fd5b50610315610f6d565b61031561063c366004612d4b565b610f8f565b34801561064c575f80fd5b5061031561065b36600461291b565b6110dc565b34801561066b575f80fd5b506102b561067a366004612de4565b6110f8565b34801561068a575f80fd5b506102b5610699366004612e00565b611171565b3480156106a9575f80fd5b506102556106b8366004612769565b611498565b5f6001600160e01b03198216635a05180f60e01b14806106e157506106e1826114b9565b92915050565b5f806106f16114ed565b600801546001600160a01b031692915050565b5f8061070e6114ed565b63ffffffff9093165f90815260039093016020525050604090205490565b5f9081525f8051602061356f833981519152602052604090206001015490565b5f806107566114ed565b6005015492915050565b5f610769611511565b805490915060ff600160401b82041615906001600160401b03165f8115801561078f5750825b90505f826001600160401b031660011480156107aa5750303b155b9050811580156107b8575080155b156107d65760405163f92ee8a960e01b815260040160405180910390fd5b845467ffffffffffffffff19166001178555831561080057845460ff60401b1916600160401b1785555b61080f8c8c8c8c8c8c8c611539565b831561085557845460ff60401b19168555604051600181527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d29060200160405180910390a15b505050505050505050505050565b5f8061086d6114ed565b600901546001600160a01b031692915050565b6108898261072c565b61089281611640565b61089c838361164d565b50505050565b5f6108ac81611640565b5f6108b56114ed565b604080516001600160a01b038916602082015263ffffffff8816918101919091526001600160401b0386166060820152608081018590529091505f9060a00160408051601f1981840301815282825280516020918201205f81815260028701835292909220805460ff191660011790556001600160a01b038a16835290925085916001600160401b0388169163ffffffff8a16917f0c64ebde8e3c30fe6dade45724a834e5d6c5c30f207a57bcd56cbc26361c2b55910160405180910390a450505050505050565b6001600160a01b03811633146109a65760405163334bd91960e11b815260040160405180910390fd5b6109b0828261168f565b505050565b61089c848484845f60405180602001604052805f8152505b63ffffffff851661762f148015906109ec57505f6109ea86610704565b145b15610a0a5760405163b86ac1ef60e01b815260040160405180910390fd5b610a188686868686866116c8565b505050505050565b5f610a2a81611640565b5f610a336114ed565b63ffffffff85165f9081526006820160205260409020909150610a568482612ec3565b5050505050565b5f80610a676114ed565b6001600160a01b039093165f90815260019093016020525050604090205460ff1690565b5f80610a956114ed565b54600160c01b900460ff1692915050565b5f80610ab06114ed565b5464010000000090046001600160a01b031692915050565b5f80610ad26114ed565b600701546001600160a01b031692915050565b5f610aef81611640565b5f610af86114ed565b600501929092555050565b610b0d5f33610e22565b80610b3d5750610b3d7f65d7a28e3265b37a6474929f336521b332c1681b933f6cb9f3376673440d862a33610e22565b610b5a5760405163ea8e4eb560e01b815260040160405180910390fd5b5f610b636114ed565b805460ff60c01b1916600160c01b17905550565b5f80610b816114ed565b5463ffffffff1692915050565b60605f610b996114ed565b63ffffffff84165f9081526006820160205260409020805491925090610bbe90612e47565b80601f0160208091040260200160405190810160405280929190818152602001828054610bea90612e47565b8015610c355780601f10610c0c57610100808354040283529160200191610c35565b820191905f5260205f20905b815481529060010190602001808311610c1857829003601f168201915b5050505050915050919050565b5f80610c4c610b77565b90508063ffffffff168763ffffffff1603610c6a575f915050610d7b565b6040805160c08101825263ffffffff8084168252891660208201526001600160801b038616918101919091523360608201526080810187905260a081018490525f610cbe610cb88b896110f8565b8361188d565b90505f8a6001600160a01b0316633b6f743b835f6040518363ffffffff1660e01b8152600401610cef929190612ffc565b6040805180830381865afa158015610d09573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d2d919061306b565b90505f63ffffffff8b1661762f1480610d4d575063ffffffff851661762f145b610d6157610d5c8b8989611171565b610d63565b5f5b8251909150610d73908290613099565b955050505050505b9695505050505050565b5f610d8f81611640565b5f846001600160a01b03168484604051610da991906130ac565b5f6040518083038185875af1925050503d805f8114610de3576040519150601f19603f3d011682016040523d82523d5f602084013e610de8565b606091505b5050905080610a56575f80fd5b5f8281525f8051602061354f833981519152602081905260408220610e1a90846119ae565b949350505050565b5f9182525f8051602061356f833981519152602090815260408084206001600160a01b0393909316845291905290205460ff1690565b5f8181525f8051602061354f8339815191526020819052604090912060609190610e81906119b9565b9392505050565b5f610e9281611640565b6109b0836001600160a01b0384166119c5565b5f610eaf81611640565b5f610eb86114ed565b600401805463ffffffff191663ffffffff94909416939093179092555050565b5f80610ee26114ed565b6004015463ffffffff1692915050565b5f610efc81611640565b5f610f056114ed565b6001600160a01b03949094165f908152600190940160205250506040909120805460ff1916911515919091179055565b5f610f3f81611640565b6109b083836119c5565b5f8181525f8051602061354f833981519152602081905260408220610e81906119eb565b5f610f7781611640565b5f610f806114ed565b805460ff60c01b191690555050565b610f97610a8b565b15610fb55760405163819f993960e01b815260040160405180910390fd5b5f80610fc28988886119f4565b915091508015610fd35750506110d3565b5f610fde8888611bd8565b806020019051810190610ff19190613109565b90505f610ffe8989611c22565b9050836110275761100f8989611c3a565b63ffffffff1682526110218989611c5c565b60608301525b61762f63ffffffff16826020015163ffffffff16036110505761104b8b8284611c6b565b6110ce565b6110658b61105e8d846110f8565b8685611d5d565b508160800151826020015163ffffffff16835f015163ffffffff167fdbfa1659e184c2a9ac37b95df45d50585f6cbed8e1ff61f52300a3af246b0dac8e856040516110c59291906001600160a01b03929092168252602082015260400190565b60405180910390a45b505050505b50505050505050565b6110e58261072c565b6110ee81611640565b61089c838361168f565b5f80836001600160a01b031663963efcaa6040518163ffffffff1660e01b8152600401602060405180830381865afa158015611136573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061115a91906131bf565b90508061116781856131d6565b610e1a91906131f5565b5f8061117b6114ed565b6008810154604051630c2eceab60e21b815263ffffffff8816600482015260056024820152306044820152608060648201525f608482018190529293506001600160a01b03909116906330bb3aac9060a401602060405180830381865afa1580156111e8573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061120c91906131bf565b63ffffffff87165f90815260068401602052604081208054929350909161123290612e47565b80601f016020809104026020016040519081016040528092919081815260200182805461125e90612e47565b80156112a95780601f10611280576101008083540402835291602001916112a9565b820191905f5260205f20905b81548152906001019060200180831161128c57829003601f168201915b5050505050905080515f036112e457506040805180820190915260148152720800880800000000000000000000000000249f60651b60208201525b84511561132b5762061a80866001600160801b031610156113065762061a8095505b808660405160200161131992919061320c565b60405160208183030381529060405290505b6007830154604051631c27ad9960e21b81525f916001600160a01b03169063709eb66490611364908b9030906024908890600401613248565b602060405180830381865afa15801561137f573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906113a391906131bf565b60048501549091505f9082906113bf9063ffffffff16866131f5565b6113c99190613099565b600986015460405163d424422160e01b815230600482015263ffffffff8c166024820152604481018390525f606482018190529293506001600160a01b039091169063d424422190608401602060405180830381865afa15801561142f573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061145391906131bf565b905061145f8183613099565b965061271086600501546127106114769190613099565b61148090896131f5565b61148a91906131d6565b9a9950505050505050505050565b5f806114a26114ed565b5f9384526002016020525050604090205460ff1690565b5f6001600160e01b03198216637965db0b60e01b14806106e157506301ffc9a760e01b6001600160e01b03198316146106e1565b7f6f2b5e4a4e4e1ee6e84aeabd150e6bcb39c4b05494d47809c3cd3d998f85910090565b5f807ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a006106e1565b6115435f3361164d565b505f61154d6114ed565b80546001600160a01b038916640100000000026001600160c01b031990911663ffffffff8b161717815590505f5b82518110156115d6576001826001015f85848151811061159d5761159d61327a565b6020908102919091018101516001600160a01b031682528101919091526040015f20805460ff191691151591909117905560010161157b565b5060048101805463ffffffff191663ffffffff9790971696909617909555506007840180546001600160a01b03199081166001600160a01b039586161790915560088501805482169385169390931790925560099093018054909116929091169190911790555050565b61164a8133611f59565b50565b5f5f8051602061354f833981519152816116678585611f9b565b90508015610e1a575f8581526020839052604090206116869085612043565b50949350505050565b5f5f8051602061354f833981519152816116a98585612057565b90508015610e1a575f85815260208390526040902061168690856120d0565b5f6116d16114ed565b8054909150600160c01b900460ff16156116fe5760405163819f993960e01b815260040160405180910390fd5b6001600160a01b0387165f90815260018201602052604090205460ff1661173857604051633a09f24360e11b815260040160405180910390fd5b6040805160c081018252825463ffffffff9081168252881660208201526001600160801b038516918101919091523360608201526080810186905260a0810183905261178488866110f8565b945084156117f7576117f7886001600160a01b031663fc0c546a6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156117cb573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906117ef919061328e565b3330886120e4565b81545f9063ffffffff9081169089160361181b57611816898784611c6b565b61182b565b6118288987600185611d5d565b90505b6118348161214b565b604080516001600160a01b038b16815260208101889052889163ffffffff8b169133917fbc9ee36b6ca0bdd5b3840e6d329dd19a2490d880c7ce24d9818aa593adfb35be910160405180910390a4505050505050505050565b6118d26040518060e001604052805f63ffffffff1681526020015f80191681526020015f81526020015f81526020016060815260200160608152602001606081525090565b602082015163ffffffff168152604081018390526060810183905260a0820151515f0361190857608082015160208201526106e1565b5f6119168360200151610704565b905080611936576040516352a936ff60e11b815260040160405180910390fd5b602082018190525f61196460408051600360f01b602082015281516002818303018152602290910190915290565b9050611976815f86604001515f6121df565b608084018190526040519091506119919085906020016132a9565b60408051601f1981840301815291905260a0840152505092915050565b5f610e818383612246565b60605f610e818361226c565b5f6119ce6114ed565b63ffffffff9093165f908152600390930160205250604090912055565b5f6106e1825490565b5f805f6119ff6114ed565b805490915064010000000090046001600160a01b03163314611a3457604051637ee14dfd60e01b815260040160405180910390fd5b8054600160c01b900460ff1615611a5e5760405163819f993960e01b815260040160405180910390fd5b6001600160a01b0386165f90815260018201602052604090205460ff16611a9857604051633a09f24360e11b815260040160405180910390fd5b5f611aa38686611c3a565b90505f611ab08787611c5c565b90505f611abd88886122c5565b604080516001600160a01b038c16602082015263ffffffff8616918101919091526001600160401b0382166060820152608081018490529091505f9060a00160408051601f19818403018152918152815160209283012063ffffffff87165f9081526003890184528281205482825260028a0190945291909120549185149850915060ff1615611b56575060019450611bd09350505050565b5f818152600286016020908152604091829020805460ff1916600117905590516001600160a01b038c16815284916001600160401b0385169163ffffffff8816917f0c64ebde8e3c30fe6dade45724a834e5d6c5c30f207a57bcd56cbc26361c2b55910160405180910390a4505f9450611bd09350505050565b935093915050565b6060611be782604c8186613308565b8080601f0160208091040260200160405190810160405280939291908181526020018383808284375f92019190915250929695505050505050565b5f611c31602c600c8486613308565b610e819161332f565b5f611c49600c60088486613308565b611c529161334c565b60e01c9392505050565b5f611c31604c602c8486613308565b60808101518215611ce057611ce0846001600160a01b031663fc0c546a6040518163ffffffff1660e01b8152600401602060405180830381865afa158015611cb5573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611cd9919061328e565b82856122e6565b60a0820151511561089c578151606083015160a084015160405163b56ffd4f60e01b81526001600160a01b0385169363b56ffd4f93611d2a93919290918a918a919060040161337c565b5f604051808303815f87803b158015611d41575f80fd5b505af1158015611d53573d5f803e3d5ffd5b5050505050505050565b5f80611d72611d6c87876110f8565b8461188d565b9050611d8f60405180604001604052805f81526020015f81525090565b8415611e0857604051633b6f743b60e01b81526001600160a01b03881690633b6f743b90611dc39085905f90600401612ffc565b6040805180830381865afa158015611ddd573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611e01919061306b565b9050611e0c565b3481525b8515611e7c57611e7c876001600160a01b031663fc0c546a6040518163ffffffff1660e01b8152600401602060405180830381865afa158015611e51573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611e75919061328e565b8888612317565b805160405163c7c7f5b360e01b81526001600160a01b0389169163c7c7f5b391611eae908690869030906004016133b4565b60c06040518083038185885af1158015611eca573d5f803e3d5ffd5b50505050506040513d601f19601f82011682018060405250810190611eef91906133f2565b505060208401515f9063ffffffff1661762f1480611f1b575061762f611f13610b77565b63ffffffff16145b611f3b57611f36856020015186604001518760a00151611171565b611f3d565b5f5b8251909150611f4d908290613099565b98975050505050505050565b611f638282610e22565b611f975760405163e2517d3f60e01b81526001600160a01b0382166004820152602481018390526044015b60405180910390fd5b5050565b5f5f8051602061356f833981519152611fb48484610e22565b612033575f848152602082815260408083206001600160a01b03871684529091529020805460ff19166001179055611fe93390565b6001600160a01b0316836001600160a01b0316857f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d60405160405180910390a460019150506106e1565b5f9150506106e1565b5092915050565b5f610e81836001600160a01b0384166123a6565b5f5f8051602061356f8339815191526120708484610e22565b15612033575f848152602082815260408083206001600160a01b0387168085529252808320805460ff1916905551339287917ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b9190a460019150506106e1565b5f610e81836001600160a01b0384166123f2565b6040516001600160a01b03848116602483015283811660448301526064820183905261089c9186918216906323b872dd906084015b604051602081830303815290604052915060e01b6020820180516001600160e01b0383818316178352505050506124cc565b8034101561216b5760405162976f7560e21b815260040160405180910390fd5b8034111561164a575f3361217f8334613478565b6040515f81818185875af1925050503d805f81146121b8576040519150601f19603f3d011682016040523d82523d5f602084013e6121bd565b606091505b5050905080611f9757604051633c31275160e21b815260040160405180910390fd5b60608460036121ee825f612538565b61ffff161461222157612201815f612538565b604051633a51740d60e01b815261ffff9091166004820152602401611f8e565b5f61222d868686612594565b905061223b87600383612636565b979650505050505050565b5f825f01828154811061225b5761225b61327a565b905f5260205f200154905092915050565b6060815f018054806020026020016040519081016040528092919081815260200182805480156122b957602002820191905f5260205f20905b8154815260200190600101908083116122a5575b50505050509050919050565b5f6122d36008828486613308565b6122dc9161348b565b60c01c9392505050565b6040516001600160a01b038381166024830152604482018390526109b091859182169063a9059cbb90606401612119565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180516001600160e01b031663095ea7b360e01b179052612368848261269f565b61089c576040516001600160a01b0384811660248301525f604483015261239c91869182169063095ea7b390606401612119565b61089c84826124cc565b5f8181526001830160205260408120546123eb57508154600181810184555f8481526020808220909301849055845484825282860190935260409020919091556106e1565b505f6106e1565b5f8181526001830160205260408120548015612033575f612414600183613478565b85549091505f9061242790600190613478565b9050808214612486575f865f0182815481106124455761244561327a565b905f5260205f200154905080875f0184815481106124655761246561327a565b5f918252602080832090910192909255918252600188019052604090208390555b8554869080612497576124976134b9565b600190038181905f5260205f20015f90559055856001015f8681526020019081526020015f205f9055600193505050506106e1565b5f8060205f8451602086015f885af1806124eb576040513d5f823e3d81fd5b50505f513d9150811561250257806001141561250f565b6001600160a01b0384163b155b1561089c57604051635274afe760e01b81526001600160a01b0385166004820152602401611f8e565b5f612544826002613099565b8351101561258b5760405162461bcd60e51b8152602060048201526014602482015273746f55696e7431365f6f75744f66426f756e647360601b6044820152606401611f8e565b50016002015190565b60606001600160801b038216156125f1576040516001600160f01b031960f086901b1660208201526001600160801b0319608085811b8216602284015284901b166032820152604201604051602081830303815290604052610e1a565b6040516001600160f01b031960f086901b1660208201526001600160801b0319608085901b166022820152603201604051602081830303815290604052949350505050565b6060836003612645825f612538565b61ffff161461265857612201815f612538565b84600161266585516126e4565b6126709060016134cd565b86866040516020016126869594939291906134e8565b6040516020818303038152906040529150509392505050565b5f805f8060205f8651602088015f8a5af192503d91505f519050828015610d7b575081156126d05780600114610d7b565b50505050506001600160a01b03163b151590565b5f61ffff821115612712576040516306dfcc6560e41b81526010600482015260248101839052604401611f8e565b5090565b5f60208284031215612726575f80fd5b81356001600160e01b031981168114610e81575f80fd5b63ffffffff8116811461164a575f80fd5b5f6020828403121561275e575f80fd5b8135610e818161273d565b5f60208284031215612779575f80fd5b5035919050565b6001600160a01b038116811461164a575f80fd5b634e487b7160e01b5f52604160045260245ffd5b60405160c081016001600160401b03811182821017156127ca576127ca612794565b60405290565b604051601f8201601f191681016001600160401b03811182821017156127f8576127f8612794565b604052919050565b5f805f805f805f60e0888a031215612816575f80fd5b87356128218161273d565b965060208881013561283281612780565b965060408901356128428161273d565b9550606089013561285281612780565b9450608089013561286281612780565b935060a089013561287281612780565b925060c08901356001600160401b038082111561288d575f80fd5b818b0191508b601f8301126128a0575f80fd5b8135818111156128b2576128b2612794565b8060051b91506128c38483016127d0565b818152918301840191848101908e8411156128dc575f80fd5b938501935b8385101561290657843592506128f683612780565b82825293850193908501906128e1565b80965050505050505092959891949750929550565b5f806040838503121561292c575f80fd5b82359150602083013561293e81612780565b809150509250929050565b6001600160401b038116811461164a575f80fd5b5f805f8060808587031215612970575f80fd5b843561297b81612780565b9350602085013561298b8161273d565b9250604085013561299b81612949565b9396929550929360600135925050565b5f805f80608085870312156129be575f80fd5b84356129c981612780565b935060208501356129d98161273d565b93969395505050506040820135916060013590565b6001600160801b038116811461164a575f80fd5b5f6001600160401b03821115612a1a57612a1a612794565b50601f01601f191660200190565b5f82601f830112612a37575f80fd5b8135612a4a612a4582612a02565b6127d0565b818152846020838601011115612a5e575f80fd5b816020850160208301375f918101602001919091529392505050565b5f805f805f8060c08789031215612a8f575f80fd5b8635612a9a81612780565b95506020870135612aaa8161273d565b945060408701359350606087013592506080870135612ac8816129ee565b915060a08701356001600160401b03811115612ae2575f80fd5b612aee89828a01612a28565b9150509295509295509295565b5f8060408385031215612b0c575f80fd5b8235612b178161273d565b915060208301356001600160401b03811115612b31575f80fd5b612b3d85828601612a28565b9150509250929050565b5f60208284031215612b57575f80fd5b8135610e8181612780565b5f5b83811015612b7c578181015183820152602001612b64565b50505f910152565b5f8151808452612b9b816020860160208601612b62565b601f01601f19169290920160200192915050565b602081525f610e816020830184612b84565b5f805f60608486031215612bd3575f80fd5b8335612bde81612780565b92506020840135915060408401356001600160401b03811115612bff575f80fd5b612c0b86828701612a28565b9150509250925092565b5f8060408385031215612c26575f80fd5b50508035926020909101359150565b602080825282518282018190525f9190848201906040850190845b81811015612c755783516001600160a01b031683529284019291840191600101612c50565b50909695505050505050565b5f8060408385031215612c92575f80fd5b8235612c9d8161273d565b9150602083013561293e81612780565b5f8060408385031215612cbe575f80fd5b8235612cc981612780565b91506020830135801515811461293e575f80fd5b5f8060408385031215612cee575f80fd5b8235612cf98161273d565b946020939093013593505050565b5f8083601f840112612d17575f80fd5b5081356001600160401b03811115612d2d575f80fd5b602083019150836020828501011115612d44575f80fd5b9250929050565b5f805f805f805f60a0888a031215612d61575f80fd5b8735612d6c81612780565b96506020880135955060408801356001600160401b0380821115612d8e575f80fd5b612d9a8b838c01612d07565b909750955060608a01359150612daf82612780565b90935060808901359080821115612dc4575f80fd5b50612dd18a828b01612d07565b989b979a50959850939692959293505050565b5f8060408385031215612df5575f80fd5b8235612cf981612780565b5f805f60608486031215612e12575f80fd5b8335612e1d8161273d565b92506020840135612e2d816129ee565b915060408401356001600160401b03811115612bff575f80fd5b600181811c90821680612e5b57607f821691505b602082108103612e7957634e487b7160e01b5f52602260045260245ffd5b50919050565b601f8211156109b057805f5260205f20601f840160051c81016020851015612ea45750805b601f840160051c820191505b81811015610a56575f8155600101612eb0565b81516001600160401b03811115612edc57612edc612794565b612ef081612eea8454612e47565b84612e7f565b602080601f831160018114612f23575f8415612f0c5750858301515b5f19600386901b1c1916600185901b178555610a18565b5f85815260208120601f198616915b82811015612f5157888601518255948401946001909101908401612f32565b5085821015612f6e57878501515f19600388901b60f8161c191681555b5050505050600190811b01905550565b63ffffffff81511682526020810151602083015260408101516040830152606081015160608301525f608082015160e06080850152612fc060e0850182612b84565b905060a083015184820360a0860152612fd98282612b84565b91505060c083015184820360c0860152612ff38282612b84565b95945050505050565b604081525f61300e6040830185612f7e565b905082151560208301529392505050565b5f6040828403121561302f575f80fd5b604051604081018181106001600160401b038211171561305157613051612794565b604052825181526020928301519281019290925250919050565b5f6040828403121561307b575f80fd5b610e81838361301f565b634e487b7160e01b5f52601160045260245ffd5b808201808211156106e1576106e1613085565b5f82516130bd818460208701612b62565b9190910192915050565b5f82601f8301126130d6575f80fd5b81516130e4612a4582612a02565b8181528460208386010111156130f8575f80fd5b610e1a826020830160208701612b62565b5f60208284031215613119575f80fd5b81516001600160401b038082111561312f575f80fd5b9083019060c08286031215613142575f80fd5b61314a6127a8565b82516131558161273d565b815260208301516131658161273d565b60208201526040830151613178816129ee565b80604083015250606083015160608201526080830151608082015260a0830151828111156131a4575f80fd5b6131b0878286016130c7565b60a08301525095945050505050565b5f602082840312156131cf575f80fd5b5051919050565b5f826131f057634e487b7160e01b5f52601260045260245ffd5b500490565b80820281158282048414176106e1576106e1613085565b5f835161321d818460208801612b62565b630100130360e01b92019182525060809190911b6001600160801b0319166006820152601601919050565b63ffffffff8516815260018060a01b0384166020820152826040820152608060608201525f610d7b6080830184612b84565b634e487b7160e01b5f52603260045260245ffd5b5f6020828403121561329e575f80fd5b8151610e8181612780565b602081525f63ffffffff808451166020840152806020850151166040840152506001600160801b03604084015116606083015260608301516080830152608083015160a083015260a083015160c080840152610e1a60e0840182612b84565b5f8085851115613316575f80fd5b83861115613322575f80fd5b5050820193919092039150565b803560208310156106e1575f19602084900360031b1b1692915050565b6001600160e01b031981358181169160048510156133745780818660040360031b1b83161692505b505092915050565b63ffffffff8616815284602082015260018060a01b038416604082015282606082015260a060808201525f61223b60a0830184612b84565b608081525f6133c66080830186612f7e565b8451602084810191909152909401516040830152506001600160a01b0391909116606090910152919050565b5f8082840360c0811215613404575f80fd5b6080811215613411575f80fd5b50604051606081018181106001600160401b038211171561343457613434612794565b60405283518152602084015161344981612949565b602082015261345b856040860161301f565b6040820152915061346f846080850161301f565b90509250929050565b818103818111156106e1576106e1613085565b6001600160c01b031981358181169160088510156133745760089490940360031b84901b1690921692915050565b634e487b7160e01b5f52603160045260245ffd5b61ffff81811683821601908082111561203c5761203c613085565b5f86516134f9818460208b01612b62565b6001600160f81b031960f888811b82169285019283526001600160f01b031960f089901b16600184015286901b166003820152835161353f816004840160208801612b62565b0160040197965050505050505056fec1f6fe24621ce81ec5827caf0253cadb74709b061630e6b55e8237170593200002dd7bc7dec4dceedda775e58dd541e08a116c6c53815c0bd028192f7b626800

Deployed Bytecode

0x60806040526004361061022b575f3560e01c80637260753711610129578063b218b198116100a8578063d0a102601161006d578063d0a102601461062e578063d547741f14610641578063e6b215da14610660578063fb478f3b1461067f578063fc5f35651461069e575f80fd5b8063b218b198146105a9578063b8948dfd146105bd578063bcde5327146105dc578063ca15c873146105fb578063d01dbc621461061a575f80fd5b806391d14854116100ee57806391d148541461050d578063a217fddf1461052c578063a3246ad31461053f578063aa662ee31461056b578063b03787501461058a575f80fd5b8063726075371461045b5780638153924b146104845780638692040c146104b05780638f6b3311146104cf5780639010d07c146104ee575f80fd5b806336568abe116101b55780635c975abb1161017a5780635c975abb146103ec5780635e280f1114610400578063630dc7cb1461041457806367fb473814610428578063686dc57c14610447575f80fd5b806336568abe146103695780633e832c90146103885780634198dcf41461039b5780635135db46146103ae57806359c7c516146103cd575f80fd5b806324df604b116101fb57806324df604b146102e25780632c20e87d146102f65780632d2c5565146103175780632f2ff15d1461032b57806332fb38d91461034a575f80fd5b806301ffc9a714610236578063104db3801461026a57806321ad0b4514610296578063248a9ca3146102c3575f80fd5b3661023257005b5f80fd5b348015610241575f80fd5b50610255610250366004612716565b6106bd565b60405190151581526020015b60405180910390f35b348015610275575f80fd5b5061027e6106e7565b6040516001600160a01b039091168152602001610261565b3480156102a1575f80fd5b506102b56102b036600461274e565b610704565b604051908152602001610261565b3480156102ce575f80fd5b506102b56102dd366004612769565b61072c565b3480156102ed575f80fd5b506102b561074c565b348015610301575f80fd5b50610315610310366004612800565b610760565b005b348015610322575f80fd5b5061027e610863565b348015610336575f80fd5b5061031561034536600461291b565b610880565b348015610355575f80fd5b5061031561036436600461295d565b6108a2565b348015610374575f80fd5b5061031561038336600461291b565b61097d565b6103156103963660046129ab565b6109b5565b6103156103a9366004612a7a565b6109cd565b3480156103b9575f80fd5b506103156103c8366004612afb565b610a20565b3480156103d8575f80fd5b506102556103e7366004612b47565b610a5d565b3480156103f7575f80fd5b50610255610a8b565b34801561040b575f80fd5b5061027e610aa6565b34801561041f575f80fd5b5061027e610ac8565b348015610433575f80fd5b50610315610442366004612769565b610ae5565b348015610452575f80fd5b50610315610b03565b348015610466575f80fd5b5061046f610b77565b60405163ffffffff9091168152602001610261565b34801561048f575f80fd5b506104a361049e36600461274e565b610b8e565b6040516102619190612baf565b3480156104bb575f80fd5b506102b56104ca366004612a7a565b610c42565b3480156104da575f80fd5b506103156104e9366004612bc1565b610d85565b3480156104f9575f80fd5b5061027e610508366004612c15565b610df5565b348015610518575f80fd5b5061025561052736600461291b565b610e22565b348015610537575f80fd5b506102b55f81565b34801561054a575f80fd5b5061055e610559366004612769565b610e58565b6040516102619190612c35565b348015610576575f80fd5b50610315610585366004612c81565b610e88565b348015610595575f80fd5b506103156105a436600461274e565b610ea5565b3480156105b4575f80fd5b5061046f610ed8565b3480156105c8575f80fd5b506103156105d7366004612cad565b610ef2565b3480156105e7575f80fd5b506103156105f6366004612cdd565b610f35565b348015610606575f80fd5b506102b5610615366004612769565b610f49565b348015610625575f80fd5b50610315610f6d565b61031561063c366004612d4b565b610f8f565b34801561064c575f80fd5b5061031561065b36600461291b565b6110dc565b34801561066b575f80fd5b506102b561067a366004612de4565b6110f8565b34801561068a575f80fd5b506102b5610699366004612e00565b611171565b3480156106a9575f80fd5b506102556106b8366004612769565b611498565b5f6001600160e01b03198216635a05180f60e01b14806106e157506106e1826114b9565b92915050565b5f806106f16114ed565b600801546001600160a01b031692915050565b5f8061070e6114ed565b63ffffffff9093165f90815260039093016020525050604090205490565b5f9081525f8051602061356f833981519152602052604090206001015490565b5f806107566114ed565b6005015492915050565b5f610769611511565b805490915060ff600160401b82041615906001600160401b03165f8115801561078f5750825b90505f826001600160401b031660011480156107aa5750303b155b9050811580156107b8575080155b156107d65760405163f92ee8a960e01b815260040160405180910390fd5b845467ffffffffffffffff19166001178555831561080057845460ff60401b1916600160401b1785555b61080f8c8c8c8c8c8c8c611539565b831561085557845460ff60401b19168555604051600181527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d29060200160405180910390a15b505050505050505050505050565b5f8061086d6114ed565b600901546001600160a01b031692915050565b6108898261072c565b61089281611640565b61089c838361164d565b50505050565b5f6108ac81611640565b5f6108b56114ed565b604080516001600160a01b038916602082015263ffffffff8816918101919091526001600160401b0386166060820152608081018590529091505f9060a00160408051601f1981840301815282825280516020918201205f81815260028701835292909220805460ff191660011790556001600160a01b038a16835290925085916001600160401b0388169163ffffffff8a16917f0c64ebde8e3c30fe6dade45724a834e5d6c5c30f207a57bcd56cbc26361c2b55910160405180910390a450505050505050565b6001600160a01b03811633146109a65760405163334bd91960e11b815260040160405180910390fd5b6109b0828261168f565b505050565b61089c848484845f60405180602001604052805f8152505b63ffffffff851661762f148015906109ec57505f6109ea86610704565b145b15610a0a5760405163b86ac1ef60e01b815260040160405180910390fd5b610a188686868686866116c8565b505050505050565b5f610a2a81611640565b5f610a336114ed565b63ffffffff85165f9081526006820160205260409020909150610a568482612ec3565b5050505050565b5f80610a676114ed565b6001600160a01b039093165f90815260019093016020525050604090205460ff1690565b5f80610a956114ed565b54600160c01b900460ff1692915050565b5f80610ab06114ed565b5464010000000090046001600160a01b031692915050565b5f80610ad26114ed565b600701546001600160a01b031692915050565b5f610aef81611640565b5f610af86114ed565b600501929092555050565b610b0d5f33610e22565b80610b3d5750610b3d7f65d7a28e3265b37a6474929f336521b332c1681b933f6cb9f3376673440d862a33610e22565b610b5a5760405163ea8e4eb560e01b815260040160405180910390fd5b5f610b636114ed565b805460ff60c01b1916600160c01b17905550565b5f80610b816114ed565b5463ffffffff1692915050565b60605f610b996114ed565b63ffffffff84165f9081526006820160205260409020805491925090610bbe90612e47565b80601f0160208091040260200160405190810160405280929190818152602001828054610bea90612e47565b8015610c355780601f10610c0c57610100808354040283529160200191610c35565b820191905f5260205f20905b815481529060010190602001808311610c1857829003601f168201915b5050505050915050919050565b5f80610c4c610b77565b90508063ffffffff168763ffffffff1603610c6a575f915050610d7b565b6040805160c08101825263ffffffff8084168252891660208201526001600160801b038616918101919091523360608201526080810187905260a081018490525f610cbe610cb88b896110f8565b8361188d565b90505f8a6001600160a01b0316633b6f743b835f6040518363ffffffff1660e01b8152600401610cef929190612ffc565b6040805180830381865afa158015610d09573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d2d919061306b565b90505f63ffffffff8b1661762f1480610d4d575063ffffffff851661762f145b610d6157610d5c8b8989611171565b610d63565b5f5b8251909150610d73908290613099565b955050505050505b9695505050505050565b5f610d8f81611640565b5f846001600160a01b03168484604051610da991906130ac565b5f6040518083038185875af1925050503d805f8114610de3576040519150601f19603f3d011682016040523d82523d5f602084013e610de8565b606091505b5050905080610a56575f80fd5b5f8281525f8051602061354f833981519152602081905260408220610e1a90846119ae565b949350505050565b5f9182525f8051602061356f833981519152602090815260408084206001600160a01b0393909316845291905290205460ff1690565b5f8181525f8051602061354f8339815191526020819052604090912060609190610e81906119b9565b9392505050565b5f610e9281611640565b6109b0836001600160a01b0384166119c5565b5f610eaf81611640565b5f610eb86114ed565b600401805463ffffffff191663ffffffff94909416939093179092555050565b5f80610ee26114ed565b6004015463ffffffff1692915050565b5f610efc81611640565b5f610f056114ed565b6001600160a01b03949094165f908152600190940160205250506040909120805460ff1916911515919091179055565b5f610f3f81611640565b6109b083836119c5565b5f8181525f8051602061354f833981519152602081905260408220610e81906119eb565b5f610f7781611640565b5f610f806114ed565b805460ff60c01b191690555050565b610f97610a8b565b15610fb55760405163819f993960e01b815260040160405180910390fd5b5f80610fc28988886119f4565b915091508015610fd35750506110d3565b5f610fde8888611bd8565b806020019051810190610ff19190613109565b90505f610ffe8989611c22565b9050836110275761100f8989611c3a565b63ffffffff1682526110218989611c5c565b60608301525b61762f63ffffffff16826020015163ffffffff16036110505761104b8b8284611c6b565b6110ce565b6110658b61105e8d846110f8565b8685611d5d565b508160800151826020015163ffffffff16835f015163ffffffff167fdbfa1659e184c2a9ac37b95df45d50585f6cbed8e1ff61f52300a3af246b0dac8e856040516110c59291906001600160a01b03929092168252602082015260400190565b60405180910390a45b505050505b50505050505050565b6110e58261072c565b6110ee81611640565b61089c838361168f565b5f80836001600160a01b031663963efcaa6040518163ffffffff1660e01b8152600401602060405180830381865afa158015611136573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061115a91906131bf565b90508061116781856131d6565b610e1a91906131f5565b5f8061117b6114ed565b6008810154604051630c2eceab60e21b815263ffffffff8816600482015260056024820152306044820152608060648201525f608482018190529293506001600160a01b03909116906330bb3aac9060a401602060405180830381865afa1580156111e8573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061120c91906131bf565b63ffffffff87165f90815260068401602052604081208054929350909161123290612e47565b80601f016020809104026020016040519081016040528092919081815260200182805461125e90612e47565b80156112a95780601f10611280576101008083540402835291602001916112a9565b820191905f5260205f20905b81548152906001019060200180831161128c57829003601f168201915b5050505050905080515f036112e457506040805180820190915260148152720800880800000000000000000000000000249f60651b60208201525b84511561132b5762061a80866001600160801b031610156113065762061a8095505b808660405160200161131992919061320c565b60405160208183030381529060405290505b6007830154604051631c27ad9960e21b81525f916001600160a01b03169063709eb66490611364908b9030906024908890600401613248565b602060405180830381865afa15801561137f573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906113a391906131bf565b60048501549091505f9082906113bf9063ffffffff16866131f5565b6113c99190613099565b600986015460405163d424422160e01b815230600482015263ffffffff8c166024820152604481018390525f606482018190529293506001600160a01b039091169063d424422190608401602060405180830381865afa15801561142f573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061145391906131bf565b905061145f8183613099565b965061271086600501546127106114769190613099565b61148090896131f5565b61148a91906131d6565b9a9950505050505050505050565b5f806114a26114ed565b5f9384526002016020525050604090205460ff1690565b5f6001600160e01b03198216637965db0b60e01b14806106e157506301ffc9a760e01b6001600160e01b03198316146106e1565b7f6f2b5e4a4e4e1ee6e84aeabd150e6bcb39c4b05494d47809c3cd3d998f85910090565b5f807ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a006106e1565b6115435f3361164d565b505f61154d6114ed565b80546001600160a01b038916640100000000026001600160c01b031990911663ffffffff8b161717815590505f5b82518110156115d6576001826001015f85848151811061159d5761159d61327a565b6020908102919091018101516001600160a01b031682528101919091526040015f20805460ff191691151591909117905560010161157b565b5060048101805463ffffffff191663ffffffff9790971696909617909555506007840180546001600160a01b03199081166001600160a01b039586161790915560088501805482169385169390931790925560099093018054909116929091169190911790555050565b61164a8133611f59565b50565b5f5f8051602061354f833981519152816116678585611f9b565b90508015610e1a575f8581526020839052604090206116869085612043565b50949350505050565b5f5f8051602061354f833981519152816116a98585612057565b90508015610e1a575f85815260208390526040902061168690856120d0565b5f6116d16114ed565b8054909150600160c01b900460ff16156116fe5760405163819f993960e01b815260040160405180910390fd5b6001600160a01b0387165f90815260018201602052604090205460ff1661173857604051633a09f24360e11b815260040160405180910390fd5b6040805160c081018252825463ffffffff9081168252881660208201526001600160801b038516918101919091523360608201526080810186905260a0810183905261178488866110f8565b945084156117f7576117f7886001600160a01b031663fc0c546a6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156117cb573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906117ef919061328e565b3330886120e4565b81545f9063ffffffff9081169089160361181b57611816898784611c6b565b61182b565b6118288987600185611d5d565b90505b6118348161214b565b604080516001600160a01b038b16815260208101889052889163ffffffff8b169133917fbc9ee36b6ca0bdd5b3840e6d329dd19a2490d880c7ce24d9818aa593adfb35be910160405180910390a4505050505050505050565b6118d26040518060e001604052805f63ffffffff1681526020015f80191681526020015f81526020015f81526020016060815260200160608152602001606081525090565b602082015163ffffffff168152604081018390526060810183905260a0820151515f0361190857608082015160208201526106e1565b5f6119168360200151610704565b905080611936576040516352a936ff60e11b815260040160405180910390fd5b602082018190525f61196460408051600360f01b602082015281516002818303018152602290910190915290565b9050611976815f86604001515f6121df565b608084018190526040519091506119919085906020016132a9565b60408051601f1981840301815291905260a0840152505092915050565b5f610e818383612246565b60605f610e818361226c565b5f6119ce6114ed565b63ffffffff9093165f908152600390930160205250604090912055565b5f6106e1825490565b5f805f6119ff6114ed565b805490915064010000000090046001600160a01b03163314611a3457604051637ee14dfd60e01b815260040160405180910390fd5b8054600160c01b900460ff1615611a5e5760405163819f993960e01b815260040160405180910390fd5b6001600160a01b0386165f90815260018201602052604090205460ff16611a9857604051633a09f24360e11b815260040160405180910390fd5b5f611aa38686611c3a565b90505f611ab08787611c5c565b90505f611abd88886122c5565b604080516001600160a01b038c16602082015263ffffffff8616918101919091526001600160401b0382166060820152608081018490529091505f9060a00160408051601f19818403018152918152815160209283012063ffffffff87165f9081526003890184528281205482825260028a0190945291909120549185149850915060ff1615611b56575060019450611bd09350505050565b5f818152600286016020908152604091829020805460ff1916600117905590516001600160a01b038c16815284916001600160401b0385169163ffffffff8816917f0c64ebde8e3c30fe6dade45724a834e5d6c5c30f207a57bcd56cbc26361c2b55910160405180910390a4505f9450611bd09350505050565b935093915050565b6060611be782604c8186613308565b8080601f0160208091040260200160405190810160405280939291908181526020018383808284375f92019190915250929695505050505050565b5f611c31602c600c8486613308565b610e819161332f565b5f611c49600c60088486613308565b611c529161334c565b60e01c9392505050565b5f611c31604c602c8486613308565b60808101518215611ce057611ce0846001600160a01b031663fc0c546a6040518163ffffffff1660e01b8152600401602060405180830381865afa158015611cb5573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611cd9919061328e565b82856122e6565b60a0820151511561089c578151606083015160a084015160405163b56ffd4f60e01b81526001600160a01b0385169363b56ffd4f93611d2a93919290918a918a919060040161337c565b5f604051808303815f87803b158015611d41575f80fd5b505af1158015611d53573d5f803e3d5ffd5b5050505050505050565b5f80611d72611d6c87876110f8565b8461188d565b9050611d8f60405180604001604052805f81526020015f81525090565b8415611e0857604051633b6f743b60e01b81526001600160a01b03881690633b6f743b90611dc39085905f90600401612ffc565b6040805180830381865afa158015611ddd573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611e01919061306b565b9050611e0c565b3481525b8515611e7c57611e7c876001600160a01b031663fc0c546a6040518163ffffffff1660e01b8152600401602060405180830381865afa158015611e51573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611e75919061328e565b8888612317565b805160405163c7c7f5b360e01b81526001600160a01b0389169163c7c7f5b391611eae908690869030906004016133b4565b60c06040518083038185885af1158015611eca573d5f803e3d5ffd5b50505050506040513d601f19601f82011682018060405250810190611eef91906133f2565b505060208401515f9063ffffffff1661762f1480611f1b575061762f611f13610b77565b63ffffffff16145b611f3b57611f36856020015186604001518760a00151611171565b611f3d565b5f5b8251909150611f4d908290613099565b98975050505050505050565b611f638282610e22565b611f975760405163e2517d3f60e01b81526001600160a01b0382166004820152602481018390526044015b60405180910390fd5b5050565b5f5f8051602061356f833981519152611fb48484610e22565b612033575f848152602082815260408083206001600160a01b03871684529091529020805460ff19166001179055611fe93390565b6001600160a01b0316836001600160a01b0316857f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d60405160405180910390a460019150506106e1565b5f9150506106e1565b5092915050565b5f610e81836001600160a01b0384166123a6565b5f5f8051602061356f8339815191526120708484610e22565b15612033575f848152602082815260408083206001600160a01b0387168085529252808320805460ff1916905551339287917ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b9190a460019150506106e1565b5f610e81836001600160a01b0384166123f2565b6040516001600160a01b03848116602483015283811660448301526064820183905261089c9186918216906323b872dd906084015b604051602081830303815290604052915060e01b6020820180516001600160e01b0383818316178352505050506124cc565b8034101561216b5760405162976f7560e21b815260040160405180910390fd5b8034111561164a575f3361217f8334613478565b6040515f81818185875af1925050503d805f81146121b8576040519150601f19603f3d011682016040523d82523d5f602084013e6121bd565b606091505b5050905080611f9757604051633c31275160e21b815260040160405180910390fd5b60608460036121ee825f612538565b61ffff161461222157612201815f612538565b604051633a51740d60e01b815261ffff9091166004820152602401611f8e565b5f61222d868686612594565b905061223b87600383612636565b979650505050505050565b5f825f01828154811061225b5761225b61327a565b905f5260205f200154905092915050565b6060815f018054806020026020016040519081016040528092919081815260200182805480156122b957602002820191905f5260205f20905b8154815260200190600101908083116122a5575b50505050509050919050565b5f6122d36008828486613308565b6122dc9161348b565b60c01c9392505050565b6040516001600160a01b038381166024830152604482018390526109b091859182169063a9059cbb90606401612119565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180516001600160e01b031663095ea7b360e01b179052612368848261269f565b61089c576040516001600160a01b0384811660248301525f604483015261239c91869182169063095ea7b390606401612119565b61089c84826124cc565b5f8181526001830160205260408120546123eb57508154600181810184555f8481526020808220909301849055845484825282860190935260409020919091556106e1565b505f6106e1565b5f8181526001830160205260408120548015612033575f612414600183613478565b85549091505f9061242790600190613478565b9050808214612486575f865f0182815481106124455761244561327a565b905f5260205f200154905080875f0184815481106124655761246561327a565b5f918252602080832090910192909255918252600188019052604090208390555b8554869080612497576124976134b9565b600190038181905f5260205f20015f90559055856001015f8681526020019081526020015f205f9055600193505050506106e1565b5f8060205f8451602086015f885af1806124eb576040513d5f823e3d81fd5b50505f513d9150811561250257806001141561250f565b6001600160a01b0384163b155b1561089c57604051635274afe760e01b81526001600160a01b0385166004820152602401611f8e565b5f612544826002613099565b8351101561258b5760405162461bcd60e51b8152602060048201526014602482015273746f55696e7431365f6f75744f66426f756e647360601b6044820152606401611f8e565b50016002015190565b60606001600160801b038216156125f1576040516001600160f01b031960f086901b1660208201526001600160801b0319608085811b8216602284015284901b166032820152604201604051602081830303815290604052610e1a565b6040516001600160f01b031960f086901b1660208201526001600160801b0319608085901b166022820152603201604051602081830303815290604052949350505050565b6060836003612645825f612538565b61ffff161461265857612201815f612538565b84600161266585516126e4565b6126709060016134cd565b86866040516020016126869594939291906134e8565b6040516020818303038152906040529150509392505050565b5f805f8060205f8651602088015f8a5af192503d91505f519050828015610d7b575081156126d05780600114610d7b565b50505050506001600160a01b03163b151590565b5f61ffff821115612712576040516306dfcc6560e41b81526010600482015260248101839052604401611f8e565b5090565b5f60208284031215612726575f80fd5b81356001600160e01b031981168114610e81575f80fd5b63ffffffff8116811461164a575f80fd5b5f6020828403121561275e575f80fd5b8135610e818161273d565b5f60208284031215612779575f80fd5b5035919050565b6001600160a01b038116811461164a575f80fd5b634e487b7160e01b5f52604160045260245ffd5b60405160c081016001600160401b03811182821017156127ca576127ca612794565b60405290565b604051601f8201601f191681016001600160401b03811182821017156127f8576127f8612794565b604052919050565b5f805f805f805f60e0888a031215612816575f80fd5b87356128218161273d565b965060208881013561283281612780565b965060408901356128428161273d565b9550606089013561285281612780565b9450608089013561286281612780565b935060a089013561287281612780565b925060c08901356001600160401b038082111561288d575f80fd5b818b0191508b601f8301126128a0575f80fd5b8135818111156128b2576128b2612794565b8060051b91506128c38483016127d0565b818152918301840191848101908e8411156128dc575f80fd5b938501935b8385101561290657843592506128f683612780565b82825293850193908501906128e1565b80965050505050505092959891949750929550565b5f806040838503121561292c575f80fd5b82359150602083013561293e81612780565b809150509250929050565b6001600160401b038116811461164a575f80fd5b5f805f8060808587031215612970575f80fd5b843561297b81612780565b9350602085013561298b8161273d565b9250604085013561299b81612949565b9396929550929360600135925050565b5f805f80608085870312156129be575f80fd5b84356129c981612780565b935060208501356129d98161273d565b93969395505050506040820135916060013590565b6001600160801b038116811461164a575f80fd5b5f6001600160401b03821115612a1a57612a1a612794565b50601f01601f191660200190565b5f82601f830112612a37575f80fd5b8135612a4a612a4582612a02565b6127d0565b818152846020838601011115612a5e575f80fd5b816020850160208301375f918101602001919091529392505050565b5f805f805f8060c08789031215612a8f575f80fd5b8635612a9a81612780565b95506020870135612aaa8161273d565b945060408701359350606087013592506080870135612ac8816129ee565b915060a08701356001600160401b03811115612ae2575f80fd5b612aee89828a01612a28565b9150509295509295509295565b5f8060408385031215612b0c575f80fd5b8235612b178161273d565b915060208301356001600160401b03811115612b31575f80fd5b612b3d85828601612a28565b9150509250929050565b5f60208284031215612b57575f80fd5b8135610e8181612780565b5f5b83811015612b7c578181015183820152602001612b64565b50505f910152565b5f8151808452612b9b816020860160208601612b62565b601f01601f19169290920160200192915050565b602081525f610e816020830184612b84565b5f805f60608486031215612bd3575f80fd5b8335612bde81612780565b92506020840135915060408401356001600160401b03811115612bff575f80fd5b612c0b86828701612a28565b9150509250925092565b5f8060408385031215612c26575f80fd5b50508035926020909101359150565b602080825282518282018190525f9190848201906040850190845b81811015612c755783516001600160a01b031683529284019291840191600101612c50565b50909695505050505050565b5f8060408385031215612c92575f80fd5b8235612c9d8161273d565b9150602083013561293e81612780565b5f8060408385031215612cbe575f80fd5b8235612cc981612780565b91506020830135801515811461293e575f80fd5b5f8060408385031215612cee575f80fd5b8235612cf98161273d565b946020939093013593505050565b5f8083601f840112612d17575f80fd5b5081356001600160401b03811115612d2d575f80fd5b602083019150836020828501011115612d44575f80fd5b9250929050565b5f805f805f805f60a0888a031215612d61575f80fd5b8735612d6c81612780565b96506020880135955060408801356001600160401b0380821115612d8e575f80fd5b612d9a8b838c01612d07565b909750955060608a01359150612daf82612780565b90935060808901359080821115612dc4575f80fd5b50612dd18a828b01612d07565b989b979a50959850939692959293505050565b5f8060408385031215612df5575f80fd5b8235612cf981612780565b5f805f60608486031215612e12575f80fd5b8335612e1d8161273d565b92506020840135612e2d816129ee565b915060408401356001600160401b03811115612bff575f80fd5b600181811c90821680612e5b57607f821691505b602082108103612e7957634e487b7160e01b5f52602260045260245ffd5b50919050565b601f8211156109b057805f5260205f20601f840160051c81016020851015612ea45750805b601f840160051c820191505b81811015610a56575f8155600101612eb0565b81516001600160401b03811115612edc57612edc612794565b612ef081612eea8454612e47565b84612e7f565b602080601f831160018114612f23575f8415612f0c5750858301515b5f19600386901b1c1916600185901b178555610a18565b5f85815260208120601f198616915b82811015612f5157888601518255948401946001909101908401612f32565b5085821015612f6e57878501515f19600388901b60f8161c191681555b5050505050600190811b01905550565b63ffffffff81511682526020810151602083015260408101516040830152606081015160608301525f608082015160e06080850152612fc060e0850182612b84565b905060a083015184820360a0860152612fd98282612b84565b91505060c083015184820360c0860152612ff38282612b84565b95945050505050565b604081525f61300e6040830185612f7e565b905082151560208301529392505050565b5f6040828403121561302f575f80fd5b604051604081018181106001600160401b038211171561305157613051612794565b604052825181526020928301519281019290925250919050565b5f6040828403121561307b575f80fd5b610e81838361301f565b634e487b7160e01b5f52601160045260245ffd5b808201808211156106e1576106e1613085565b5f82516130bd818460208701612b62565b9190910192915050565b5f82601f8301126130d6575f80fd5b81516130e4612a4582612a02565b8181528460208386010111156130f8575f80fd5b610e1a826020830160208701612b62565b5f60208284031215613119575f80fd5b81516001600160401b038082111561312f575f80fd5b9083019060c08286031215613142575f80fd5b61314a6127a8565b82516131558161273d565b815260208301516131658161273d565b60208201526040830151613178816129ee565b80604083015250606083015160608201526080830151608082015260a0830151828111156131a4575f80fd5b6131b0878286016130c7565b60a08301525095945050505050565b5f602082840312156131cf575f80fd5b5051919050565b5f826131f057634e487b7160e01b5f52601260045260245ffd5b500490565b80820281158282048414176106e1576106e1613085565b5f835161321d818460208801612b62565b630100130360e01b92019182525060809190911b6001600160801b0319166006820152601601919050565b63ffffffff8516815260018060a01b0384166020820152826040820152608060608201525f610d7b6080830184612b84565b634e487b7160e01b5f52603260045260245ffd5b5f6020828403121561329e575f80fd5b8151610e8181612780565b602081525f63ffffffff808451166020840152806020850151166040840152506001600160801b03604084015116606083015260608301516080830152608083015160a083015260a083015160c080840152610e1a60e0840182612b84565b5f8085851115613316575f80fd5b83861115613322575f80fd5b5050820193919092039150565b803560208310156106e1575f19602084900360031b1b1692915050565b6001600160e01b031981358181169160048510156133745780818660040360031b1b83161692505b505092915050565b63ffffffff8616815284602082015260018060a01b038416604082015282606082015260a060808201525f61223b60a0830184612b84565b608081525f6133c66080830186612f7e565b8451602084810191909152909401516040830152506001600160a01b0391909116606090910152919050565b5f8082840360c0811215613404575f80fd5b6080811215613411575f80fd5b50604051606081018181106001600160401b038211171561343457613434612794565b60405283518152602084015161344981612949565b602082015261345b856040860161301f565b6040820152915061346f846080850161301f565b90509250929050565b818103818111156106e1576106e1613085565b6001600160c01b031981358181169160088510156133745760089490940360031b84901b1690921692915050565b634e487b7160e01b5f52603160045260245ffd5b61ffff81811683821601908082111561203c5761203c613085565b5f86516134f9818460208b01612b62565b6001600160f81b031960f888811b82169285019283526001600160f01b031960f089901b16600184015286901b166003820152835161353f816004840160208801612b62565b0160040197965050505050505056fec1f6fe24621ce81ec5827caf0253cadb74709b061630e6b55e8237170593200002dd7bc7dec4dceedda775e58dd541e08a116c6c53815c0bd028192f7b626800

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.