FRAX Price: $1.03 (+6.66%)

Contract

0x93e57A196454CB919193fa9946f14943cf733845

Overview

FRAX Balance | FXTL Balance

0 FRAX | 0 FXTL

FRAX Value

$0.00

More Info

Private Name Tags

Multichain Info

No addresses found
Transaction Hash
Block
From
To

There are no matching entries

Please try again later

View more zero value Internal Transactions in Advanced View mode

Advanced mode:

Cross-Chain Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
GasPriceOracle

Compiler Version
v0.8.15+commit.e14f2714

Optimization Enabled:
Yes with 999999 runs

Other Settings:
london EvmVersion
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;

// Libraries
import { LibZip } from "@solady/utils/LibZip.sol";
import { Predeploys } from "src/libraries/Predeploys.sol";
import { Constants } from "src/libraries/Constants.sol";
import { Arithmetic } from "src/libraries/Arithmetic.sol";

// Interfaces
import { ISemver } from "interfaces/universal/ISemver.sol";
import { IL1Block } from "interfaces/L2/IL1Block.sol";

/// @custom:proxied true
/// @custom:predeploy 0x420000000000000000000000000000000000000F
/// @title GasPriceOracle
/// @notice This contract maintains the variables responsible for computing the L1 portion of the
///         total fee charged on L2. Before Bedrock, this contract held variables in state that were
///         read during the state transition function to compute the L1 portion of the transaction
///         fee. After Bedrock, this contract now simply proxies the L1Block contract, which has
///         the values used to compute the L1 portion of the fee in its state.
///
///         The contract exposes an API that is useful for knowing how large the L1 portion of the
///         transaction fee will be. The following events were deprecated with Bedrock:
///         - event OverheadUpdated(uint256 overhead);
///         - event ScalarUpdated(uint256 scalar);
///         - event DecimalsUpdated(uint256 decimals);
contract GasPriceOracle is ISemver {
    /// @notice Number of decimals used in the scalar.
    uint256 public constant DECIMALS = 6;

    /// @notice Semantic version.
    /// @custom:semver 1.4.0
    string public constant version = "1.4.0";

    /// @notice This is the intercept value for the linear regression used to estimate the final size of the
    ///         compressed transaction.
    int32 private constant COST_INTERCEPT = -42_585_600;

    /// @notice This is the coefficient value for the linear regression used to estimate the final size of the
    ///         compressed transaction.
    uint32 private constant COST_FASTLZ_COEF = 836_500;

    /// @notice This is the minimum bound for the fastlz to brotli size estimation. Any estimations below this
    ///         are set to this value.
    uint256 private constant MIN_TRANSACTION_SIZE = 100;

    /// @notice Indicates whether the network has gone through the Ecotone upgrade.
    bool public isEcotone;

    /// @notice Indicates whether the network has gone through the Fjord upgrade.
    bool public isFjord;

    /// @notice Indicates whether the network has gone through the Isthmus upgrade.
    bool public isIsthmus;

    /// @notice Computes the L1 portion of the fee based on the size of the rlp encoded input
    ///         transaction, the current L1 base fee, and the various dynamic parameters.
    /// @param _data Unsigned fully RLP-encoded transaction to get the L1 fee for.
    /// @return L1 fee that should be paid for the tx
    function getL1Fee(bytes memory _data) external view returns (uint256) {
        if (isFjord) {
            return _getL1FeeFjord(_data);
        } else if (isEcotone) {
            return _getL1FeeEcotone(_data);
        }
        return _getL1FeeBedrock(_data);
    }

    /// @notice returns an upper bound for the L1 fee for a given transaction size.
    /// It is provided for callers who wish to estimate L1 transaction costs in the
    /// write path, and is much more gas efficient than `getL1Fee`.
    /// It assumes the worst case of fastlz upper-bound which covers %99.99 txs.
    /// @param _unsignedTxSize Unsigned fully RLP-encoded transaction size to get the L1 fee for.
    /// @return L1 estimated upper-bound fee that should be paid for the tx
    function getL1FeeUpperBound(uint256 _unsignedTxSize) external view returns (uint256) {
        require(isFjord, "GasPriceOracle: getL1FeeUpperBound only supports Fjord");

        // Add 68 to the size to account for unsigned tx:
        uint256 txSize = _unsignedTxSize + 68;
        // txSize / 255 + 16 is the practical fastlz upper-bound covers %99.99 txs.
        uint256 flzUpperBound = txSize + txSize / 255 + 16;

        return _fjordL1Cost(flzUpperBound);
    }

    /// @notice Set chain to be Ecotone chain (callable by depositor account)
    function setEcotone() external {
        require(
            msg.sender == Constants.DEPOSITOR_ACCOUNT,
            "GasPriceOracle: only the depositor account can set isEcotone flag"
        );
        require(isEcotone == false, "GasPriceOracle: Ecotone already active");
        isEcotone = true;
    }

    /// @notice Set chain to be Fjord chain (callable by depositor account)
    function setFjord() external {
        require(
            msg.sender == Constants.DEPOSITOR_ACCOUNT, "GasPriceOracle: only the depositor account can set isFjord flag"
        );
        require(isEcotone, "GasPriceOracle: Fjord can only be activated after Ecotone");
        require(isFjord == false, "GasPriceOracle: Fjord already active");
        isFjord = true;
    }

    /// @notice Set chain to be Isthmus chain (callable by depositor account)
    function setIsthmus() external {
        require(
            msg.sender == Constants.DEPOSITOR_ACCOUNT,
            "GasPriceOracle: only the depositor account can set isIsthmus flag"
        );
        require(isFjord, "GasPriceOracle: Isthmus can only be activated after Fjord");
        require(isIsthmus == false, "GasPriceOracle: Isthmus already active");
        isIsthmus = true;
    }

    /// @notice Retrieves the current gas price (base fee).
    /// @return Current L2 gas price (base fee).
    function gasPrice() public view returns (uint256) {
        return block.basefee;
    }

    /// @notice Retrieves the current base fee.
    /// @return Current L2 base fee.
    function baseFee() public view returns (uint256) {
        return block.basefee;
    }

    /// @custom:legacy
    /// @notice Retrieves the current fee overhead.
    /// @return Current fee overhead.
    function overhead() public view returns (uint256) {
        require(!isEcotone, "GasPriceOracle: overhead() is deprecated");
        return IL1Block(Predeploys.L1_BLOCK_ATTRIBUTES).l1FeeOverhead();
    }

    /// @custom:legacy
    /// @notice Retrieves the current fee scalar.
    /// @return Current fee scalar.
    function scalar() public view returns (uint256) {
        require(!isEcotone, "GasPriceOracle: scalar() is deprecated");
        return IL1Block(Predeploys.L1_BLOCK_ATTRIBUTES).l1FeeScalar();
    }

    /// @notice Retrieves the latest known L1 base fee.
    /// @return Latest known L1 base fee.
    function l1BaseFee() public view returns (uint256) {
        return IL1Block(Predeploys.L1_BLOCK_ATTRIBUTES).basefee();
    }

    /// @notice Retrieves the current blob base fee.
    /// @return Current blob base fee.
    function blobBaseFee() public view returns (uint256) {
        return IL1Block(Predeploys.L1_BLOCK_ATTRIBUTES).blobBaseFee();
    }

    /// @notice Retrieves the current base fee scalar.
    /// @return Current base fee scalar.
    function baseFeeScalar() public view returns (uint32) {
        return IL1Block(Predeploys.L1_BLOCK_ATTRIBUTES).baseFeeScalar();
    }

    /// @notice Retrieves the current blob base fee scalar.
    /// @return Current blob base fee scalar.
    function blobBaseFeeScalar() public view returns (uint32) {
        return IL1Block(Predeploys.L1_BLOCK_ATTRIBUTES).blobBaseFeeScalar();
    }

    /// @custom:legacy
    /// @notice Retrieves the number of decimals used in the scalar.
    /// @return Number of decimals used in the scalar.
    function decimals() public pure returns (uint256) {
        return DECIMALS;
    }

    /// @notice Computes the amount of L1 gas used for a transaction. Adds 68 bytes
    ///         of padding to account for the fact that the input does not have a signature.
    /// @param _data Unsigned fully RLP-encoded transaction to get the L1 gas for.
    /// @return Amount of L1 gas used to publish the transaction.
    /// @custom:deprecated This method does not accurately estimate the gas used for a transaction.
    ///                    If you are calculating fees use getL1Fee or getL1FeeUpperBound.
    function getL1GasUsed(bytes memory _data) public view returns (uint256) {
        if (isFjord) {
            // Add 68 to the size to account for unsigned tx
            // Assume the compressed data is mostly non-zero, and would pay 16 gas per calldata byte
            // Divide by 1e6 due to the scaling factor of the linear regression
            return _fjordLinearRegression(LibZip.flzCompress(_data).length + 68) * 16 / 1e6;
        }
        uint256 l1GasUsed = _getCalldataGas(_data);
        if (isEcotone) {
            return l1GasUsed;
        }
        return l1GasUsed + IL1Block(Predeploys.L1_BLOCK_ATTRIBUTES).l1FeeOverhead();
    }

    function getOperatorFee(uint256 _gasUsed) public view returns (uint256) {
        if (!isIsthmus) {
            return 0;
        }

        return Arithmetic.saturatingAdd(
            Arithmetic.saturatingMul(_gasUsed, IL1Block(Predeploys.L1_BLOCK_ATTRIBUTES).operatorFeeScalar()) / 1e6,
            IL1Block(Predeploys.L1_BLOCK_ATTRIBUTES).operatorFeeConstant()
        );
    }

    /// @notice Computation of the L1 portion of the fee for Bedrock.
    /// @param _data Unsigned fully RLP-encoded transaction to get the L1 fee for.
    /// @return L1 fee that should be paid for the tx
    function _getL1FeeBedrock(bytes memory _data) internal view returns (uint256) {
        uint256 l1GasUsed = _getCalldataGas(_data);
        uint256 fee = (l1GasUsed + IL1Block(Predeploys.L1_BLOCK_ATTRIBUTES).l1FeeOverhead()) * l1BaseFee()
            * IL1Block(Predeploys.L1_BLOCK_ATTRIBUTES).l1FeeScalar();
        return fee / (10 ** DECIMALS);
    }

    /// @notice L1 portion of the fee after Ecotone.
    /// @param _data Unsigned fully RLP-encoded transaction to get the L1 fee for.
    /// @return L1 fee that should be paid for the tx
    function _getL1FeeEcotone(bytes memory _data) internal view returns (uint256) {
        uint256 l1GasUsed = _getCalldataGas(_data);
        uint256 scaledBaseFee = baseFeeScalar() * 16 * l1BaseFee();
        uint256 scaledBlobBaseFee = blobBaseFeeScalar() * blobBaseFee();
        uint256 fee = l1GasUsed * (scaledBaseFee + scaledBlobBaseFee);
        return fee / (16 * 10 ** DECIMALS);
    }

    /// @notice L1 portion of the fee after Fjord.
    /// @param _data Unsigned fully RLP-encoded transaction to get the L1 fee for.
    /// @return L1 fee that should be paid for the tx
    function _getL1FeeFjord(bytes memory _data) internal view returns (uint256) {
        return _fjordL1Cost(LibZip.flzCompress(_data).length + 68);
    }

    /// @notice L1 gas estimation calculation.
    /// @param _data Unsigned fully RLP-encoded transaction to get the L1 gas for.
    /// @return Amount of L1 gas used to publish the transaction.
    function _getCalldataGas(bytes memory _data) internal pure returns (uint256) {
        uint256 total = 0;
        uint256 length = _data.length;
        for (uint256 i = 0; i < length; i++) {
            if (_data[i] == 0) {
                total += 4;
            } else {
                total += 16;
            }
        }
        return total + (68 * 16);
    }

    /// @notice Fjord L1 cost based on the compressed and original tx size.
    /// @param _fastLzSize estimated compressed tx size.
    /// @return Fjord L1 fee that should be paid for the tx
    function _fjordL1Cost(uint256 _fastLzSize) internal view returns (uint256) {
        // Apply the linear regression to estimate the Brotli 10 size
        uint256 estimatedSize = _fjordLinearRegression(_fastLzSize);
        uint256 feeScaled = baseFeeScalar() * 16 * l1BaseFee() + blobBaseFeeScalar() * blobBaseFee();
        return estimatedSize * feeScaled / (10 ** (DECIMALS * 2));
    }

    /// @notice Takes the fastLz size compression and returns the estimated Brotli
    /// @param _fastLzSize fastlz compressed tx size.
    /// @return Number of bytes in the compressed transaction
    function _fjordLinearRegression(uint256 _fastLzSize) internal pure returns (uint256) {
        int256 estimatedSize = COST_INTERCEPT + int256(COST_FASTLZ_COEF * _fastLzSize);
        if (estimatedSize < int256(MIN_TRANSACTION_SIZE) * 1e6) {
            estimatedSize = int256(MIN_TRANSACTION_SIZE) * 1e6;
        }
        return uint256(estimatedSize);
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Library for compressing and decompressing bytes.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibZip.sol)
/// @author Calldata compression by clabby (https://github.com/clabby/op-kompressor)
/// @author FastLZ by ariya (https://github.com/ariya/FastLZ)
///
/// @dev Note:
/// The accompanying solady.js library includes implementations of
/// FastLZ and calldata operations for convenience.
library LibZip {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     FAST LZ OPERATIONS                     */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    // LZ77 implementation based on FastLZ.
    // Equivalent to level 1 compression and decompression at the following commit:
    // https://github.com/ariya/FastLZ/commit/344eb4025f9ae866ebf7a2ec48850f7113a97a42
    // Decompression is backwards compatible.

    /// @dev Returns the compressed `data`.
    function flzCompress(bytes memory data) internal pure returns (bytes memory result) {
        /// @solidity memory-safe-assembly
        assembly {
            function ms8(d_, v_) -> _d {
                mstore8(d_, v_)
                _d := add(d_, 1)
            }
            function u24(p_) -> _u {
                let w := mload(p_)
                _u := or(shl(16, byte(2, w)), or(shl(8, byte(1, w)), byte(0, w)))
            }
            function cmp(p_, q_, e_) -> _l {
                for { e_ := sub(e_, q_) } lt(_l, e_) { _l := add(_l, 1) } {
                    e_ := mul(iszero(byte(0, xor(mload(add(p_, _l)), mload(add(q_, _l))))), e_)
                }
            }
            function literals(runs_, src_, dest_) -> _o {
                for { _o := dest_ } iszero(lt(runs_, 0x20)) { runs_ := sub(runs_, 0x20) } {
                    mstore(ms8(_o, 31), mload(src_))
                    _o := add(_o, 0x21)
                    src_ := add(src_, 0x20)
                }
                if iszero(runs_) { leave }
                mstore(ms8(_o, sub(runs_, 1)), mload(src_))
                _o := add(1, add(_o, runs_))
            }
            function match(l_, d_, o_) -> _o {
                for { d_ := sub(d_, 1) } iszero(lt(l_, 263)) { l_ := sub(l_, 262) } {
                    o_ := ms8(ms8(ms8(o_, add(224, shr(8, d_))), 253), and(0xff, d_))
                }
                if iszero(lt(l_, 7)) {
                    _o := ms8(ms8(ms8(o_, add(224, shr(8, d_))), sub(l_, 7)), and(0xff, d_))
                    leave
                }
                _o := ms8(ms8(o_, add(shl(5, l_), shr(8, d_))), and(0xff, d_))
            }
            function setHash(i_, v_) {
                let p := add(mload(0x40), shl(2, i_))
                mstore(p, xor(mload(p), shl(224, xor(shr(224, mload(p)), v_))))
            }
            function getHash(i_) -> _h {
                _h := shr(224, mload(add(mload(0x40), shl(2, i_))))
            }
            function hash(v_) -> _r {
                _r := and(shr(19, mul(2654435769, v_)), 0x1fff)
            }
            function setNextHash(ip_, ipStart_) -> _ip {
                setHash(hash(u24(ip_)), sub(ip_, ipStart_))
                _ip := add(ip_, 1)
            }
            codecopy(mload(0x40), codesize(), 0x8000) // Zeroize the hashmap.
            let op := add(mload(0x40), 0x8000)
            let a := add(data, 0x20)
            let ipStart := a
            let ipLimit := sub(add(ipStart, mload(data)), 13)
            for { let ip := add(2, a) } lt(ip, ipLimit) {} {
                let r := 0
                let d := 0
                for {} 1 {} {
                    let s := u24(ip)
                    let h := hash(s)
                    r := add(ipStart, getHash(h))
                    setHash(h, sub(ip, ipStart))
                    d := sub(ip, r)
                    if iszero(lt(ip, ipLimit)) { break }
                    ip := add(ip, 1)
                    if iszero(gt(d, 0x1fff)) { if eq(s, u24(r)) { break } }
                }
                if iszero(lt(ip, ipLimit)) { break }
                ip := sub(ip, 1)
                if gt(ip, a) { op := literals(sub(ip, a), a, op) }
                let l := cmp(add(r, 3), add(ip, 3), add(ipLimit, 9))
                op := match(l, d, op)
                ip := setNextHash(setNextHash(add(ip, l), ipStart), ipStart)
                a := ip
            }
            op := literals(sub(add(ipStart, mload(data)), a), a, op)
            result := mload(0x40)
            let t := add(result, 0x8000)
            let n := sub(op, t)
            mstore(result, n) // Store the length.
            // Copy the result to compact the memory, overwriting the hashmap.
            let o := add(result, 0x20)
            for { let i } lt(i, n) { i := add(i, 0x20) } { mstore(add(o, i), mload(add(t, i))) }
            mstore(add(o, n), 0) // Zeroize the slot after the string.
            mstore(0x40, add(add(o, n), 0x20)) // Allocate the memory.
        }
    }

    /// @dev Returns the decompressed `data`.
    function flzDecompress(bytes memory data) internal pure returns (bytes memory result) {
        /// @solidity memory-safe-assembly
        assembly {
            let end := add(add(data, 0x20), mload(data))
            result := mload(0x40)
            let op := add(result, 0x20)
            for { data := add(data, 0x20) } lt(data, end) {} {
                let w := mload(data)
                let c := byte(0, w)
                let t := shr(5, c)
                if iszero(t) {
                    mstore(op, mload(add(data, 1)))
                    data := add(data, add(2, c))
                    op := add(op, add(1, c))
                    continue
                }
                let g := eq(t, 7)
                let l := add(2, xor(t, mul(g, xor(t, add(7, byte(1, w)))))) // M
                for {
                    let s := add(add(shl(8, and(0x1f, c)), byte(add(1, g), w)), 1) // R
                    let r := sub(op, s)
                    let f := xor(s, mul(gt(s, 0x20), xor(s, 0x20)))
                    let j := 0
                } 1 {} {
                    mstore(add(op, j), mload(add(r, j)))
                    j := add(j, f)
                    if iszero(lt(j, l)) { break }
                }
                data := add(data, add(2, g))
                op := add(op, l)
            }
            mstore(result, sub(op, add(result, 0x20))) // Store the length.
            mstore(op, 0) // Zeroize the slot after the string.
            mstore(0x40, add(op, 0x20)) // Allocate the memory.
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                    CALLDATA OPERATIONS                     */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    // Calldata compression and decompression using selective run length encoding:
    // - Sequences of 0x00 (up to 128 consecutive).
    // - Sequences of 0xff (up to 32 consecutive).
    //
    // A run length encoded block consists of two bytes:
    // (0) 0x00
    // (1) A control byte with the following bit layout:
    //     - [7]     `0: 0x00, 1: 0xff`.
    //     - [0..6]  `runLength - 1`.
    //
    // The first 4 bytes are bitwise negated so that the compressed calldata
    // can be dispatched into the `fallback` and `receive` functions.

    /// @dev Returns the compressed `data`.
    function cdCompress(bytes memory data) internal pure returns (bytes memory result) {
        /// @solidity memory-safe-assembly
        assembly {
            function rle(v_, o_, d_) -> _o, _d {
                mstore(o_, shl(240, or(and(0xff, add(d_, 0xff)), and(0x80, v_))))
                _o := add(o_, 2)
            }
            result := mload(0x40)
            let o := add(result, 0x20)
            let z := 0 // Number of consecutive 0x00.
            let y := 0 // Number of consecutive 0xff.
            for { let end := add(data, mload(data)) } iszero(eq(data, end)) {} {
                data := add(data, 1)
                let c := byte(31, mload(data))
                if iszero(c) {
                    if y { o, y := rle(0xff, o, y) }
                    z := add(z, 1)
                    if eq(z, 0x80) { o, z := rle(0x00, o, 0x80) }
                    continue
                }
                if eq(c, 0xff) {
                    if z { o, z := rle(0x00, o, z) }
                    y := add(y, 1)
                    if eq(y, 0x20) { o, y := rle(0xff, o, 0x20) }
                    continue
                }
                if y { o, y := rle(0xff, o, y) }
                if z { o, z := rle(0x00, o, z) }
                mstore8(o, c)
                o := add(o, 1)
            }
            if y { o, y := rle(0xff, o, y) }
            if z { o, z := rle(0x00, o, z) }
            // Bitwise negate the first 4 bytes.
            mstore(add(result, 4), not(mload(add(result, 4))))
            mstore(result, sub(o, add(result, 0x20))) // Store the length.
            mstore(o, 0) // Zeroize the slot after the string.
            mstore(0x40, add(o, 0x20)) // Allocate the memory.
        }
    }

    /// @dev Returns the decompressed `data`.
    function cdDecompress(bytes memory data) internal pure returns (bytes memory result) {
        /// @solidity memory-safe-assembly
        assembly {
            if mload(data) {
                result := mload(0x40)
                let o := add(result, 0x20)
                let s := add(data, 4)
                let v := mload(s)
                let end := add(data, mload(data))
                mstore(s, not(v)) // Bitwise negate the first 4 bytes.
                for {} lt(data, end) {} {
                    data := add(data, 1)
                    let c := byte(31, mload(data))
                    if iszero(c) {
                        data := add(data, 1)
                        let d := byte(31, mload(data))
                        // Fill with either 0xff or 0x00.
                        mstore(o, not(0))
                        if iszero(gt(d, 0x7f)) { codecopy(o, codesize(), add(d, 1)) }
                        o := add(o, add(and(d, 0x7f), 1))
                        continue
                    }
                    mstore8(o, c)
                    o := add(o, 1)
                }
                mstore(s, v) // Restore the first 4 bytes.
                mstore(result, sub(o, add(result, 0x20))) // Store the length.
                mstore(o, 0) // Zeroize the slot after the string.
                mstore(0x40, add(o, 0x20)) // Allocate the memory.
            }
        }
    }

    /// @dev To be called in the `fallback` function.
    /// ```
    ///     fallback() external payable { LibZip.cdFallback(); }
    ///     receive() external payable {} // Silence compiler warning to add a `receive` function.
    /// ```
    /// For efficiency, this function will directly return the results, terminating the context.
    /// If called internally, it must be called at the end of the function.
    function cdFallback() internal {
        assembly {
            if iszero(calldatasize()) { return(calldatasize(), calldatasize()) }
            let o := 0
            let f := not(3) // For negating the first 4 bytes.
            for { let i := 0 } lt(i, calldatasize()) {} {
                let c := byte(0, xor(add(i, f), calldataload(i)))
                i := add(i, 1)
                if iszero(c) {
                    let d := byte(0, xor(add(i, f), calldataload(i)))
                    i := add(i, 1)
                    // Fill with either 0xff or 0x00.
                    mstore(o, not(0))
                    if iszero(gt(d, 0x7f)) { codecopy(o, codesize(), add(d, 1)) }
                    o := add(o, add(and(d, 0x7f), 1))
                    continue
                }
                mstore8(o, c)
                o := add(o, 1)
            }
            let success := delegatecall(gas(), address(), 0x00, o, codesize(), 0x00)
            returndatacopy(0x00, 0x00, returndatasize())
            if iszero(success) { revert(0x00, returndatasize()) }
            return(0x00, returndatasize())
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/// @title Predeploys
/// @notice Contains constant addresses for protocol contracts that are pre-deployed to the L2 system.
//          This excludes the preinstalls (non-protocol contracts).
library Predeploys {
    /// @notice Number of predeploy-namespace addresses reserved for protocol usage.
    uint256 internal constant PREDEPLOY_COUNT = 2048;

    /// @custom:legacy
    /// @notice Address of the LegacyMessagePasser predeploy. Deprecate. Use the updated
    ///         L2ToL1MessagePasser contract instead.
    address internal constant LEGACY_MESSAGE_PASSER = 0x4200000000000000000000000000000000000000;

    /// @custom:legacy
    /// @notice Address of the L1MessageSender predeploy. Deprecated. Use L2CrossDomainMessenger
    ///         or access tx.origin (or msg.sender) in a L1 to L2 transaction instead.
    ///         Not embedded into new OP-Stack chains.
    address internal constant L1_MESSAGE_SENDER = 0x4200000000000000000000000000000000000001;

    /// @custom:legacy
    /// @notice Address of the DeployerWhitelist predeploy. No longer active.
    address internal constant DEPLOYER_WHITELIST = 0x4200000000000000000000000000000000000002;

    /// @notice Address of the canonical WETH contract.
    address internal constant WETH = 0x4200000000000000000000000000000000000006;

    /// @notice Address of the L2CrossDomainMessenger predeploy.
    address internal constant L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000007;

    /// @notice Address of the GasPriceOracle predeploy. Includes fee information
    ///         and helpers for computing the L1 portion of the transaction fee.
    address internal constant GAS_PRICE_ORACLE = 0x420000000000000000000000000000000000000F;

    /// @notice Address of the L2StandardBridge predeploy.
    address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010;

    //// @notice Address of the SequencerFeeWallet predeploy.
    address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011;

    /// @notice Address of the OptimismMintableERC20Factory predeploy.
    address internal constant OPTIMISM_MINTABLE_ERC20_FACTORY = 0x4200000000000000000000000000000000000012;

    /// @custom:legacy
    /// @notice Address of the L1BlockNumber predeploy. Deprecated. Use the L1Block predeploy
    ///         instead, which exposes more information about the L1 state.
    address internal constant L1_BLOCK_NUMBER = 0x4200000000000000000000000000000000000013;

    /// @notice Address of the L2ERC721Bridge predeploy.
    address internal constant L2_ERC721_BRIDGE = 0x4200000000000000000000000000000000000014;

    /// @notice Address of the L1Block predeploy.
    address internal constant L1_BLOCK_ATTRIBUTES = 0x4200000000000000000000000000000000000015;

    /// @notice Address of the L2ToL1MessagePasser predeploy.
    address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000016;

    /// @notice Address of the OptimismMintableERC721Factory predeploy.
    address internal constant OPTIMISM_MINTABLE_ERC721_FACTORY = 0x4200000000000000000000000000000000000017;

    /// @notice Address of the ProxyAdmin predeploy.
    address internal constant PROXY_ADMIN = 0x4200000000000000000000000000000000000018;

    /// @notice Address of the BaseFeeVault predeploy.
    address internal constant BASE_FEE_VAULT = 0x4200000000000000000000000000000000000019;

    /// @notice Address of the L1FeeVault predeploy.
    address internal constant L1_FEE_VAULT = 0x420000000000000000000000000000000000001A;

    /// @notice Address of the OperatorFeeVault predeploy.
    address internal constant OPERATOR_FEE_VAULT = 0x420000000000000000000000000000000000001b;

    /// @notice Address of the SchemaRegistry predeploy.
    address internal constant SCHEMA_REGISTRY = 0x4200000000000000000000000000000000000020;

    /// @notice Address of the EAS predeploy.
    address internal constant EAS = 0x4200000000000000000000000000000000000021;

    /// @notice Address of the GovernanceToken predeploy.
    address internal constant GOVERNANCE_TOKEN = 0x4200000000000000000000000000000000000042;

    /// @custom:legacy
    /// @notice Address of the LegacyERC20ETH predeploy. Deprecated. Balances are migrated to the
    ///         state trie as of the Bedrock upgrade. Contract has been locked and write functions
    ///         can no longer be accessed.
    address internal constant LEGACY_ERC20_ETH = 0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000;

    /// @notice Address of the CrossL2Inbox predeploy.
    address internal constant CROSS_L2_INBOX = 0x4200000000000000000000000000000000000022;

    /// @notice Address of the L2ToL2CrossDomainMessenger predeploy.
    address internal constant L2_TO_L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000023;

    /// @notice Address of the SuperchainWETH predeploy.
    address internal constant SUPERCHAIN_WETH = 0x4200000000000000000000000000000000000024;

    /// @notice Address of the ETHLiquidity predeploy.
    address internal constant ETH_LIQUIDITY = 0x4200000000000000000000000000000000000025;

    /// @notice Address of the OptimismSuperchainERC20Factory predeploy.
    address internal constant OPTIMISM_SUPERCHAIN_ERC20_FACTORY = 0x4200000000000000000000000000000000000026;

    /// @notice Address of the OptimismSuperchainERC20Beacon predeploy.
    address internal constant OPTIMISM_SUPERCHAIN_ERC20_BEACON = 0x4200000000000000000000000000000000000027;

    // TODO: Precalculate the address of the implementation contract
    /// @notice Arbitrary address of the OptimismSuperchainERC20 implementation contract.
    address internal constant OPTIMISM_SUPERCHAIN_ERC20 = 0xB9415c6cA93bdC545D4c5177512FCC22EFa38F28;

    /// @notice Address of the SuperchainTokenBridge predeploy.
    address internal constant SUPERCHAIN_TOKEN_BRIDGE = 0x4200000000000000000000000000000000000028;

    /// @notice Returns the name of the predeploy at the given address.
    function getName(address _addr) internal pure returns (string memory out_) {
        require(isPredeployNamespace(_addr), "Predeploys: address must be a predeploy");
        if (_addr == LEGACY_MESSAGE_PASSER) return "LegacyMessagePasser";
        if (_addr == L1_MESSAGE_SENDER) return "L1MessageSender";
        if (_addr == DEPLOYER_WHITELIST) return "DeployerWhitelist";
        if (_addr == WETH) return "WETH";
        if (_addr == L2_CROSS_DOMAIN_MESSENGER) return "L2CrossDomainMessenger";
        if (_addr == GAS_PRICE_ORACLE) return "GasPriceOracle";
        if (_addr == L2_STANDARD_BRIDGE) return "L2StandardBridge";
        if (_addr == SEQUENCER_FEE_WALLET) return "SequencerFeeVault";
        if (_addr == OPTIMISM_MINTABLE_ERC20_FACTORY) return "OptimismMintableERC20Factory";
        if (_addr == L1_BLOCK_NUMBER) return "L1BlockNumber";
        if (_addr == L2_ERC721_BRIDGE) return "L2ERC721Bridge";
        if (_addr == L1_BLOCK_ATTRIBUTES) return "L1Block";
        if (_addr == L2_TO_L1_MESSAGE_PASSER) return "L2ToL1MessagePasser";
        if (_addr == OPTIMISM_MINTABLE_ERC721_FACTORY) return "OptimismMintableERC721Factory";
        if (_addr == PROXY_ADMIN) return "ProxyAdmin";
        if (_addr == BASE_FEE_VAULT) return "BaseFeeVault";
        if (_addr == L1_FEE_VAULT) return "L1FeeVault";
        if (_addr == OPERATOR_FEE_VAULT) return "OperatorFeeVault";
        if (_addr == SCHEMA_REGISTRY) return "SchemaRegistry";
        if (_addr == EAS) return "EAS";
        if (_addr == GOVERNANCE_TOKEN) return "GovernanceToken";
        if (_addr == LEGACY_ERC20_ETH) return "LegacyERC20ETH";
        if (_addr == CROSS_L2_INBOX) return "CrossL2Inbox";
        if (_addr == L2_TO_L2_CROSS_DOMAIN_MESSENGER) return "L2ToL2CrossDomainMessenger";
        if (_addr == SUPERCHAIN_WETH) return "SuperchainWETH";
        if (_addr == ETH_LIQUIDITY) return "ETHLiquidity";
        if (_addr == OPTIMISM_SUPERCHAIN_ERC20_FACTORY) return "OptimismSuperchainERC20Factory";
        if (_addr == OPTIMISM_SUPERCHAIN_ERC20_BEACON) return "OptimismSuperchainERC20Beacon";
        if (_addr == SUPERCHAIN_TOKEN_BRIDGE) return "SuperchainTokenBridge";
        revert("Predeploys: unnamed predeploy");
    }

    /// @notice Returns true if the predeploy is not proxied.
    function notProxied(address _addr) internal pure returns (bool) {
        return _addr == GOVERNANCE_TOKEN || _addr == WETH;
    }

    /// @notice Returns true if the address is a defined predeploy that is embedded into new OP-Stack chains.
    function isSupportedPredeploy(address _addr, bool _useInterop) internal pure returns (bool) {
        return _addr == LEGACY_MESSAGE_PASSER || _addr == DEPLOYER_WHITELIST || _addr == WETH
            || _addr == L2_CROSS_DOMAIN_MESSENGER || _addr == GAS_PRICE_ORACLE || _addr == L2_STANDARD_BRIDGE
            || _addr == SEQUENCER_FEE_WALLET || _addr == OPTIMISM_MINTABLE_ERC20_FACTORY || _addr == L1_BLOCK_NUMBER
            || _addr == L2_ERC721_BRIDGE || _addr == L1_BLOCK_ATTRIBUTES || _addr == L2_TO_L1_MESSAGE_PASSER
            || _addr == OPTIMISM_MINTABLE_ERC721_FACTORY || _addr == PROXY_ADMIN || _addr == BASE_FEE_VAULT
            || _addr == L1_FEE_VAULT || _addr == OPERATOR_FEE_VAULT || _addr == SCHEMA_REGISTRY || _addr == EAS
            || _addr == GOVERNANCE_TOKEN || (_useInterop && _addr == CROSS_L2_INBOX)
            || (_useInterop && _addr == L2_TO_L2_CROSS_DOMAIN_MESSENGER) || (_useInterop && _addr == SUPERCHAIN_WETH)
            || (_useInterop && _addr == ETH_LIQUIDITY) || (_useInterop && _addr == SUPERCHAIN_TOKEN_BRIDGE);
    }

    function isPredeployNamespace(address _addr) internal pure returns (bool) {
        return uint160(_addr) >> 11 == uint160(0x4200000000000000000000000000000000000000) >> 11;
    }

    /// @notice Function to compute the expected address of the predeploy implementation
    ///         in the genesis state.
    function predeployToCodeNamespace(address _addr) internal pure returns (address) {
        require(
            isPredeployNamespace(_addr), "Predeploys: can only derive code-namespace address for predeploy addresses"
        );
        return address(
            uint160(uint256(uint160(_addr)) & 0xffff | uint256(uint160(0xc0D3C0d3C0d3C0D3c0d3C0d3c0D3C0d3c0d30000)))
        );
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

// Interfaces
import { IResourceMetering } from "interfaces/L1/IResourceMetering.sol";

/// @title Constants
/// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
///         the stuff used in multiple contracts. Constants that only apply to a single contract
///         should be defined in that contract instead.
library Constants {
    /// @notice Special address to be used as the tx origin for gas estimation calls in the
    ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
    ///         the minimum gas limit specified by the user is not actually enough to execute the
    ///         given message and you're attempting to estimate the actual necessary gas limit. We
    ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
    ///         never have any code on any EVM chain.
    address internal constant ESTIMATION_ADDRESS = address(1);

    /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
    ///         CrossDomainMessenger contracts before an actual sender is set. This value is
    ///         non-zero to reduce the gas cost of message passing transactions.
    address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;

    /// @notice The storage slot that holds the address of a proxy implementation.
    /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
    bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
        0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;

    /// @notice The storage slot that holds the address of the owner.
    /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
    bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;

    /// @notice The address that represents ether when dealing with ERC20 token addresses.
    address internal constant ETHER = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;

    /// @notice The address that represents the system caller responsible for L1 attributes
    ///         transactions.
    address internal constant DEPOSITOR_ACCOUNT = 0xDeaDDEaDDeAdDeAdDEAdDEaddeAddEAdDEAd0001;

    /// @notice Returns the default values for the ResourceConfig. These are the recommended values
    ///         for a production network.
    function DEFAULT_RESOURCE_CONFIG() internal pure returns (IResourceMetering.ResourceConfig memory) {
        IResourceMetering.ResourceConfig memory config = IResourceMetering.ResourceConfig({
            maxResourceLimit: 20_000_000,
            elasticityMultiplier: 10,
            baseFeeMaxChangeDenominator: 8,
            minimumBaseFee: 1 gwei,
            systemTxMaxGas: 1_000_000,
            maximumBaseFee: type(uint128).max
        });
        return config;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

// Libraries
import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";

/// @title Arithmetic
/// @notice Even more math than before.
library Arithmetic {
    /// @notice Clamps a value between a minimum and maximum.
    /// @param _value The value to clamp.
    /// @param _min   The minimum value.
    /// @param _max   The maximum value.
    /// @return The clamped value.
    function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
        return SignedMath.min(SignedMath.max(_value, _min), _max);
    }

    /// @notice (c)oefficient (d)enominator (exp)onentiation function.
    ///         Returns the result of: c * (1 - 1/d)^exp.
    /// @param _coefficient Coefficient of the function.
    /// @param _denominator Fractional denominator.
    /// @param _exponent    Power function exponent.
    /// @return Result of c * (1 - 1/d)^exp.
    function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
        return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
    }

    /// @notice Saturating addition.
    /// @param _x The first value.
    /// @param _y The second value.
    /// @return z_ The sum of the two values, or the maximum value if the sum overflows.
    /// @dev Returns `min(2 ** 256 - 1, x + y)`.
    /// @dev Taken from Solady
    /// https://github.com/Vectorized/solady/blob/63416d60c78aba70a12ca1b3c11125d1061caa12/src/utils/FixedPointMathLib.sol#L673
    function saturatingAdd(uint256 _x, uint256 _y) internal pure returns (uint256 z_) {
        assembly ("memory-safe") {
            z_ := or(sub(0, lt(add(_x, _y), _x)), add(_x, _y))
        }
    }

    /// @notice Saturating multiplication.
    /// @param _x The first value.
    /// @param _y The second value.
    /// @return z_ The product of the two values, or the maximum value if the product overflows.
    /// @dev Returns `min(2 ** 256 - 1, x * y).
    /// @dev Taken from Solady
    /// https://github.com/Vectorized/solady/blob/63416d60c78aba70a12ca1b3c11125d1061caa12/src/utils/FixedPointMathLib.sol#L681
    function saturatingMul(uint256 _x, uint256 _y) internal pure returns (uint256 z_) {
        assembly ("memory-safe") {
            z_ := or(sub(or(iszero(_x), eq(div(mul(_x, _y), _x), _y)), 1), mul(_x, _y))
        }
    }
}

File 6 of 10 : ISemver.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/// @title ISemver
/// @notice ISemver is a simple contract for ensuring that contracts are
///         versioned using semantic versioning.
interface ISemver {
    /// @notice Getter for the semantic version of the contract. This is not
    ///         meant to be used onchain but instead meant to be used by offchain
    ///         tooling.
    /// @return Semver contract version as a string.
    function version() external view returns (string memory);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface IL1Block {
    error NotDepositor();

    event GasPayingTokenSet(address indexed token, uint8 indexed decimals, bytes32 name, bytes32 symbol);

    function DEPOSITOR_ACCOUNT() external pure returns (address addr_);
    function baseFeeScalar() external view returns (uint32);
    function basefee() external view returns (uint256);
    function batcherHash() external view returns (bytes32);
    function blobBaseFee() external view returns (uint256);
    function blobBaseFeeScalar() external view returns (uint32);
    function gasPayingToken() external view returns (address addr_, uint8 decimals_);
    function gasPayingTokenName() external view returns (string memory name_);
    function gasPayingTokenSymbol() external view returns (string memory symbol_);
    function hash() external view returns (bytes32);
    function isCustomGasToken() external pure returns (bool is_);
    function l1FeeOverhead() external view returns (uint256);
    function l1FeeScalar() external view returns (uint256);
    function number() external view returns (uint64);
    function operatorFeeScalar() external view returns (uint32);
    function operatorFeeConstant() external view returns (uint64);
    function sequenceNumber() external view returns (uint64);
    function setGasPayingToken(address _token, uint8 _decimals, bytes32 _name, bytes32 _symbol) external;
    function setL1BlockValues(
        uint64 _number,
        uint64 _timestamp,
        uint256 _basefee,
        bytes32 _hash,
        uint64 _sequenceNumber,
        bytes32 _batcherHash,
        uint256 _l1FeeOverhead,
        uint256 _l1FeeScalar
    )
        external;
    function setL1BlockValuesEcotone() external;
    function setL1BlockValuesIsthmus() external;
    function timestamp() external view returns (uint64);
    function version() external pure returns (string memory);

    function __constructor__() external;
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface IResourceMetering {
    struct ResourceParams {
        uint128 prevBaseFee;
        uint64 prevBoughtGas;
        uint64 prevBlockNum;
    }

    struct ResourceConfig {
        uint32 maxResourceLimit;
        uint8 elasticityMultiplier;
        uint8 baseFeeMaxChangeDenominator;
        uint32 minimumBaseFee;
        uint32 systemTxMaxGas;
        uint128 maximumBaseFee;
    }

    error OutOfGas();

    event Initialized(uint8 version);

    function params() external view returns (uint128 prevBaseFee, uint64 prevBoughtGas, uint64 prevBlockNum); // nosemgrep

    function __constructor__() external;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a >= b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;

/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
library FixedPointMathLib {
    /*//////////////////////////////////////////////////////////////
                    SIMPLIFIED FIXED POINT OPERATIONS
    //////////////////////////////////////////////////////////////*/

    uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.

    function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
    }

    function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
    }

    function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
    }

    function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
    }

    function powWad(int256 x, int256 y) internal pure returns (int256) {
        // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
        return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
    }

    function expWad(int256 x) internal pure returns (int256 r) {
        unchecked {
            // When the result is < 0.5 we return zero. This happens when
            // x <= floor(log(0.5e18) * 1e18) ~ -42e18
            if (x <= -42139678854452767551) return 0;

            // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
            // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
            if (x >= 135305999368893231589) revert("EXP_OVERFLOW");

            // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
            // for more intermediate precision and a binary basis. This base conversion
            // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
            x = (x << 78) / 5**18;

            // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
            // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
            // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
            int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
            x = x - k * 54916777467707473351141471128;

            // k is in the range [-61, 195].

            // Evaluate using a (6, 7)-term rational approximation.
            // p is made monic, we'll multiply by a scale factor later.
            int256 y = x + 1346386616545796478920950773328;
            y = ((y * x) >> 96) + 57155421227552351082224309758442;
            int256 p = y + x - 94201549194550492254356042504812;
            p = ((p * y) >> 96) + 28719021644029726153956944680412240;
            p = p * x + (4385272521454847904659076985693276 << 96);

            // We leave p in 2**192 basis so we don't need to scale it back up for the division.
            int256 q = x - 2855989394907223263936484059900;
            q = ((q * x) >> 96) + 50020603652535783019961831881945;
            q = ((q * x) >> 96) - 533845033583426703283633433725380;
            q = ((q * x) >> 96) + 3604857256930695427073651918091429;
            q = ((q * x) >> 96) - 14423608567350463180887372962807573;
            q = ((q * x) >> 96) + 26449188498355588339934803723976023;

            assembly {
                // Div in assembly because solidity adds a zero check despite the unchecked.
                // The q polynomial won't have zeros in the domain as all its roots are complex.
                // No scaling is necessary because p is already 2**96 too large.
                r := sdiv(p, q)
            }

            // r should be in the range (0.09, 0.25) * 2**96.

            // We now need to multiply r by:
            // * the scale factor s = ~6.031367120.
            // * the 2**k factor from the range reduction.
            // * the 1e18 / 2**96 factor for base conversion.
            // We do this all at once, with an intermediate result in 2**213
            // basis, so the final right shift is always by a positive amount.
            r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
        }
    }

    function lnWad(int256 x) internal pure returns (int256 r) {
        unchecked {
            require(x > 0, "UNDEFINED");

            // We want to convert x from 10**18 fixed point to 2**96 fixed point.
            // We do this by multiplying by 2**96 / 10**18. But since
            // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
            // and add ln(2**96 / 10**18) at the end.

            // Reduce range of x to (1, 2) * 2**96
            // ln(2^k * x) = k * ln(2) + ln(x)
            int256 k = int256(log2(uint256(x))) - 96;
            x <<= uint256(159 - k);
            x = int256(uint256(x) >> 159);

            // Evaluate using a (8, 8)-term rational approximation.
            // p is made monic, we will multiply by a scale factor later.
            int256 p = x + 3273285459638523848632254066296;
            p = ((p * x) >> 96) + 24828157081833163892658089445524;
            p = ((p * x) >> 96) + 43456485725739037958740375743393;
            p = ((p * x) >> 96) - 11111509109440967052023855526967;
            p = ((p * x) >> 96) - 45023709667254063763336534515857;
            p = ((p * x) >> 96) - 14706773417378608786704636184526;
            p = p * x - (795164235651350426258249787498 << 96);

            // We leave p in 2**192 basis so we don't need to scale it back up for the division.
            // q is monic by convention.
            int256 q = x + 5573035233440673466300451813936;
            q = ((q * x) >> 96) + 71694874799317883764090561454958;
            q = ((q * x) >> 96) + 283447036172924575727196451306956;
            q = ((q * x) >> 96) + 401686690394027663651624208769553;
            q = ((q * x) >> 96) + 204048457590392012362485061816622;
            q = ((q * x) >> 96) + 31853899698501571402653359427138;
            q = ((q * x) >> 96) + 909429971244387300277376558375;
            assembly {
                // Div in assembly because solidity adds a zero check despite the unchecked.
                // The q polynomial is known not to have zeros in the domain.
                // No scaling required because p is already 2**96 too large.
                r := sdiv(p, q)
            }

            // r is in the range (0, 0.125) * 2**96

            // Finalization, we need to:
            // * multiply by the scale factor s = 5.549…
            // * add ln(2**96 / 10**18)
            // * add k * ln(2)
            // * multiply by 10**18 / 2**96 = 5**18 >> 78

            // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
            r *= 1677202110996718588342820967067443963516166;
            // add ln(2) * k * 5e18 * 2**192
            r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
            // add ln(2**96 / 10**18) * 5e18 * 2**192
            r += 600920179829731861736702779321621459595472258049074101567377883020018308;
            // base conversion: mul 2**18 / 2**192
            r >>= 174;
        }
    }

    /*//////////////////////////////////////////////////////////////
                    LOW LEVEL FIXED POINT OPERATIONS
    //////////////////////////////////////////////////////////////*/

    function mulDivDown(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 z) {
        assembly {
            // Store x * y in z for now.
            z := mul(x, y)

            // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
            if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                revert(0, 0)
            }

            // Divide z by the denominator.
            z := div(z, denominator)
        }
    }

    function mulDivUp(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 z) {
        assembly {
            // Store x * y in z for now.
            z := mul(x, y)

            // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
            if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                revert(0, 0)
            }

            // First, divide z - 1 by the denominator and add 1.
            // We allow z - 1 to underflow if z is 0, because we multiply the
            // end result by 0 if z is zero, ensuring we return 0 if z is zero.
            z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
        }
    }

    function rpow(
        uint256 x,
        uint256 n,
        uint256 scalar
    ) internal pure returns (uint256 z) {
        assembly {
            switch x
            case 0 {
                switch n
                case 0 {
                    // 0 ** 0 = 1
                    z := scalar
                }
                default {
                    // 0 ** n = 0
                    z := 0
                }
            }
            default {
                switch mod(n, 2)
                case 0 {
                    // If n is even, store scalar in z for now.
                    z := scalar
                }
                default {
                    // If n is odd, store x in z for now.
                    z := x
                }

                // Shifting right by 1 is like dividing by 2.
                let half := shr(1, scalar)

                for {
                    // Shift n right by 1 before looping to halve it.
                    n := shr(1, n)
                } n {
                    // Shift n right by 1 each iteration to halve it.
                    n := shr(1, n)
                } {
                    // Revert immediately if x ** 2 would overflow.
                    // Equivalent to iszero(eq(div(xx, x), x)) here.
                    if shr(128, x) {
                        revert(0, 0)
                    }

                    // Store x squared.
                    let xx := mul(x, x)

                    // Round to the nearest number.
                    let xxRound := add(xx, half)

                    // Revert if xx + half overflowed.
                    if lt(xxRound, xx) {
                        revert(0, 0)
                    }

                    // Set x to scaled xxRound.
                    x := div(xxRound, scalar)

                    // If n is even:
                    if mod(n, 2) {
                        // Compute z * x.
                        let zx := mul(z, x)

                        // If z * x overflowed:
                        if iszero(eq(div(zx, x), z)) {
                            // Revert if x is non-zero.
                            if iszero(iszero(x)) {
                                revert(0, 0)
                            }
                        }

                        // Round to the nearest number.
                        let zxRound := add(zx, half)

                        // Revert if zx + half overflowed.
                        if lt(zxRound, zx) {
                            revert(0, 0)
                        }

                        // Return properly scaled zxRound.
                        z := div(zxRound, scalar)
                    }
                }
            }
        }
    }

    /*//////////////////////////////////////////////////////////////
                        GENERAL NUMBER UTILITIES
    //////////////////////////////////////////////////////////////*/

    function sqrt(uint256 x) internal pure returns (uint256 z) {
        assembly {
            let y := x // We start y at x, which will help us make our initial estimate.

            z := 181 // The "correct" value is 1, but this saves a multiplication later.

            // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
            // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.

            // We check y >= 2^(k + 8) but shift right by k bits
            // each branch to ensure that if x >= 256, then y >= 256.
            if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                y := shr(128, y)
                z := shl(64, z)
            }
            if iszero(lt(y, 0x1000000000000000000)) {
                y := shr(64, y)
                z := shl(32, z)
            }
            if iszero(lt(y, 0x10000000000)) {
                y := shr(32, y)
                z := shl(16, z)
            }
            if iszero(lt(y, 0x1000000)) {
                y := shr(16, y)
                z := shl(8, z)
            }

            // Goal was to get z*z*y within a small factor of x. More iterations could
            // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
            // We ensured y >= 256 so that the relative difference between y and y+1 is small.
            // That's not possible if x < 256 but we can just verify those cases exhaustively.

            // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
            // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
            // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.

            // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
            // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.

            // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
            // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.

            // There is no overflow risk here since y < 2^136 after the first branch above.
            z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.

            // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))

            // If x+1 is a perfect square, the Babylonian method cycles between
            // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
            // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
            // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
            // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
            z := sub(z, lt(div(x, z), z))
        }
    }

    function log2(uint256 x) internal pure returns (uint256 r) {
        require(x > 0, "UNDEFINED");

        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            r := or(r, shl(2, lt(0xf, shr(r, x))))
            r := or(r, shl(1, lt(0x3, shr(r, x))))
            r := or(r, lt(0x1, shr(r, x)))
        }
    }
}

Settings
{
  "remappings": [
    "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "@openzeppelin/contracts-v5/=lib/openzeppelin-contracts-v5/contracts/",
    "@rari-capital/solmate/=lib/solmate/",
    "@lib-keccak/=lib/lib-keccak/contracts/lib/",
    "@solady/=lib/solady/src/",
    "@solady-v0.0.245/=lib/solady-v0.0.245/src/",
    "forge-std/=lib/forge-std/src/",
    "ds-test/=lib/forge-std/lib/ds-test/src/",
    "safe-contracts/=lib/safe-contracts/contracts/",
    "kontrol-cheatcodes/=lib/kontrol-cheatcodes/src/",
    "interfaces/=interfaces/",
    "@solady-test/=lib/lib-keccak/lib/solady/test/",
    "erc4626-tests/=lib/openzeppelin-contracts-v5/lib/erc4626-tests/",
    "lib-keccak/=lib/lib-keccak/contracts/",
    "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
    "openzeppelin-contracts-v5/=lib/openzeppelin-contracts-v5/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/",
    "solady-v0.0.245/=lib/solady-v0.0.245/src/",
    "solady/=lib/solady/",
    "solmate/=lib/solmate/src/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 999999
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "none"
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "london",
  "viaIR": false
}

Contract Security Audit

Contract ABI

API
[{"inputs":[],"name":"DECIMALS","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"baseFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"baseFeeScalar","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"blobBaseFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"blobBaseFeeScalar","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"gasPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"getL1Fee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_unsignedTxSize","type":"uint256"}],"name":"getL1FeeUpperBound","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"getL1GasUsed","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_gasUsed","type":"uint256"}],"name":"getOperatorFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isEcotone","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isFjord","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isIsthmus","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"l1BaseFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"overhead","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"scalar","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"setEcotone","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"setFjord","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"setIsthmus","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"version","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"}]

608060405234801561001057600080fd5b50611c3c806100206000396000f3fe608060405234801561001057600080fd5b50600436106101775760003560e01c806368d5dca6116100d8578063c59859181161008c578063f45e65d811610066578063f45e65d8146102ca578063f8206140146102d2578063fe173b971461026957600080fd5b8063c59859181461029c578063de26c4a1146102a4578063f1c7a58b146102b757600080fd5b80638e98b106116100bd5780638e98b1061461026f578063960e3a2314610277578063b54501bc1461028957600080fd5b806368d5dca61461024c5780636ef25c3a1461026957600080fd5b8063313ce5671161012f5780634ef6e224116101145780634ef6e224146101de578063519b4bd3146101fb57806354fd4d501461020357600080fd5b8063313ce567146101c457806349948e0e146101cb57600080fd5b8063275aedd211610160578063275aedd2146101a1578063291b0383146101b45780632e0f2625146101bc57600080fd5b80630c18c1621461017c57806322b90ab314610197575b600080fd5b6101846102da565b6040519081526020015b60405180910390f35b61019f6103fb565b005b6101846101af36600461168e565b610584565b61019f61070f565b610184600681565b6006610184565b6101846101d93660046116d6565b610937565b6000546101eb9060ff1681565b604051901515815260200161018e565b61018461096e565b61023f6040518060400160405280600581526020017f312e342e3000000000000000000000000000000000000000000000000000000081525081565b60405161018e91906117a5565b6102546109cf565b60405163ffffffff909116815260200161018e565b48610184565b61019f610a54565b6000546101eb90610100900460ff1681565b6000546101eb9062010000900460ff1681565b610254610c4e565b6101846102b23660046116d6565b610caf565b6101846102c536600461168e565b610da9565b610184610e85565b610184610f78565b6000805460ff1615610373576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602860248201527f47617350726963654f7261636c653a206f76657268656164282920697320646560448201527f707265636174656400000000000000000000000000000000000000000000000060648201526084015b60405180910390fd5b73420000000000000000000000000000000000001573ffffffffffffffffffffffffffffffffffffffff16638b239f736040518163ffffffff1660e01b8152600401602060405180830381865afa1580156103d2573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906103f69190611818565b905090565b3373deaddeaddeaddeaddeaddeaddeaddeaddead0001146104c4576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152604160248201527f47617350726963654f7261636c653a206f6e6c7920746865206465706f73697460448201527f6f72206163636f756e742063616e2073657420697345636f746f6e6520666c6160648201527f6700000000000000000000000000000000000000000000000000000000000000608482015260a40161036a565b60005460ff1615610557576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f47617350726963654f7261636c653a2045636f746f6e6520616c72656164792060448201527f6163746976650000000000000000000000000000000000000000000000000000606482015260840161036a565b600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00166001179055565b6000805462010000900460ff1661059d57506000919050565b610709620f42406106668473420000000000000000000000000000000000001573ffffffffffffffffffffffffffffffffffffffff16634d5d9a2a6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610607573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061062b9190611831565b63ffffffff167fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff821583830293840490921491909117011790565b6106709190611886565b73420000000000000000000000000000000000001573ffffffffffffffffffffffffffffffffffffffff166316d3bc7f6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156106cf573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106f391906118c1565b67ffffffffffffffff1681019081106000031790565b92915050565b3373deaddeaddeaddeaddeaddeaddeaddeaddead0001146107d8576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152604160248201527f47617350726963654f7261636c653a206f6e6c7920746865206465706f73697460448201527f6f72206163636f756e742063616e20736574206973497374686d757320666c6160648201527f6700000000000000000000000000000000000000000000000000000000000000608482015260a40161036a565b600054610100900460ff1661086f576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603960248201527f47617350726963654f7261636c653a20497374686d75732063616e206f6e6c7960448201527f2062652061637469766174656420616674657220466a6f726400000000000000606482015260840161036a565b60005462010000900460ff1615610908576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f47617350726963654f7261636c653a20497374686d757320616c72656164792060448201527f6163746976650000000000000000000000000000000000000000000000000000606482015260840161036a565b600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ffff1662010000179055565b60008054610100900460ff16156109515761070982610fd9565b60005460ff16156109655761070982610ff8565b6107098261109c565b600073420000000000000000000000000000000000001573ffffffffffffffffffffffffffffffffffffffff16635cf249696040518163ffffffff1660e01b8152600401602060405180830381865afa1580156103d2573d6000803e3d6000fd5b600073420000000000000000000000000000000000001573ffffffffffffffffffffffffffffffffffffffff166368d5dca66040518163ffffffff1660e01b8152600401602060405180830381865afa158015610a30573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906103f69190611831565b3373deaddeaddeaddeaddeaddeaddeaddeaddead000114610af7576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603f60248201527f47617350726963654f7261636c653a206f6e6c7920746865206465706f73697460448201527f6f72206163636f756e742063616e20736574206973466a6f726420666c616700606482015260840161036a565b60005460ff16610b89576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603960248201527f47617350726963654f7261636c653a20466a6f72642063616e206f6e6c79206260448201527f65206163746976617465642061667465722045636f746f6e6500000000000000606482015260840161036a565b600054610100900460ff1615610c20576040517f08c379a0000000000000000000000000000000000000000000000000000000008152602060048201526024808201527f47617350726963654f7261636c653a20466a6f726420616c726561647920616360448201527f7469766500000000000000000000000000000000000000000000000000000000606482015260840161036a565b600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ff16610100179055565b600073420000000000000000000000000000000000001573ffffffffffffffffffffffffffffffffffffffff1663c59859186040518163ffffffff1660e01b8152600401602060405180830381865afa158015610a30573d6000803e3d6000fd5b60008054610100900460ff1615610cf657620f4240610ce1610cd0846111f0565b51610cdc9060446118eb565b61150d565b610cec906010611903565b6107099190611886565b6000610d018361156c565b60005490915060ff1615610d155792915050565b73420000000000000000000000000000000000001573ffffffffffffffffffffffffffffffffffffffff16638b239f736040518163ffffffff1660e01b8152600401602060405180830381865afa158015610d74573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610d989190611818565b610da290826118eb565b9392505050565b60008054610100900460ff16610e41576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603660248201527f47617350726963654f7261636c653a206765744c314665655570706572426f7560448201527f6e64206f6e6c7920737570706f72747320466a6f726400000000000000000000606482015260840161036a565b6000610e4e8360446118eb565b90506000610e5d60ff83611886565b610e6790836118eb565b610e729060106118eb565b9050610e7d816115fc565b949350505050565b6000805460ff1615610f19576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f47617350726963654f7261636c653a207363616c61722829206973206465707260448201527f6563617465640000000000000000000000000000000000000000000000000000606482015260840161036a565b73420000000000000000000000000000000000001573ffffffffffffffffffffffffffffffffffffffff16639e8c49666040518163ffffffff1660e01b8152600401602060405180830381865afa1580156103d2573d6000803e3d6000fd5b600073420000000000000000000000000000000000001573ffffffffffffffffffffffffffffffffffffffff1663f82061406040518163ffffffff1660e01b8152600401602060405180830381865afa1580156103d2573d6000803e3d6000fd5b6000610709610fe7836111f0565b51610ff39060446118eb565b6115fc565b6000806110048361156c565b9050600061101061096e565b611018610c4e565b611023906010611940565b63ffffffff166110339190611903565b9050600061103f610f78565b6110476109cf565b63ffffffff166110579190611903565b9050600061106582846118eb565b61106f9085611903565b905061107d6006600a611a8c565b611088906010611903565b6110929082611886565b9695505050505050565b6000806110a88361156c565b9050600073420000000000000000000000000000000000001573ffffffffffffffffffffffffffffffffffffffff16639e8c49666040518163ffffffff1660e01b8152600401602060405180830381865afa15801561110b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061112f9190611818565b61113761096e565b73420000000000000000000000000000000000001573ffffffffffffffffffffffffffffffffffffffff16638b239f736040518163ffffffff1660e01b8152600401602060405180830381865afa158015611196573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906111ba9190611818565b6111c490856118eb565b6111ce9190611903565b6111d89190611903565b90506111e66006600a611a8c565b610e7d9082611886565b606061137f565b818153600101919050565b600082840393505b83811015610da25782810151828201511860001a159093029260010161120a565b825b60208210611277578251611242601f836111f7565b52602092909201917fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe09091019060210161122d565b8115610da257825161128c60018403836111f7565b520160010192915050565b60006001830392505b61010782106112d8576112ca8360ff166112c560fd6112c58760081c60e001896111f7565b6111f7565b9350610106820391506112a0565b60078210611305576112fe8360ff166112c5600785036112c58760081c60e001896111f7565b9050610da2565b610e7d8360ff166112c58560081c8560051b01876111f7565b61137782820361135b61134b84600081518060001a8160011a60081b178160021a60101b17915050919050565b639e3779b90260131c611fff1690565b8060021b6040510182815160e01c1860e01b8151188152505050565b600101919050565b6180003860405139618000604051016020830180600d8551820103826002015b818110156114b2576000805b50508051604051600082901a600183901a60081b1760029290921a60101b91909117639e3779b9810260111c617ffc16909101805160e081811c878603811890911b909118909152840190818303908484106114075750611442565b600184019350611fff821161143c578251600081901a600182901a60081b1760029190911a60101b17810361143c5750611442565b506113ab565b8383106114505750506114b2565b6001830392508583111561146e5761146b878788860361122b565b96505b611482600985016003850160038501611202565b915061148f878284611297565b9650506114a7846114a28684860161131e565b61131e565b91505080935061139f565b50506114c4838384885185010361122b565b925050506040519150618000820180820391508183526020830160005b838110156114f95782810151828201526020016114e1565b506000920191825250602001604052919050565b60008061151d83620cc394611903565b611547907ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffd763200611a98565b90506115576064620f4240611b0c565b81121561070957610da26064620f4240611b0c565b80516000908190815b818110156115ef5784818151811061158f5761158f611bc8565b01602001517fff00000000000000000000000000000000000000000000000000000000000000166000036115cf576115c86004846118eb565b92506115dd565b6115da6010846118eb565b92505b806115e781611bf7565b915050611575565b50610e7d826104406118eb565b6000806116088361150d565b90506000611614610f78565b61161c6109cf565b63ffffffff1661162c9190611903565b61163461096e565b61163c610c4e565b611647906010611940565b63ffffffff166116579190611903565b61166191906118eb565b905061166f60066002611903565b61167a90600a611a8c565b6116848284611903565b610e7d9190611886565b6000602082840312156116a057600080fd5b5035919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b6000602082840312156116e857600080fd5b813567ffffffffffffffff8082111561170057600080fd5b818401915084601f83011261171457600080fd5b813581811115611726576117266116a7565b604051601f82017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0908116603f0116810190838211818310171561176c5761176c6116a7565b8160405282815287602084870101111561178557600080fd5b826020860160208301376000928101602001929092525095945050505050565b600060208083528351808285015260005b818110156117d2578581018301518582016040015282016117b6565b818111156117e4576000604083870101525b50601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016929092016040019392505050565b60006020828403121561182a57600080fd5b5051919050565b60006020828403121561184357600080fd5b815163ffffffff81168114610da257600080fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b6000826118bc577f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b500490565b6000602082840312156118d357600080fd5b815167ffffffffffffffff81168114610da257600080fd5b600082198211156118fe576118fe611857565b500190565b6000817fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff048311821515161561193b5761193b611857565b500290565b600063ffffffff8083168185168183048111821515161561196357611963611857565b02949350505050565b600181815b808511156119c557817fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff048211156119ab576119ab611857565b808516156119b857918102915b93841c9390800290611971565b509250929050565b6000826119dc57506001610709565b816119e957506000610709565b81600181146119ff5760028114611a0957611a25565b6001915050610709565b60ff841115611a1a57611a1a611857565b50506001821b610709565b5060208310610133831016604e8410600b8410161715611a48575081810a610709565b611a52838361196c565b807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff04821115611a8457611a84611857565b029392505050565b6000610da283836119cd565b6000808212827f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff03841381151615611ad257611ad2611857565b827f8000000000000000000000000000000000000000000000000000000000000000038412811615611b0657611b06611857565b50500190565b60007f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff600084136000841385830485118282161615611b4d57611b4d611857565b7f80000000000000000000000000000000000000000000000000000000000000006000871286820588128184161615611b8857611b88611857565b60008712925087820587128484161615611ba457611ba4611857565b87850587128184161615611bba57611bba611857565b505050929093029392505050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b60007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8203611c2857611c28611857565b506001019056fea164736f6c634300080f000a

Deployed Bytecode

0x608060405234801561001057600080fd5b50600436106101775760003560e01c806368d5dca6116100d8578063c59859181161008c578063f45e65d811610066578063f45e65d8146102ca578063f8206140146102d2578063fe173b971461026957600080fd5b8063c59859181461029c578063de26c4a1146102a4578063f1c7a58b146102b757600080fd5b80638e98b106116100bd5780638e98b1061461026f578063960e3a2314610277578063b54501bc1461028957600080fd5b806368d5dca61461024c5780636ef25c3a1461026957600080fd5b8063313ce5671161012f5780634ef6e224116101145780634ef6e224146101de578063519b4bd3146101fb57806354fd4d501461020357600080fd5b8063313ce567146101c457806349948e0e146101cb57600080fd5b8063275aedd211610160578063275aedd2146101a1578063291b0383146101b45780632e0f2625146101bc57600080fd5b80630c18c1621461017c57806322b90ab314610197575b600080fd5b6101846102da565b6040519081526020015b60405180910390f35b61019f6103fb565b005b6101846101af36600461168e565b610584565b61019f61070f565b610184600681565b6006610184565b6101846101d93660046116d6565b610937565b6000546101eb9060ff1681565b604051901515815260200161018e565b61018461096e565b61023f6040518060400160405280600581526020017f312e342e3000000000000000000000000000000000000000000000000000000081525081565b60405161018e91906117a5565b6102546109cf565b60405163ffffffff909116815260200161018e565b48610184565b61019f610a54565b6000546101eb90610100900460ff1681565b6000546101eb9062010000900460ff1681565b610254610c4e565b6101846102b23660046116d6565b610caf565b6101846102c536600461168e565b610da9565b610184610e85565b610184610f78565b6000805460ff1615610373576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602860248201527f47617350726963654f7261636c653a206f76657268656164282920697320646560448201527f707265636174656400000000000000000000000000000000000000000000000060648201526084015b60405180910390fd5b73420000000000000000000000000000000000001573ffffffffffffffffffffffffffffffffffffffff16638b239f736040518163ffffffff1660e01b8152600401602060405180830381865afa1580156103d2573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906103f69190611818565b905090565b3373deaddeaddeaddeaddeaddeaddeaddeaddead0001146104c4576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152604160248201527f47617350726963654f7261636c653a206f6e6c7920746865206465706f73697460448201527f6f72206163636f756e742063616e2073657420697345636f746f6e6520666c6160648201527f6700000000000000000000000000000000000000000000000000000000000000608482015260a40161036a565b60005460ff1615610557576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f47617350726963654f7261636c653a2045636f746f6e6520616c72656164792060448201527f6163746976650000000000000000000000000000000000000000000000000000606482015260840161036a565b600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00166001179055565b6000805462010000900460ff1661059d57506000919050565b610709620f42406106668473420000000000000000000000000000000000001573ffffffffffffffffffffffffffffffffffffffff16634d5d9a2a6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610607573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061062b9190611831565b63ffffffff167fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff821583830293840490921491909117011790565b6106709190611886565b73420000000000000000000000000000000000001573ffffffffffffffffffffffffffffffffffffffff166316d3bc7f6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156106cf573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106f391906118c1565b67ffffffffffffffff1681019081106000031790565b92915050565b3373deaddeaddeaddeaddeaddeaddeaddeaddead0001146107d8576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152604160248201527f47617350726963654f7261636c653a206f6e6c7920746865206465706f73697460448201527f6f72206163636f756e742063616e20736574206973497374686d757320666c6160648201527f6700000000000000000000000000000000000000000000000000000000000000608482015260a40161036a565b600054610100900460ff1661086f576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603960248201527f47617350726963654f7261636c653a20497374686d75732063616e206f6e6c7960448201527f2062652061637469766174656420616674657220466a6f726400000000000000606482015260840161036a565b60005462010000900460ff1615610908576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f47617350726963654f7261636c653a20497374686d757320616c72656164792060448201527f6163746976650000000000000000000000000000000000000000000000000000606482015260840161036a565b600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ffff1662010000179055565b60008054610100900460ff16156109515761070982610fd9565b60005460ff16156109655761070982610ff8565b6107098261109c565b600073420000000000000000000000000000000000001573ffffffffffffffffffffffffffffffffffffffff16635cf249696040518163ffffffff1660e01b8152600401602060405180830381865afa1580156103d2573d6000803e3d6000fd5b600073420000000000000000000000000000000000001573ffffffffffffffffffffffffffffffffffffffff166368d5dca66040518163ffffffff1660e01b8152600401602060405180830381865afa158015610a30573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906103f69190611831565b3373deaddeaddeaddeaddeaddeaddeaddeaddead000114610af7576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603f60248201527f47617350726963654f7261636c653a206f6e6c7920746865206465706f73697460448201527f6f72206163636f756e742063616e20736574206973466a6f726420666c616700606482015260840161036a565b60005460ff16610b89576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603960248201527f47617350726963654f7261636c653a20466a6f72642063616e206f6e6c79206260448201527f65206163746976617465642061667465722045636f746f6e6500000000000000606482015260840161036a565b600054610100900460ff1615610c20576040517f08c379a0000000000000000000000000000000000000000000000000000000008152602060048201526024808201527f47617350726963654f7261636c653a20466a6f726420616c726561647920616360448201527f7469766500000000000000000000000000000000000000000000000000000000606482015260840161036a565b600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ff16610100179055565b600073420000000000000000000000000000000000001573ffffffffffffffffffffffffffffffffffffffff1663c59859186040518163ffffffff1660e01b8152600401602060405180830381865afa158015610a30573d6000803e3d6000fd5b60008054610100900460ff1615610cf657620f4240610ce1610cd0846111f0565b51610cdc9060446118eb565b61150d565b610cec906010611903565b6107099190611886565b6000610d018361156c565b60005490915060ff1615610d155792915050565b73420000000000000000000000000000000000001573ffffffffffffffffffffffffffffffffffffffff16638b239f736040518163ffffffff1660e01b8152600401602060405180830381865afa158015610d74573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610d989190611818565b610da290826118eb565b9392505050565b60008054610100900460ff16610e41576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603660248201527f47617350726963654f7261636c653a206765744c314665655570706572426f7560448201527f6e64206f6e6c7920737570706f72747320466a6f726400000000000000000000606482015260840161036a565b6000610e4e8360446118eb565b90506000610e5d60ff83611886565b610e6790836118eb565b610e729060106118eb565b9050610e7d816115fc565b949350505050565b6000805460ff1615610f19576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f47617350726963654f7261636c653a207363616c61722829206973206465707260448201527f6563617465640000000000000000000000000000000000000000000000000000606482015260840161036a565b73420000000000000000000000000000000000001573ffffffffffffffffffffffffffffffffffffffff16639e8c49666040518163ffffffff1660e01b8152600401602060405180830381865afa1580156103d2573d6000803e3d6000fd5b600073420000000000000000000000000000000000001573ffffffffffffffffffffffffffffffffffffffff1663f82061406040518163ffffffff1660e01b8152600401602060405180830381865afa1580156103d2573d6000803e3d6000fd5b6000610709610fe7836111f0565b51610ff39060446118eb565b6115fc565b6000806110048361156c565b9050600061101061096e565b611018610c4e565b611023906010611940565b63ffffffff166110339190611903565b9050600061103f610f78565b6110476109cf565b63ffffffff166110579190611903565b9050600061106582846118eb565b61106f9085611903565b905061107d6006600a611a8c565b611088906010611903565b6110929082611886565b9695505050505050565b6000806110a88361156c565b9050600073420000000000000000000000000000000000001573ffffffffffffffffffffffffffffffffffffffff16639e8c49666040518163ffffffff1660e01b8152600401602060405180830381865afa15801561110b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061112f9190611818565b61113761096e565b73420000000000000000000000000000000000001573ffffffffffffffffffffffffffffffffffffffff16638b239f736040518163ffffffff1660e01b8152600401602060405180830381865afa158015611196573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906111ba9190611818565b6111c490856118eb565b6111ce9190611903565b6111d89190611903565b90506111e66006600a611a8c565b610e7d9082611886565b606061137f565b818153600101919050565b600082840393505b83811015610da25782810151828201511860001a159093029260010161120a565b825b60208210611277578251611242601f836111f7565b52602092909201917fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe09091019060210161122d565b8115610da257825161128c60018403836111f7565b520160010192915050565b60006001830392505b61010782106112d8576112ca8360ff166112c560fd6112c58760081c60e001896111f7565b6111f7565b9350610106820391506112a0565b60078210611305576112fe8360ff166112c5600785036112c58760081c60e001896111f7565b9050610da2565b610e7d8360ff166112c58560081c8560051b01876111f7565b61137782820361135b61134b84600081518060001a8160011a60081b178160021a60101b17915050919050565b639e3779b90260131c611fff1690565b8060021b6040510182815160e01c1860e01b8151188152505050565b600101919050565b6180003860405139618000604051016020830180600d8551820103826002015b818110156114b2576000805b50508051604051600082901a600183901a60081b1760029290921a60101b91909117639e3779b9810260111c617ffc16909101805160e081811c878603811890911b909118909152840190818303908484106114075750611442565b600184019350611fff821161143c578251600081901a600182901a60081b1760029190911a60101b17810361143c5750611442565b506113ab565b8383106114505750506114b2565b6001830392508583111561146e5761146b878788860361122b565b96505b611482600985016003850160038501611202565b915061148f878284611297565b9650506114a7846114a28684860161131e565b61131e565b91505080935061139f565b50506114c4838384885185010361122b565b925050506040519150618000820180820391508183526020830160005b838110156114f95782810151828201526020016114e1565b506000920191825250602001604052919050565b60008061151d83620cc394611903565b611547907ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffd763200611a98565b90506115576064620f4240611b0c565b81121561070957610da26064620f4240611b0c565b80516000908190815b818110156115ef5784818151811061158f5761158f611bc8565b01602001517fff00000000000000000000000000000000000000000000000000000000000000166000036115cf576115c86004846118eb565b92506115dd565b6115da6010846118eb565b92505b806115e781611bf7565b915050611575565b50610e7d826104406118eb565b6000806116088361150d565b90506000611614610f78565b61161c6109cf565b63ffffffff1661162c9190611903565b61163461096e565b61163c610c4e565b611647906010611940565b63ffffffff166116579190611903565b61166191906118eb565b905061166f60066002611903565b61167a90600a611a8c565b6116848284611903565b610e7d9190611886565b6000602082840312156116a057600080fd5b5035919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b6000602082840312156116e857600080fd5b813567ffffffffffffffff8082111561170057600080fd5b818401915084601f83011261171457600080fd5b813581811115611726576117266116a7565b604051601f82017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0908116603f0116810190838211818310171561176c5761176c6116a7565b8160405282815287602084870101111561178557600080fd5b826020860160208301376000928101602001929092525095945050505050565b600060208083528351808285015260005b818110156117d2578581018301518582016040015282016117b6565b818111156117e4576000604083870101525b50601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016929092016040019392505050565b60006020828403121561182a57600080fd5b5051919050565b60006020828403121561184357600080fd5b815163ffffffff81168114610da257600080fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b6000826118bc577f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b500490565b6000602082840312156118d357600080fd5b815167ffffffffffffffff81168114610da257600080fd5b600082198211156118fe576118fe611857565b500190565b6000817fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff048311821515161561193b5761193b611857565b500290565b600063ffffffff8083168185168183048111821515161561196357611963611857565b02949350505050565b600181815b808511156119c557817fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff048211156119ab576119ab611857565b808516156119b857918102915b93841c9390800290611971565b509250929050565b6000826119dc57506001610709565b816119e957506000610709565b81600181146119ff5760028114611a0957611a25565b6001915050610709565b60ff841115611a1a57611a1a611857565b50506001821b610709565b5060208310610133831016604e8410600b8410161715611a48575081810a610709565b611a52838361196c565b807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff04821115611a8457611a84611857565b029392505050565b6000610da283836119cd565b6000808212827f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff03841381151615611ad257611ad2611857565b827f8000000000000000000000000000000000000000000000000000000000000000038412811615611b0657611b06611857565b50500190565b60007f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff600084136000841385830485118282161615611b4d57611b4d611857565b7f80000000000000000000000000000000000000000000000000000000000000006000871286820588128184161615611b8857611b88611857565b60008712925087820587128484161615611ba457611ba4611857565b87850587128184161615611bba57611bba611857565b505050929093029392505050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b60007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8203611c2857611c28611857565b506001019056fea164736f6c634300080f000a

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.