Source Code
Latest 1 from a total of 1 transactions
| Transaction Hash |
|
Block
|
From
|
To
|
|||||
|---|---|---|---|---|---|---|---|---|---|
| Create | 4708791 | 617 days ago | IN | 0 FRAX | 0.00000834 |
Latest 3 internal transactions
Advanced mode:
| Parent Transaction Hash | Block | From | To | |||
|---|---|---|---|---|---|---|
| 4708791 | 617 days ago | Contract Creation | 0 FRAX | |||
| 4708781 | 617 days ago | Contract Creation | 0 FRAX | |||
| 4708781 | 617 days ago | Contract Creation | 0 FRAX |
Cross-Chain Transactions
Loading...
Loading
Contract Name:
NoProtocolFeeLiquidityBootstrappingPoolFactory
Compiler Version
v0.7.1+commit.f4a555be
Optimization Enabled:
Yes with 9999 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;
import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol";
import "@balancer-labs/v2-pool-utils/contracts/factories/BasePoolSplitCodeFactory.sol";
import "@balancer-labs/v2-pool-utils/contracts/factories/FactoryWidePauseWindow.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/Authentication.sol";
import "./NoProtocolFeeLiquidityBootstrappingPool.sol";
contract NoProtocolFeeLiquidityBootstrappingPoolFactory is
Authentication,
BasePoolSplitCodeFactory,
FactoryWidePauseWindow
{
bool private _disabled;
event FactoryDisabled();
constructor(IVault vault)
// This factory is a singleton, so it simply uses its own address to disambiguate action identifiers.
Authentication(bytes32(uint256(address(this))))
BasePoolSplitCodeFactory(vault, type(NoProtocolFeeLiquidityBootstrappingPool).creationCode)
{
// solhint-disable-previous-line no-empty-blocks
}
function isDisabled() public view returns (bool) {
return _disabled;
}
function disable() external authenticate {
_disabled = true;
emit FactoryDisabled();
}
/**
* @dev Deploys a new `NoProtocolFeeLiquidityBootstrappingPool`.
*/
function create(
string memory name,
string memory symbol,
IERC20[] memory tokens,
uint256[] memory weights,
uint256 swapFeePercentage,
address owner,
bool swapEnabledOnStart
) external returns (address) {
_require(!_disabled, Errors.DISABLED);
(uint256 pauseWindowDuration, uint256 bufferPeriodDuration) = getPauseConfiguration();
return
_create(
abi.encode(
getVault(),
name,
symbol,
tokens,
weights,
swapFeePercentage,
pauseWindowDuration,
bufferPeriodDuration,
owner,
swapEnabledOnStart
)
);
}
function _canPerform(bytes32 actionId, address user) internal view override returns (bool) {
return (getVault().getAuthorizer().canPerform(actionId, user, address(this)));
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;
import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol";
import "@balancer-labs/v2-pool-utils/contracts/BaseMinimalSwapInfoPool.sol";
import "./WeightedMath.sol";
import "./WeightedPoolUserDataHelpers.sol";
/**
* @dev Base class for WeightedPools containing swap, join and exit logic, but leaving storage and management of
* the weights to subclasses. Derived contracts can choose to make weights immutable, mutable, or even dynamic
* based on local or external logic.
*/
abstract contract BaseWeightedPool is BaseMinimalSwapInfoPool, WeightedMath {
using FixedPoint for uint256;
using WeightedPoolUserDataHelpers for bytes;
uint256 private _lastInvariant;
enum JoinKind { INIT, EXACT_TOKENS_IN_FOR_BPT_OUT, TOKEN_IN_FOR_EXACT_BPT_OUT }
enum ExitKind { EXACT_BPT_IN_FOR_ONE_TOKEN_OUT, EXACT_BPT_IN_FOR_TOKENS_OUT, BPT_IN_FOR_EXACT_TOKENS_OUT }
constructor(
IVault vault,
string memory name,
string memory symbol,
IERC20[] memory tokens,
address[] memory assetManagers,
uint256 swapFeePercentage,
uint256 pauseWindowDuration,
uint256 bufferPeriodDuration,
address owner
)
BasePool(
vault,
// Given BaseMinimalSwapInfoPool supports both of these specializations, and this Pool never registers or
// deregisters any tokens after construction, picking Two Token when the Pool only has two tokens is free
// gas savings.
tokens.length == 2 ? IVault.PoolSpecialization.TWO_TOKEN : IVault.PoolSpecialization.MINIMAL_SWAP_INFO,
name,
symbol,
tokens,
assetManagers,
swapFeePercentage,
pauseWindowDuration,
bufferPeriodDuration,
owner
)
{
// solhint-disable-previous-line no-empty-blocks
}
// Virtual functions
/**
* @dev Returns the normalized weight of `token`. Weights are fixed point numbers that sum to FixedPoint.ONE.
*/
function _getNormalizedWeight(IERC20 token) internal view virtual returns (uint256);
/**
* @dev Returns all normalized weights, in the same order as the Pool's tokens.
*/
function _getNormalizedWeights() internal view virtual returns (uint256[] memory);
/**
* @dev Returns all normalized weights, in the same order as the Pool's tokens, along with the index of the token
* with the highest weight.
*/
function _getNormalizedWeightsAndMaxWeightIndex() internal view virtual returns (uint256[] memory, uint256);
function getLastInvariant() external view returns (uint256) {
return _lastInvariant;
}
/**
* @dev Returns the current value of the invariant.
*/
function getInvariant() public view returns (uint256) {
(, uint256[] memory balances, ) = getVault().getPoolTokens(getPoolId());
// Since the Pool hooks always work with upscaled balances, we manually
// upscale here for consistency
_upscaleArray(balances, _scalingFactors());
(uint256[] memory normalizedWeights, ) = _getNormalizedWeightsAndMaxWeightIndex();
return WeightedMath._calculateInvariant(normalizedWeights, balances);
}
function getNormalizedWeights() external view returns (uint256[] memory) {
return _getNormalizedWeights();
}
// Base Pool handlers
// Swap
function _onSwapGivenIn(
SwapRequest memory swapRequest,
uint256 currentBalanceTokenIn,
uint256 currentBalanceTokenOut
) internal view virtual override whenNotPaused returns (uint256) {
// Swaps are disabled while the contract is paused.
return
WeightedMath._calcOutGivenIn(
currentBalanceTokenIn,
_getNormalizedWeight(swapRequest.tokenIn),
currentBalanceTokenOut,
_getNormalizedWeight(swapRequest.tokenOut),
swapRequest.amount
);
}
function _onSwapGivenOut(
SwapRequest memory swapRequest,
uint256 currentBalanceTokenIn,
uint256 currentBalanceTokenOut
) internal view virtual override whenNotPaused returns (uint256) {
// Swaps are disabled while the contract is paused.
return
WeightedMath._calcInGivenOut(
currentBalanceTokenIn,
_getNormalizedWeight(swapRequest.tokenIn),
currentBalanceTokenOut,
_getNormalizedWeight(swapRequest.tokenOut),
swapRequest.amount
);
}
// Initialize
function _onInitializePool(
bytes32,
address,
address,
uint256[] memory scalingFactors,
bytes memory userData
) internal virtual override whenNotPaused returns (uint256, uint256[] memory) {
// It would be strange for the Pool to be paused before it is initialized, but for consistency we prevent
// initialization in this case.
JoinKind kind = userData.joinKind();
_require(kind == JoinKind.INIT, Errors.UNINITIALIZED);
uint256[] memory amountsIn = userData.initialAmountsIn();
InputHelpers.ensureInputLengthMatch(_getTotalTokens(), amountsIn.length);
_upscaleArray(amountsIn, scalingFactors);
(uint256[] memory normalizedWeights, ) = _getNormalizedWeightsAndMaxWeightIndex();
uint256 invariantAfterJoin = WeightedMath._calculateInvariant(normalizedWeights, amountsIn);
// Set the initial BPT to the value of the invariant times the number of tokens. This makes BPT supply more
// consistent in Pools with similar compositions but different number of tokens.
uint256 bptAmountOut = Math.mul(invariantAfterJoin, _getTotalTokens());
_lastInvariant = invariantAfterJoin;
return (bptAmountOut, amountsIn);
}
// Join
function _onJoinPool(
bytes32,
address,
address,
uint256[] memory balances,
uint256,
uint256 protocolSwapFeePercentage,
uint256[] memory scalingFactors,
bytes memory userData
)
internal
virtual
override
whenNotPaused
returns (
uint256,
uint256[] memory,
uint256[] memory
)
{
// All joins are disabled while the contract is paused.
(uint256[] memory normalizedWeights, uint256 maxWeightTokenIndex) = _getNormalizedWeightsAndMaxWeightIndex();
// Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous join
// or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids spending gas
// computing them on each individual swap
uint256 invariantBeforeJoin = WeightedMath._calculateInvariant(normalizedWeights, balances);
uint256[] memory dueProtocolFeeAmounts = _getDueProtocolFeeAmounts(
balances,
normalizedWeights,
maxWeightTokenIndex,
_lastInvariant,
invariantBeforeJoin,
protocolSwapFeePercentage
);
// Update current balances by subtracting the protocol fee amounts
_mutateAmounts(balances, dueProtocolFeeAmounts, FixedPoint.sub);
(uint256 bptAmountOut, uint256[] memory amountsIn) = _doJoin(
balances,
normalizedWeights,
scalingFactors,
userData
);
// Update the invariant with the balances the Pool will have after the join, in order to compute the
// protocol swap fee amounts due in future joins and exits.
_lastInvariant = _invariantAfterJoin(balances, amountsIn, normalizedWeights);
return (bptAmountOut, amountsIn, dueProtocolFeeAmounts);
}
function _doJoin(
uint256[] memory balances,
uint256[] memory normalizedWeights,
uint256[] memory scalingFactors,
bytes memory userData
) private view returns (uint256, uint256[] memory) {
JoinKind kind = userData.joinKind();
if (kind == JoinKind.EXACT_TOKENS_IN_FOR_BPT_OUT) {
return _joinExactTokensInForBPTOut(balances, normalizedWeights, scalingFactors, userData);
} else if (kind == JoinKind.TOKEN_IN_FOR_EXACT_BPT_OUT) {
return _joinTokenInForExactBPTOut(balances, normalizedWeights, userData);
} else {
_revert(Errors.UNHANDLED_JOIN_KIND);
}
}
function _joinExactTokensInForBPTOut(
uint256[] memory balances,
uint256[] memory normalizedWeights,
uint256[] memory scalingFactors,
bytes memory userData
) private view returns (uint256, uint256[] memory) {
(uint256[] memory amountsIn, uint256 minBPTAmountOut) = userData.exactTokensInForBptOut();
InputHelpers.ensureInputLengthMatch(_getTotalTokens(), amountsIn.length);
_upscaleArray(amountsIn, scalingFactors);
uint256 bptAmountOut = WeightedMath._calcBptOutGivenExactTokensIn(
balances,
normalizedWeights,
amountsIn,
totalSupply(),
getSwapFeePercentage()
);
_require(bptAmountOut >= minBPTAmountOut, Errors.BPT_OUT_MIN_AMOUNT);
return (bptAmountOut, amountsIn);
}
function _joinTokenInForExactBPTOut(
uint256[] memory balances,
uint256[] memory normalizedWeights,
bytes memory userData
) private view returns (uint256, uint256[] memory) {
(uint256 bptAmountOut, uint256 tokenIndex) = userData.tokenInForExactBptOut();
// Note that there is no maximum amountIn parameter: this is handled by `IVault.joinPool`.
_require(tokenIndex < _getTotalTokens(), Errors.OUT_OF_BOUNDS);
uint256[] memory amountsIn = new uint256[](_getTotalTokens());
amountsIn[tokenIndex] = WeightedMath._calcTokenInGivenExactBptOut(
balances[tokenIndex],
normalizedWeights[tokenIndex],
bptAmountOut,
totalSupply(),
getSwapFeePercentage()
);
return (bptAmountOut, amountsIn);
}
// Exit
function _onExitPool(
bytes32,
address,
address,
uint256[] memory balances,
uint256,
uint256 protocolSwapFeePercentage,
uint256[] memory scalingFactors,
bytes memory userData
)
internal
virtual
override
returns (
uint256 bptAmountIn,
uint256[] memory amountsOut,
uint256[] memory dueProtocolFeeAmounts
)
{
(uint256[] memory normalizedWeights, uint256 maxWeightTokenIndex) = _getNormalizedWeightsAndMaxWeightIndex();
// Exits are not completely disabled while the contract is paused: proportional exits (exact BPT in for tokens
// out) remain functional.
if (_isNotPaused()) {
// Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous
// join or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids
// spending gas calculating the fees on each individual swap.
uint256 invariantBeforeExit = WeightedMath._calculateInvariant(normalizedWeights, balances);
dueProtocolFeeAmounts = _getDueProtocolFeeAmounts(
balances,
normalizedWeights,
maxWeightTokenIndex,
_lastInvariant,
invariantBeforeExit,
protocolSwapFeePercentage
);
// Update current balances by subtracting the protocol fee amounts
_mutateAmounts(balances, dueProtocolFeeAmounts, FixedPoint.sub);
} else {
// If the contract is paused, swap protocol fee amounts are not charged to avoid extra calculations and
// reduce the potential for errors.
dueProtocolFeeAmounts = new uint256[](_getTotalTokens());
}
(bptAmountIn, amountsOut) = _doExit(balances, normalizedWeights, scalingFactors, userData);
// Update the invariant with the balances the Pool will have after the exit, in order to compute the
// protocol swap fees due in future joins and exits.
_lastInvariant = _invariantAfterExit(balances, amountsOut, normalizedWeights);
return (bptAmountIn, amountsOut, dueProtocolFeeAmounts);
}
function _doExit(
uint256[] memory balances,
uint256[] memory normalizedWeights,
uint256[] memory scalingFactors,
bytes memory userData
) private view returns (uint256, uint256[] memory) {
ExitKind kind = userData.exitKind();
if (kind == ExitKind.EXACT_BPT_IN_FOR_ONE_TOKEN_OUT) {
return _exitExactBPTInForTokenOut(balances, normalizedWeights, userData);
} else if (kind == ExitKind.EXACT_BPT_IN_FOR_TOKENS_OUT) {
return _exitExactBPTInForTokensOut(balances, userData);
} else {
// ExitKind.BPT_IN_FOR_EXACT_TOKENS_OUT
return _exitBPTInForExactTokensOut(balances, normalizedWeights, scalingFactors, userData);
}
}
function _exitExactBPTInForTokenOut(
uint256[] memory balances,
uint256[] memory normalizedWeights,
bytes memory userData
) private view whenNotPaused returns (uint256, uint256[] memory) {
// This exit function is disabled if the contract is paused.
(uint256 bptAmountIn, uint256 tokenIndex) = userData.exactBptInForTokenOut();
// Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`.
_require(tokenIndex < _getTotalTokens(), Errors.OUT_OF_BOUNDS);
// We exit in a single token, so we initialize amountsOut with zeros
uint256[] memory amountsOut = new uint256[](_getTotalTokens());
// And then assign the result to the selected token
amountsOut[tokenIndex] = WeightedMath._calcTokenOutGivenExactBptIn(
balances[tokenIndex],
normalizedWeights[tokenIndex],
bptAmountIn,
totalSupply(),
getSwapFeePercentage()
);
return (bptAmountIn, amountsOut);
}
function _exitExactBPTInForTokensOut(uint256[] memory balances, bytes memory userData)
private
view
returns (uint256, uint256[] memory)
{
// This exit function is the only one that is not disabled if the contract is paused: it remains unrestricted
// in an attempt to provide users with a mechanism to retrieve their tokens in case of an emergency.
// This particular exit function is the only one that remains available because it is the simplest one, and
// therefore the one with the lowest likelihood of errors.
uint256 bptAmountIn = userData.exactBptInForTokensOut();
// Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`.
uint256[] memory amountsOut = WeightedMath._calcTokensOutGivenExactBptIn(balances, bptAmountIn, totalSupply());
return (bptAmountIn, amountsOut);
}
function _exitBPTInForExactTokensOut(
uint256[] memory balances,
uint256[] memory normalizedWeights,
uint256[] memory scalingFactors,
bytes memory userData
) private view whenNotPaused returns (uint256, uint256[] memory) {
// This exit function is disabled if the contract is paused.
(uint256[] memory amountsOut, uint256 maxBPTAmountIn) = userData.bptInForExactTokensOut();
InputHelpers.ensureInputLengthMatch(amountsOut.length, _getTotalTokens());
_upscaleArray(amountsOut, scalingFactors);
uint256 bptAmountIn = WeightedMath._calcBptInGivenExactTokensOut(
balances,
normalizedWeights,
amountsOut,
totalSupply(),
getSwapFeePercentage()
);
_require(bptAmountIn <= maxBPTAmountIn, Errors.BPT_IN_MAX_AMOUNT);
return (bptAmountIn, amountsOut);
}
// Helpers
function _getDueProtocolFeeAmounts(
uint256[] memory balances,
uint256[] memory normalizedWeights,
uint256 maxWeightTokenIndex,
uint256 previousInvariant,
uint256 currentInvariant,
uint256 protocolSwapFeePercentage
) private view returns (uint256[] memory) {
// Initialize with zeros
uint256[] memory dueProtocolFeeAmounts = new uint256[](_getTotalTokens());
// Early return if the protocol swap fee percentage is zero, saving gas.
if (protocolSwapFeePercentage == 0) {
return dueProtocolFeeAmounts;
}
// The protocol swap fees are always paid using the token with the largest weight in the Pool. As this is the
// token that is expected to have the largest balance, using it to pay fees should not unbalance the Pool.
dueProtocolFeeAmounts[maxWeightTokenIndex] = WeightedMath._calcDueTokenProtocolSwapFeeAmount(
balances[maxWeightTokenIndex],
normalizedWeights[maxWeightTokenIndex],
previousInvariant,
currentInvariant,
protocolSwapFeePercentage
);
return dueProtocolFeeAmounts;
}
/**
* @dev Returns the value of the invariant given `balances`, assuming they are increased by `amountsIn`. All
* amounts are expected to be upscaled.
*/
function _invariantAfterJoin(
uint256[] memory balances,
uint256[] memory amountsIn,
uint256[] memory normalizedWeights
) private view returns (uint256) {
_mutateAmounts(balances, amountsIn, FixedPoint.add);
return WeightedMath._calculateInvariant(normalizedWeights, balances);
}
function _invariantAfterExit(
uint256[] memory balances,
uint256[] memory amountsOut,
uint256[] memory normalizedWeights
) private view returns (uint256) {
_mutateAmounts(balances, amountsOut, FixedPoint.sub);
return WeightedMath._calculateInvariant(normalizedWeights, balances);
}
/**
* @dev Mutates `amounts` by applying `mutation` with each entry in `arguments`.
*
* Equivalent to `amounts = amounts.map(mutation)`.
*/
function _mutateAmounts(
uint256[] memory toMutate,
uint256[] memory arguments,
function(uint256, uint256) pure returns (uint256) mutation
) private view {
for (uint256 i = 0; i < _getTotalTokens(); ++i) {
toMutate[i] = mutation(toMutate[i], arguments[i]);
}
}
/**
* @dev This function returns the appreciation of one BPT relative to the
* underlying tokens. This starts at 1 when the pool is created and grows over time
*/
function getRate() public view returns (uint256) {
// The initial BPT supply is equal to the invariant times the number of tokens.
return Math.mul(getInvariant(), _getTotalTokens()).divDown(totalSupply());
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "./LogExpMath.sol";
import "../helpers/BalancerErrors.sol";
/* solhint-disable private-vars-leading-underscore */
library FixedPoint {
uint256 internal constant ONE = 1e18; // 18 decimal places
uint256 internal constant MAX_POW_RELATIVE_ERROR = 10000; // 10^(-14)
// Minimum base for the power function when the exponent is 'free' (larger than ONE).
uint256 internal constant MIN_POW_BASE_FREE_EXPONENT = 0.7e18;
function add(uint256 a, uint256 b) internal pure returns (uint256) {
// Fixed Point addition is the same as regular checked addition
uint256 c = a + b;
_require(c >= a, Errors.ADD_OVERFLOW);
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
// Fixed Point addition is the same as regular checked addition
_require(b <= a, Errors.SUB_OVERFLOW);
uint256 c = a - b;
return c;
}
function mulDown(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 product = a * b;
_require(a == 0 || product / a == b, Errors.MUL_OVERFLOW);
return product / ONE;
}
function mulUp(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 product = a * b;
_require(a == 0 || product / a == b, Errors.MUL_OVERFLOW);
if (product == 0) {
return 0;
} else {
// The traditional divUp formula is:
// divUp(x, y) := (x + y - 1) / y
// To avoid intermediate overflow in the addition, we distribute the division and get:
// divUp(x, y) := (x - 1) / y + 1
// Note that this requires x != 0, which we already tested for.
return ((product - 1) / ONE) + 1;
}
}
function divDown(uint256 a, uint256 b) internal pure returns (uint256) {
_require(b != 0, Errors.ZERO_DIVISION);
if (a == 0) {
return 0;
} else {
uint256 aInflated = a * ONE;
_require(aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow
return aInflated / b;
}
}
function divUp(uint256 a, uint256 b) internal pure returns (uint256) {
_require(b != 0, Errors.ZERO_DIVISION);
if (a == 0) {
return 0;
} else {
uint256 aInflated = a * ONE;
_require(aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow
// The traditional divUp formula is:
// divUp(x, y) := (x + y - 1) / y
// To avoid intermediate overflow in the addition, we distribute the division and get:
// divUp(x, y) := (x - 1) / y + 1
// Note that this requires x != 0, which we already tested for.
return ((aInflated - 1) / b) + 1;
}
}
/**
* @dev Returns x^y, assuming both are fixed point numbers, rounding down. The result is guaranteed to not be above
* the true value (that is, the error function expected - actual is always positive).
*/
function powDown(uint256 x, uint256 y) internal pure returns (uint256) {
uint256 raw = LogExpMath.pow(x, y);
uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1);
if (raw < maxError) {
return 0;
} else {
return sub(raw, maxError);
}
}
/**
* @dev Returns x^y, assuming both are fixed point numbers, rounding up. The result is guaranteed to not be below
* the true value (that is, the error function expected - actual is always negative).
*/
function powUp(uint256 x, uint256 y) internal pure returns (uint256) {
uint256 raw = LogExpMath.pow(x, y);
uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1);
return add(raw, maxError);
}
/**
* @dev Returns the complement of a value (1 - x), capped to 0 if x is larger than 1.
*
* Useful when computing the complement for values with some level of relative error, as it strips this error and
* prevents intermediate negative values.
*/
function complement(uint256 x) internal pure returns (uint256) {
return (x < ONE) ? (ONE - x) : 0;
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "../openzeppelin/IERC20.sol";
import "./BalancerErrors.sol";
library InputHelpers {
function ensureInputLengthMatch(uint256 a, uint256 b) internal pure {
_require(a == b, Errors.INPUT_LENGTH_MISMATCH);
}
function ensureInputLengthMatch(
uint256 a,
uint256 b,
uint256 c
) internal pure {
_require(a == b && b == c, Errors.INPUT_LENGTH_MISMATCH);
}
function ensureArrayIsSorted(IERC20[] memory array) internal pure {
address[] memory addressArray;
// solhint-disable-next-line no-inline-assembly
assembly {
addressArray := array
}
ensureArrayIsSorted(addressArray);
}
function ensureArrayIsSorted(address[] memory array) internal pure {
if (array.length < 2) {
return;
}
address previous = array[0];
for (uint256 i = 1; i < array.length; ++i) {
address current = array[i];
_require(previous < current, Errors.UNSORTED_ARRAY);
previous = current;
}
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;
import "./BasePool.sol";
import "@balancer-labs/v2-vault/contracts/interfaces/IMinimalSwapInfoPool.sol";
/**
* @dev Extension of `BasePool`, adding a handler for `IMinimalSwapInfoPool.onSwap`.
*
* Derived contracts must call `BasePool`'s constructor, and implement `_onSwapGivenIn` and `_onSwapGivenOut` along with
* `BasePool`'s virtual functions. Inheriting from this contract lets derived contracts choose the Two Token or Minimal
* Swap Info specialization settings.
*/
abstract contract BaseMinimalSwapInfoPool is IMinimalSwapInfoPool, BasePool {
// Swap Hooks
function onSwap(
SwapRequest memory request,
uint256 balanceTokenIn,
uint256 balanceTokenOut
) public virtual override returns (uint256) {
uint256 scalingFactorTokenIn = _scalingFactor(request.tokenIn);
uint256 scalingFactorTokenOut = _scalingFactor(request.tokenOut);
if (request.kind == IVault.SwapKind.GIVEN_IN) {
// Fees are subtracted before scaling, to reduce the complexity of the rounding direction analysis.
request.amount = _subtractSwapFeeAmount(request.amount);
// All token amounts are upscaled.
balanceTokenIn = _upscale(balanceTokenIn, scalingFactorTokenIn);
balanceTokenOut = _upscale(balanceTokenOut, scalingFactorTokenOut);
request.amount = _upscale(request.amount, scalingFactorTokenIn);
uint256 amountOut = _onSwapGivenIn(request, balanceTokenIn, balanceTokenOut);
// amountOut tokens are exiting the Pool, so we round down.
return _downscaleDown(amountOut, scalingFactorTokenOut);
} else {
// All token amounts are upscaled.
balanceTokenIn = _upscale(balanceTokenIn, scalingFactorTokenIn);
balanceTokenOut = _upscale(balanceTokenOut, scalingFactorTokenOut);
request.amount = _upscale(request.amount, scalingFactorTokenOut);
uint256 amountIn = _onSwapGivenOut(request, balanceTokenIn, balanceTokenOut);
// amountIn tokens are entering the Pool, so we round up.
amountIn = _downscaleUp(amountIn, scalingFactorTokenIn);
// Fees are added after scaling happens, to reduce the complexity of the rounding direction analysis.
return _addSwapFeeAmount(amountIn);
}
}
/*
* @dev Called when a swap with the Pool occurs, where the amount of tokens entering the Pool is known.
*
* Returns the amount of tokens that will be taken from the Pool in return.
*
* All amounts inside `swapRequest`, `balanceTokenIn` and `balanceTokenOut` are upscaled. The swap fee has already
* been deducted from `swapRequest.amount`.
*
* The return value is also considered upscaled, and will be downscaled (rounding down) before returning it to the
* Vault.
*/
function _onSwapGivenIn(
SwapRequest memory swapRequest,
uint256 balanceTokenIn,
uint256 balanceTokenOut
) internal virtual returns (uint256);
/*
* @dev Called when a swap with the Pool occurs, where the amount of tokens exiting the Pool is known.
*
* Returns the amount of tokens that will be granted to the Pool in return.
*
* All amounts inside `swapRequest`, `balanceTokenIn` and `balanceTokenOut` are upscaled.
*
* The return value is also considered upscaled, and will be downscaled (rounding up) before applying the swap fee
* and returning it to the Vault.
*/
function _onSwapGivenOut(
SwapRequest memory swapRequest,
uint256 balanceTokenIn,
uint256 balanceTokenOut
) internal virtual returns (uint256);
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol";
/* solhint-disable private-vars-leading-underscore */
contract WeightedMath {
using FixedPoint for uint256;
// A minimum normalized weight imposes a maximum weight ratio. We need this due to limitations in the
// implementation of the power function, as these ratios are often exponents.
uint256 internal constant _MIN_WEIGHT = 0.01e18;
// Having a minimum normalized weight imposes a limit on the maximum number of tokens;
// i.e., the largest possible pool is one where all tokens have exactly the minimum weight.
uint256 internal constant _MAX_WEIGHTED_TOKENS = 100;
// Pool limits that arise from limitations in the fixed point power function (and the imposed 1:100 maximum weight
// ratio).
// Swap limits: amounts swapped may not be larger than this percentage of total balance.
uint256 internal constant _MAX_IN_RATIO = 0.3e18;
uint256 internal constant _MAX_OUT_RATIO = 0.3e18;
// Invariant growth limit: non-proportional joins cannot cause the invariant to increase by more than this ratio.
uint256 internal constant _MAX_INVARIANT_RATIO = 3e18;
// Invariant shrink limit: non-proportional exits cannot cause the invariant to decrease by less than this ratio.
uint256 internal constant _MIN_INVARIANT_RATIO = 0.7e18;
// Invariant is used to collect protocol swap fees by comparing its value between two times.
// So we can round always to the same direction. It is also used to initiate the BPT amount
// and, because there is a minimum BPT, we round down the invariant.
function _calculateInvariant(uint256[] memory normalizedWeights, uint256[] memory balances)
internal
pure
returns (uint256 invariant)
{
/**********************************************************************************************
// invariant _____ //
// wi = weight index i | | wi //
// bi = balance index i | | bi ^ = i //
// i = invariant //
**********************************************************************************************/
invariant = FixedPoint.ONE;
for (uint256 i = 0; i < normalizedWeights.length; i++) {
invariant = invariant.mulDown(balances[i].powDown(normalizedWeights[i]));
}
_require(invariant > 0, Errors.ZERO_INVARIANT);
}
// Computes how many tokens can be taken out of a pool if `amountIn` are sent, given the
// current balances and weights.
function _calcOutGivenIn(
uint256 balanceIn,
uint256 weightIn,
uint256 balanceOut,
uint256 weightOut,
uint256 amountIn
) internal pure returns (uint256) {
/**********************************************************************************************
// outGivenIn //
// aO = amountOut //
// bO = balanceOut //
// bI = balanceIn / / bI \ (wI / wO) \ //
// aI = amountIn aO = bO * | 1 - | -------------------------- | ^ | //
// wI = weightIn \ \ ( bI + aI ) / / //
// wO = weightOut //
**********************************************************************************************/
// Amount out, so we round down overall.
// The multiplication rounds down, and the subtrahend (power) rounds up (so the base rounds up too).
// Because bI / (bI + aI) <= 1, the exponent rounds down.
// Cannot exceed maximum in ratio
_require(amountIn <= balanceIn.mulDown(_MAX_IN_RATIO), Errors.MAX_IN_RATIO);
uint256 denominator = balanceIn.add(amountIn);
uint256 base = balanceIn.divUp(denominator);
uint256 exponent = weightIn.divDown(weightOut);
uint256 power = base.powUp(exponent);
return balanceOut.mulDown(power.complement());
}
// Computes how many tokens must be sent to a pool in order to take `amountOut`, given the
// current balances and weights.
function _calcInGivenOut(
uint256 balanceIn,
uint256 weightIn,
uint256 balanceOut,
uint256 weightOut,
uint256 amountOut
) internal pure returns (uint256) {
/**********************************************************************************************
// inGivenOut //
// aO = amountOut //
// bO = balanceOut //
// bI = balanceIn / / bO \ (wO / wI) \ //
// aI = amountIn aI = bI * | | -------------------------- | ^ - 1 | //
// wI = weightIn \ \ ( bO - aO ) / / //
// wO = weightOut //
**********************************************************************************************/
// Amount in, so we round up overall.
// The multiplication rounds up, and the power rounds up (so the base rounds up too).
// Because b0 / (b0 - a0) >= 1, the exponent rounds up.
// Cannot exceed maximum out ratio
_require(amountOut <= balanceOut.mulDown(_MAX_OUT_RATIO), Errors.MAX_OUT_RATIO);
uint256 base = balanceOut.divUp(balanceOut.sub(amountOut));
uint256 exponent = weightOut.divUp(weightIn);
uint256 power = base.powUp(exponent);
// Because the base is larger than one (and the power rounds up), the power should always be larger than one, so
// the following subtraction should never revert.
uint256 ratio = power.sub(FixedPoint.ONE);
return balanceIn.mulUp(ratio);
}
function _calcBptOutGivenExactTokensIn(
uint256[] memory balances,
uint256[] memory normalizedWeights,
uint256[] memory amountsIn,
uint256 bptTotalSupply,
uint256 swapFeePercentage
) internal pure returns (uint256) {
// BPT out, so we round down overall.
uint256[] memory balanceRatiosWithFee = new uint256[](amountsIn.length);
uint256 invariantRatioWithFees = 0;
for (uint256 i = 0; i < balances.length; i++) {
balanceRatiosWithFee[i] = balances[i].add(amountsIn[i]).divDown(balances[i]);
invariantRatioWithFees = invariantRatioWithFees.add(balanceRatiosWithFee[i].mulDown(normalizedWeights[i]));
}
uint256 invariantRatio = FixedPoint.ONE;
for (uint256 i = 0; i < balances.length; i++) {
uint256 amountInWithoutFee;
if (balanceRatiosWithFee[i] > invariantRatioWithFees) {
uint256 nonTaxableAmount = balances[i].mulDown(invariantRatioWithFees.sub(FixedPoint.ONE));
uint256 taxableAmount = amountsIn[i].sub(nonTaxableAmount);
amountInWithoutFee = nonTaxableAmount.add(taxableAmount.mulDown(FixedPoint.ONE.sub(swapFeePercentage)));
} else {
amountInWithoutFee = amountsIn[i];
}
uint256 balanceRatio = balances[i].add(amountInWithoutFee).divDown(balances[i]);
invariantRatio = invariantRatio.mulDown(balanceRatio.powDown(normalizedWeights[i]));
}
if (invariantRatio > FixedPoint.ONE) {
return bptTotalSupply.mulDown(invariantRatio.sub(FixedPoint.ONE));
} else {
return 0;
}
}
function _calcTokenInGivenExactBptOut(
uint256 balance,
uint256 normalizedWeight,
uint256 bptAmountOut,
uint256 bptTotalSupply,
uint256 swapFeePercentage
) internal pure returns (uint256) {
/******************************************************************************************
// tokenInForExactBPTOut //
// a = amountIn //
// b = balance / / totalBPT + bptOut \ (1 / w) \ //
// bptOut = bptAmountOut a = b * | | -------------------------- | ^ - 1 | //
// bpt = totalBPT \ \ totalBPT / / //
// w = weight //
******************************************************************************************/
// Token in, so we round up overall.
// Calculate the factor by which the invariant will increase after minting BPTAmountOut
uint256 invariantRatio = bptTotalSupply.add(bptAmountOut).divUp(bptTotalSupply);
_require(invariantRatio <= _MAX_INVARIANT_RATIO, Errors.MAX_OUT_BPT_FOR_TOKEN_IN);
// Calculate by how much the token balance has to increase to match the invariantRatio
uint256 balanceRatio = invariantRatio.powUp(FixedPoint.ONE.divUp(normalizedWeight));
uint256 amountInWithoutFee = balance.mulUp(balanceRatio.sub(FixedPoint.ONE));
// We can now compute how much extra balance is being deposited and used in virtual swaps, and charge swap fees
// accordingly.
uint256 taxablePercentage = normalizedWeight.complement();
uint256 taxableAmount = amountInWithoutFee.mulUp(taxablePercentage);
uint256 nonTaxableAmount = amountInWithoutFee.sub(taxableAmount);
return nonTaxableAmount.add(taxableAmount.divUp(FixedPoint.ONE.sub(swapFeePercentage)));
}
function _calcBptInGivenExactTokensOut(
uint256[] memory balances,
uint256[] memory normalizedWeights,
uint256[] memory amountsOut,
uint256 bptTotalSupply,
uint256 swapFeePercentage
) internal pure returns (uint256) {
// BPT in, so we round up overall.
uint256[] memory balanceRatiosWithoutFee = new uint256[](amountsOut.length);
uint256 invariantRatioWithoutFees = 0;
for (uint256 i = 0; i < balances.length; i++) {
balanceRatiosWithoutFee[i] = balances[i].sub(amountsOut[i]).divUp(balances[i]);
invariantRatioWithoutFees = invariantRatioWithoutFees.add(
balanceRatiosWithoutFee[i].mulUp(normalizedWeights[i])
);
}
uint256 invariantRatio = FixedPoint.ONE;
for (uint256 i = 0; i < balances.length; i++) {
// Swap fees are typically charged on 'token in', but there is no 'token in' here, so we apply it to
// 'token out'. This results in slightly larger price impact.
uint256 amountOutWithFee;
if (invariantRatioWithoutFees > balanceRatiosWithoutFee[i]) {
uint256 nonTaxableAmount = balances[i].mulDown(invariantRatioWithoutFees.complement());
uint256 taxableAmount = amountsOut[i].sub(nonTaxableAmount);
amountOutWithFee = nonTaxableAmount.add(taxableAmount.divUp(FixedPoint.ONE.sub(swapFeePercentage)));
} else {
amountOutWithFee = amountsOut[i];
}
uint256 balanceRatio = balances[i].sub(amountOutWithFee).divDown(balances[i]);
invariantRatio = invariantRatio.mulDown(balanceRatio.powDown(normalizedWeights[i]));
}
return bptTotalSupply.mulUp(invariantRatio.complement());
}
function _calcTokenOutGivenExactBptIn(
uint256 balance,
uint256 normalizedWeight,
uint256 bptAmountIn,
uint256 bptTotalSupply,
uint256 swapFeePercentage
) internal pure returns (uint256) {
/*****************************************************************************************
// exactBPTInForTokenOut //
// a = amountOut //
// b = balance / / totalBPT - bptIn \ (1 / w) \ //
// bptIn = bptAmountIn a = b * | 1 - | -------------------------- | ^ | //
// bpt = totalBPT \ \ totalBPT / / //
// w = weight //
*****************************************************************************************/
// Token out, so we round down overall. The multiplication rounds down, but the power rounds up (so the base
// rounds up). Because (totalBPT - bptIn) / totalBPT <= 1, the exponent rounds down.
// Calculate the factor by which the invariant will decrease after burning BPTAmountIn
uint256 invariantRatio = bptTotalSupply.sub(bptAmountIn).divUp(bptTotalSupply);
_require(invariantRatio >= _MIN_INVARIANT_RATIO, Errors.MIN_BPT_IN_FOR_TOKEN_OUT);
// Calculate by how much the token balance has to decrease to match invariantRatio
uint256 balanceRatio = invariantRatio.powUp(FixedPoint.ONE.divDown(normalizedWeight));
// Because of rounding up, balanceRatio can be greater than one. Using complement prevents reverts.
uint256 amountOutWithoutFee = balance.mulDown(balanceRatio.complement());
// We can now compute how much excess balance is being withdrawn as a result of the virtual swaps, which result
// in swap fees.
uint256 taxablePercentage = normalizedWeight.complement();
// Swap fees are typically charged on 'token in', but there is no 'token in' here, so we apply it
// to 'token out'. This results in slightly larger price impact. Fees are rounded up.
uint256 taxableAmount = amountOutWithoutFee.mulUp(taxablePercentage);
uint256 nonTaxableAmount = amountOutWithoutFee.sub(taxableAmount);
return nonTaxableAmount.add(taxableAmount.mulDown(FixedPoint.ONE.sub(swapFeePercentage)));
}
function _calcTokensOutGivenExactBptIn(
uint256[] memory balances,
uint256 bptAmountIn,
uint256 totalBPT
) internal pure returns (uint256[] memory) {
/**********************************************************************************************
// exactBPTInForTokensOut //
// (per token) //
// aO = amountOut / bptIn \ //
// b = balance a0 = b * | --------------------- | //
// bptIn = bptAmountIn \ totalBPT / //
// bpt = totalBPT //
**********************************************************************************************/
// Since we're computing an amount out, we round down overall. This means rounding down on both the
// multiplication and division.
uint256 bptRatio = bptAmountIn.divDown(totalBPT);
uint256[] memory amountsOut = new uint256[](balances.length);
for (uint256 i = 0; i < balances.length; i++) {
amountsOut[i] = balances[i].mulDown(bptRatio);
}
return amountsOut;
}
function _calcDueTokenProtocolSwapFeeAmount(
uint256 balance,
uint256 normalizedWeight,
uint256 previousInvariant,
uint256 currentInvariant,
uint256 protocolSwapFeePercentage
) internal pure returns (uint256) {
/*********************************************************************************
/* protocolSwapFeePercentage * balanceToken * ( 1 - (previousInvariant / currentInvariant) ^ (1 / weightToken))
*********************************************************************************/
if (currentInvariant <= previousInvariant) {
// This shouldn't happen outside of rounding errors, but have this safeguard nonetheless to prevent the Pool
// from entering a locked state in which joins and exits revert while computing accumulated swap fees.
return 0;
}
// We round down to prevent issues in the Pool's accounting, even if it means paying slightly less in protocol
// fees to the Vault.
// Fee percentage and balance multiplications round down, while the subtrahend (power) rounds up (as does the
// base). Because previousInvariant / currentInvariant <= 1, the exponent rounds down.
uint256 base = previousInvariant.divUp(currentInvariant);
uint256 exponent = FixedPoint.ONE.divDown(normalizedWeight);
// Because the exponent is larger than one, the base of the power function has a lower bound. We cap to this
// value to avoid numeric issues, which means in the extreme case (where the invariant growth is larger than
// 1 / min exponent) the Pool will pay less in protocol fees than it should.
base = Math.max(base, FixedPoint.MIN_POW_BASE_FREE_EXPONENT);
uint256 power = base.powUp(exponent);
uint256 tokenAccruedFees = balance.mulDown(power.complement());
return tokenAccruedFees.mulDown(protocolSwapFeePercentage);
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol";
import "./BaseWeightedPool.sol";
library WeightedPoolUserDataHelpers {
function joinKind(bytes memory self) internal pure returns (BaseWeightedPool.JoinKind) {
return abi.decode(self, (BaseWeightedPool.JoinKind));
}
function exitKind(bytes memory self) internal pure returns (BaseWeightedPool.ExitKind) {
return abi.decode(self, (BaseWeightedPool.ExitKind));
}
// Joins
function initialAmountsIn(bytes memory self) internal pure returns (uint256[] memory amountsIn) {
(, amountsIn) = abi.decode(self, (BaseWeightedPool.JoinKind, uint256[]));
}
function exactTokensInForBptOut(bytes memory self)
internal
pure
returns (uint256[] memory amountsIn, uint256 minBPTAmountOut)
{
(, amountsIn, minBPTAmountOut) = abi.decode(self, (BaseWeightedPool.JoinKind, uint256[], uint256));
}
function tokenInForExactBptOut(bytes memory self) internal pure returns (uint256 bptAmountOut, uint256 tokenIndex) {
(, bptAmountOut, tokenIndex) = abi.decode(self, (BaseWeightedPool.JoinKind, uint256, uint256));
}
// Exits
function exactBptInForTokenOut(bytes memory self) internal pure returns (uint256 bptAmountIn, uint256 tokenIndex) {
(, bptAmountIn, tokenIndex) = abi.decode(self, (BaseWeightedPool.ExitKind, uint256, uint256));
}
function exactBptInForTokensOut(bytes memory self) internal pure returns (uint256 bptAmountIn) {
(, bptAmountIn) = abi.decode(self, (BaseWeightedPool.ExitKind, uint256));
}
function bptInForExactTokensOut(bytes memory self)
internal
pure
returns (uint256[] memory amountsOut, uint256 maxBPTAmountIn)
{
(, amountsOut, maxBPTAmountIn) = abi.decode(self, (BaseWeightedPool.ExitKind, uint256[], uint256));
}
}// SPDX-License-Identifier: MIT
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
// documentation files (the “Software”), to deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
// Software.
// THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
pragma solidity ^0.7.0;
import "../helpers/BalancerErrors.sol";
/* solhint-disable */
/**
* @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument).
*
* Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural
* exponentiation and logarithm (where the base is Euler's number).
*
* @author Fernando Martinelli - @fernandomartinelli
* @author Sergio Yuhjtman - @sergioyuhjtman
* @author Daniel Fernandez - @dmf7z
*/
library LogExpMath {
// All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying
// two numbers, and multiply by ONE when dividing them.
// All arguments and return values are 18 decimal fixed point numbers.
int256 constant ONE_18 = 1e18;
// Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the
// case of ln36, 36 decimals.
int256 constant ONE_20 = 1e20;
int256 constant ONE_36 = 1e36;
// The domain of natural exponentiation is bound by the word size and number of decimals used.
//
// Because internally the result will be stored using 20 decimals, the largest possible result is
// (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221.
// The smallest possible result is 10^(-18), which makes largest negative argument
// ln(10^(-18)) = -41.446531673892822312.
// We use 130.0 and -41.0 to have some safety margin.
int256 constant MAX_NATURAL_EXPONENT = 130e18;
int256 constant MIN_NATURAL_EXPONENT = -41e18;
// Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point
// 256 bit integer.
int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17;
int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17;
uint256 constant MILD_EXPONENT_BOUND = 2**254 / uint256(ONE_20);
// 18 decimal constants
int256 constant x0 = 128000000000000000000; // 2ˆ7
int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals)
int256 constant x1 = 64000000000000000000; // 2ˆ6
int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals)
// 20 decimal constants
int256 constant x2 = 3200000000000000000000; // 2ˆ5
int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2)
int256 constant x3 = 1600000000000000000000; // 2ˆ4
int256 constant a3 = 888611052050787263676000000; // eˆ(x3)
int256 constant x4 = 800000000000000000000; // 2ˆ3
int256 constant a4 = 298095798704172827474000; // eˆ(x4)
int256 constant x5 = 400000000000000000000; // 2ˆ2
int256 constant a5 = 5459815003314423907810; // eˆ(x5)
int256 constant x6 = 200000000000000000000; // 2ˆ1
int256 constant a6 = 738905609893065022723; // eˆ(x6)
int256 constant x7 = 100000000000000000000; // 2ˆ0
int256 constant a7 = 271828182845904523536; // eˆ(x7)
int256 constant x8 = 50000000000000000000; // 2ˆ-1
int256 constant a8 = 164872127070012814685; // eˆ(x8)
int256 constant x9 = 25000000000000000000; // 2ˆ-2
int256 constant a9 = 128402541668774148407; // eˆ(x9)
int256 constant x10 = 12500000000000000000; // 2ˆ-3
int256 constant a10 = 113314845306682631683; // eˆ(x10)
int256 constant x11 = 6250000000000000000; // 2ˆ-4
int256 constant a11 = 106449445891785942956; // eˆ(x11)
/**
* @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent.
*
* Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`.
*/
function pow(uint256 x, uint256 y) internal pure returns (uint256) {
if (y == 0) {
// We solve the 0^0 indetermination by making it equal one.
return uint256(ONE_18);
}
if (x == 0) {
return 0;
}
// Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to
// arrive at that result. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means
// x^y = exp(y * ln(x)).
// The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range.
_require(x < 2**255, Errors.X_OUT_OF_BOUNDS);
int256 x_int256 = int256(x);
// We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In
// both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end.
// This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range.
_require(y < MILD_EXPONENT_BOUND, Errors.Y_OUT_OF_BOUNDS);
int256 y_int256 = int256(y);
int256 logx_times_y;
if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) {
int256 ln_36_x = _ln_36(x_int256);
// ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just
// bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal
// multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the
// (downscaled) last 18 decimals.
logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18);
} else {
logx_times_y = _ln(x_int256) * y_int256;
}
logx_times_y /= ONE_18;
// Finally, we compute exp(y * ln(x)) to arrive at x^y
_require(
MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT,
Errors.PRODUCT_OUT_OF_BOUNDS
);
return uint256(exp(logx_times_y));
}
/**
* @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent.
*
* Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`.
*/
function exp(int256 x) internal pure returns (int256) {
_require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, Errors.INVALID_EXPONENT);
if (x < 0) {
// We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it
// fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT).
// Fixed point division requires multiplying by ONE_18.
return ((ONE_18 * ONE_18) / exp(-x));
}
// First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n,
// where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7
// because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the
// decomposition.
// At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this
// decomposition, which will be lower than the smallest x_n.
// exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1.
// We mutate x by subtracting x_n, making it the remainder of the decomposition.
// The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause
// intermediate overflows. Instead we store them as plain integers, with 0 decimals.
// Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the
// decomposition.
// For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct
// it and compute the accumulated product.
int256 firstAN;
if (x >= x0) {
x -= x0;
firstAN = a0;
} else if (x >= x1) {
x -= x1;
firstAN = a1;
} else {
firstAN = 1; // One with no decimal places
}
// We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the
// smaller terms.
x *= 100;
// `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point
// one. Recall that fixed point multiplication requires dividing by ONE_20.
int256 product = ONE_20;
if (x >= x2) {
x -= x2;
product = (product * a2) / ONE_20;
}
if (x >= x3) {
x -= x3;
product = (product * a3) / ONE_20;
}
if (x >= x4) {
x -= x4;
product = (product * a4) / ONE_20;
}
if (x >= x5) {
x -= x5;
product = (product * a5) / ONE_20;
}
if (x >= x6) {
x -= x6;
product = (product * a6) / ONE_20;
}
if (x >= x7) {
x -= x7;
product = (product * a7) / ONE_20;
}
if (x >= x8) {
x -= x8;
product = (product * a8) / ONE_20;
}
if (x >= x9) {
x -= x9;
product = (product * a9) / ONE_20;
}
// x10 and x11 are unnecessary here since we have high enough precision already.
// Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series
// expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!).
int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places.
int256 term; // Each term in the sum, where the nth term is (x^n / n!).
// The first term is simply x.
term = x;
seriesSum += term;
// Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number,
// multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not.
term = ((term * x) / ONE_20) / 2;
seriesSum += term;
term = ((term * x) / ONE_20) / 3;
seriesSum += term;
term = ((term * x) / ONE_20) / 4;
seriesSum += term;
term = ((term * x) / ONE_20) / 5;
seriesSum += term;
term = ((term * x) / ONE_20) / 6;
seriesSum += term;
term = ((term * x) / ONE_20) / 7;
seriesSum += term;
term = ((term * x) / ONE_20) / 8;
seriesSum += term;
term = ((term * x) / ONE_20) / 9;
seriesSum += term;
term = ((term * x) / ONE_20) / 10;
seriesSum += term;
term = ((term * x) / ONE_20) / 11;
seriesSum += term;
term = ((term * x) / ONE_20) / 12;
seriesSum += term;
// 12 Taylor terms are sufficient for 18 decimal precision.
// We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor
// approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply
// all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication),
// and then drop two digits to return an 18 decimal value.
return (((product * seriesSum) / ONE_20) * firstAN) / 100;
}
/**
* @dev Logarithm (log(arg, base), with signed 18 decimal fixed point base and argument.
*/
function log(int256 arg, int256 base) internal pure returns (int256) {
// This performs a simple base change: log(arg, base) = ln(arg) / ln(base).
// Both logBase and logArg are computed as 36 decimal fixed point numbers, either by using ln_36, or by
// upscaling.
int256 logBase;
if (LN_36_LOWER_BOUND < base && base < LN_36_UPPER_BOUND) {
logBase = _ln_36(base);
} else {
logBase = _ln(base) * ONE_18;
}
int256 logArg;
if (LN_36_LOWER_BOUND < arg && arg < LN_36_UPPER_BOUND) {
logArg = _ln_36(arg);
} else {
logArg = _ln(arg) * ONE_18;
}
// When dividing, we multiply by ONE_18 to arrive at a result with 18 decimal places
return (logArg * ONE_18) / logBase;
}
/**
* @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
*/
function ln(int256 a) internal pure returns (int256) {
// The real natural logarithm is not defined for negative numbers or zero.
_require(a > 0, Errors.OUT_OF_BOUNDS);
if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) {
return _ln_36(a) / ONE_18;
} else {
return _ln(a);
}
}
/**
* @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
*/
function _ln(int256 a) private pure returns (int256) {
if (a < ONE_18) {
// Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less
// than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call.
// Fixed point division requires multiplying by ONE_18.
return (-_ln((ONE_18 * ONE_18) / a));
}
// First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which
// we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is,
// ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot
// be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a.
// At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this
// decomposition, which will be lower than the smallest a_n.
// ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1.
// We mutate a by subtracting a_n, making it the remainder of the decomposition.
// For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point
// numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by
// ONE_18 to convert them to fixed point.
// For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide
// by it and compute the accumulated sum.
int256 sum = 0;
if (a >= a0 * ONE_18) {
a /= a0; // Integer, not fixed point division
sum += x0;
}
if (a >= a1 * ONE_18) {
a /= a1; // Integer, not fixed point division
sum += x1;
}
// All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format.
sum *= 100;
a *= 100;
// Because further a_n are 20 digit fixed point numbers, we multiply by ONE_20 when dividing by them.
if (a >= a2) {
a = (a * ONE_20) / a2;
sum += x2;
}
if (a >= a3) {
a = (a * ONE_20) / a3;
sum += x3;
}
if (a >= a4) {
a = (a * ONE_20) / a4;
sum += x4;
}
if (a >= a5) {
a = (a * ONE_20) / a5;
sum += x5;
}
if (a >= a6) {
a = (a * ONE_20) / a6;
sum += x6;
}
if (a >= a7) {
a = (a * ONE_20) / a7;
sum += x7;
}
if (a >= a8) {
a = (a * ONE_20) / a8;
sum += x8;
}
if (a >= a9) {
a = (a * ONE_20) / a9;
sum += x9;
}
if (a >= a10) {
a = (a * ONE_20) / a10;
sum += x10;
}
if (a >= a11) {
a = (a * ONE_20) / a11;
sum += x11;
}
// a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series
// that converges rapidly for values of `a` close to one - the same one used in ln_36.
// Let z = (a - 1) / (a + 1).
// ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))
// Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires
// division by ONE_20.
int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20);
int256 z_squared = (z * z) / ONE_20;
// num is the numerator of the series: the z^(2 * n + 1) term
int256 num = z;
// seriesSum holds the accumulated sum of each term in the series, starting with the initial z
int256 seriesSum = num;
// In each step, the numerator is multiplied by z^2
num = (num * z_squared) / ONE_20;
seriesSum += num / 3;
num = (num * z_squared) / ONE_20;
seriesSum += num / 5;
num = (num * z_squared) / ONE_20;
seriesSum += num / 7;
num = (num * z_squared) / ONE_20;
seriesSum += num / 9;
num = (num * z_squared) / ONE_20;
seriesSum += num / 11;
// 6 Taylor terms are sufficient for 36 decimal precision.
// Finally, we multiply by 2 (non fixed point) to compute ln(remainder)
seriesSum *= 2;
// We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both
// with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal
// value.
return (sum + seriesSum) / 100;
}
/**
* @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument,
* for x close to one.
*
* Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND.
*/
function _ln_36(int256 x) private pure returns (int256) {
// Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits
// worthwhile.
// First, we transform x to a 36 digit fixed point value.
x *= ONE_18;
// We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1).
// ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))
// Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires
// division by ONE_36.
int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36);
int256 z_squared = (z * z) / ONE_36;
// num is the numerator of the series: the z^(2 * n + 1) term
int256 num = z;
// seriesSum holds the accumulated sum of each term in the series, starting with the initial z
int256 seriesSum = num;
// In each step, the numerator is multiplied by z^2
num = (num * z_squared) / ONE_36;
seriesSum += num / 3;
num = (num * z_squared) / ONE_36;
seriesSum += num / 5;
num = (num * z_squared) / ONE_36;
seriesSum += num / 7;
num = (num * z_squared) / ONE_36;
seriesSum += num / 9;
num = (num * z_squared) / ONE_36;
seriesSum += num / 11;
num = (num * z_squared) / ONE_36;
seriesSum += num / 13;
num = (num * z_squared) / ONE_36;
seriesSum += num / 15;
// 8 Taylor terms are sufficient for 36 decimal precision.
// All that remains is multiplying by 2 (non fixed point).
return seriesSum * 2;
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
// solhint-disable
/**
* @dev Reverts if `condition` is false, with a revert reason containing `errorCode`. Only codes up to 999 are
* supported.
*/
function _require(bool condition, uint256 errorCode) pure {
if (!condition) _revert(errorCode);
}
/**
* @dev Reverts with a revert reason containing `errorCode`. Only codes up to 999 are supported.
*/
function _revert(uint256 errorCode) pure {
// We're going to dynamically create a revert string based on the error code, with the following format:
// 'BAL#{errorCode}'
// where the code is left-padded with zeroes to three digits (so they range from 000 to 999).
//
// We don't have revert strings embedded in the contract to save bytecode size: it takes much less space to store a
// number (8 to 16 bits) than the individual string characters.
//
// The dynamic string creation algorithm that follows could be implemented in Solidity, but assembly allows for a
// much denser implementation, again saving bytecode size. Given this function unconditionally reverts, this is a
// safe place to rely on it without worrying about how its usage might affect e.g. memory contents.
assembly {
// First, we need to compute the ASCII representation of the error code. We assume that it is in the 0-999
// range, so we only need to convert three digits. To convert the digits to ASCII, we add 0x30, the value for
// the '0' character.
let units := add(mod(errorCode, 10), 0x30)
errorCode := div(errorCode, 10)
let tenths := add(mod(errorCode, 10), 0x30)
errorCode := div(errorCode, 10)
let hundreds := add(mod(errorCode, 10), 0x30)
// With the individual characters, we can now construct the full string. The "BAL#" part is a known constant
// (0x42414c23): we simply shift this by 24 (to provide space for the 3 bytes of the error code), and add the
// characters to it, each shifted by a multiple of 8.
// The revert reason is then shifted left by 200 bits (256 minus the length of the string, 7 characters * 8 bits
// per character = 56) to locate it in the most significant part of the 256 slot (the beginning of a byte
// array).
let revertReason := shl(200, add(0x42414c23000000, add(add(units, shl(8, tenths)), shl(16, hundreds))))
// We can now encode the reason in memory, which can be safely overwritten as we're about to revert. The encoded
// message will have the following layout:
// [ revert reason identifier ] [ string location offset ] [ string length ] [ string contents ]
// The Solidity revert reason identifier is 0x08c739a0, the function selector of the Error(string) function. We
// also write zeroes to the next 28 bytes of memory, but those are about to be overwritten.
mstore(0x0, 0x08c379a000000000000000000000000000000000000000000000000000000000)
// Next is the offset to the location of the string, which will be placed immediately after (20 bytes away).
mstore(0x04, 0x0000000000000000000000000000000000000000000000000000000000000020)
// The string length is fixed: 7 characters.
mstore(0x24, 7)
// Finally, the string itself is stored.
mstore(0x44, revertReason)
// Even if the string is only 7 bytes long, we need to return a full 32 byte slot containing it. The length of
// the encoded message is therefore 4 + 32 + 32 + 32 = 100.
revert(0, 100)
}
}
library Errors {
// Math
uint256 internal constant ADD_OVERFLOW = 0;
uint256 internal constant SUB_OVERFLOW = 1;
uint256 internal constant SUB_UNDERFLOW = 2;
uint256 internal constant MUL_OVERFLOW = 3;
uint256 internal constant ZERO_DIVISION = 4;
uint256 internal constant DIV_INTERNAL = 5;
uint256 internal constant X_OUT_OF_BOUNDS = 6;
uint256 internal constant Y_OUT_OF_BOUNDS = 7;
uint256 internal constant PRODUCT_OUT_OF_BOUNDS = 8;
uint256 internal constant INVALID_EXPONENT = 9;
// Input
uint256 internal constant OUT_OF_BOUNDS = 100;
uint256 internal constant UNSORTED_ARRAY = 101;
uint256 internal constant UNSORTED_TOKENS = 102;
uint256 internal constant INPUT_LENGTH_MISMATCH = 103;
uint256 internal constant ZERO_TOKEN = 104;
// Shared pools
uint256 internal constant MIN_TOKENS = 200;
uint256 internal constant MAX_TOKENS = 201;
uint256 internal constant MAX_SWAP_FEE_PERCENTAGE = 202;
uint256 internal constant MIN_SWAP_FEE_PERCENTAGE = 203;
uint256 internal constant MINIMUM_BPT = 204;
uint256 internal constant CALLER_NOT_VAULT = 205;
uint256 internal constant UNINITIALIZED = 206;
uint256 internal constant BPT_IN_MAX_AMOUNT = 207;
uint256 internal constant BPT_OUT_MIN_AMOUNT = 208;
uint256 internal constant EXPIRED_PERMIT = 209;
uint256 internal constant NOT_TWO_TOKENS = 210;
uint256 internal constant DISABLED = 211;
// Pools
uint256 internal constant MIN_AMP = 300;
uint256 internal constant MAX_AMP = 301;
uint256 internal constant MIN_WEIGHT = 302;
uint256 internal constant MAX_STABLE_TOKENS = 303;
uint256 internal constant MAX_IN_RATIO = 304;
uint256 internal constant MAX_OUT_RATIO = 305;
uint256 internal constant MIN_BPT_IN_FOR_TOKEN_OUT = 306;
uint256 internal constant MAX_OUT_BPT_FOR_TOKEN_IN = 307;
uint256 internal constant NORMALIZED_WEIGHT_INVARIANT = 308;
uint256 internal constant INVALID_TOKEN = 309;
uint256 internal constant UNHANDLED_JOIN_KIND = 310;
uint256 internal constant ZERO_INVARIANT = 311;
uint256 internal constant ORACLE_INVALID_SECONDS_QUERY = 312;
uint256 internal constant ORACLE_NOT_INITIALIZED = 313;
uint256 internal constant ORACLE_QUERY_TOO_OLD = 314;
uint256 internal constant ORACLE_INVALID_INDEX = 315;
uint256 internal constant ORACLE_BAD_SECS = 316;
uint256 internal constant AMP_END_TIME_TOO_CLOSE = 317;
uint256 internal constant AMP_ONGOING_UPDATE = 318;
uint256 internal constant AMP_RATE_TOO_HIGH = 319;
uint256 internal constant AMP_NO_ONGOING_UPDATE = 320;
uint256 internal constant STABLE_INVARIANT_DIDNT_CONVERGE = 321;
uint256 internal constant STABLE_GET_BALANCE_DIDNT_CONVERGE = 322;
uint256 internal constant RELAYER_NOT_CONTRACT = 323;
uint256 internal constant BASE_POOL_RELAYER_NOT_CALLED = 324;
uint256 internal constant REBALANCING_RELAYER_REENTERED = 325;
uint256 internal constant GRADUAL_UPDATE_TIME_TRAVEL = 326;
uint256 internal constant SWAPS_DISABLED = 327;
uint256 internal constant CALLER_IS_NOT_LBP_OWNER = 328;
uint256 internal constant PRICE_RATE_OVERFLOW = 329;
// Lib
uint256 internal constant REENTRANCY = 400;
uint256 internal constant SENDER_NOT_ALLOWED = 401;
uint256 internal constant PAUSED = 402;
uint256 internal constant PAUSE_WINDOW_EXPIRED = 403;
uint256 internal constant MAX_PAUSE_WINDOW_DURATION = 404;
uint256 internal constant MAX_BUFFER_PERIOD_DURATION = 405;
uint256 internal constant INSUFFICIENT_BALANCE = 406;
uint256 internal constant INSUFFICIENT_ALLOWANCE = 407;
uint256 internal constant ERC20_TRANSFER_FROM_ZERO_ADDRESS = 408;
uint256 internal constant ERC20_TRANSFER_TO_ZERO_ADDRESS = 409;
uint256 internal constant ERC20_MINT_TO_ZERO_ADDRESS = 410;
uint256 internal constant ERC20_BURN_FROM_ZERO_ADDRESS = 411;
uint256 internal constant ERC20_APPROVE_FROM_ZERO_ADDRESS = 412;
uint256 internal constant ERC20_APPROVE_TO_ZERO_ADDRESS = 413;
uint256 internal constant ERC20_TRANSFER_EXCEEDS_ALLOWANCE = 414;
uint256 internal constant ERC20_DECREASED_ALLOWANCE_BELOW_ZERO = 415;
uint256 internal constant ERC20_TRANSFER_EXCEEDS_BALANCE = 416;
uint256 internal constant ERC20_BURN_EXCEEDS_ALLOWANCE = 417;
uint256 internal constant SAFE_ERC20_CALL_FAILED = 418;
uint256 internal constant ADDRESS_INSUFFICIENT_BALANCE = 419;
uint256 internal constant ADDRESS_CANNOT_SEND_VALUE = 420;
uint256 internal constant SAFE_CAST_VALUE_CANT_FIT_INT256 = 421;
uint256 internal constant GRANT_SENDER_NOT_ADMIN = 422;
uint256 internal constant REVOKE_SENDER_NOT_ADMIN = 423;
uint256 internal constant RENOUNCE_SENDER_NOT_ALLOWED = 424;
uint256 internal constant BUFFER_PERIOD_EXPIRED = 425;
uint256 internal constant CALLER_IS_NOT_OWNER = 426;
uint256 internal constant NEW_OWNER_IS_ZERO = 427;
uint256 internal constant CODE_DEPLOYMENT_FAILED = 428;
uint256 internal constant CALL_TO_NON_CONTRACT = 429;
uint256 internal constant LOW_LEVEL_CALL_FAILED = 430;
// Vault
uint256 internal constant INVALID_POOL_ID = 500;
uint256 internal constant CALLER_NOT_POOL = 501;
uint256 internal constant SENDER_NOT_ASSET_MANAGER = 502;
uint256 internal constant USER_DOESNT_ALLOW_RELAYER = 503;
uint256 internal constant INVALID_SIGNATURE = 504;
uint256 internal constant EXIT_BELOW_MIN = 505;
uint256 internal constant JOIN_ABOVE_MAX = 506;
uint256 internal constant SWAP_LIMIT = 507;
uint256 internal constant SWAP_DEADLINE = 508;
uint256 internal constant CANNOT_SWAP_SAME_TOKEN = 509;
uint256 internal constant UNKNOWN_AMOUNT_IN_FIRST_SWAP = 510;
uint256 internal constant MALCONSTRUCTED_MULTIHOP_SWAP = 511;
uint256 internal constant INTERNAL_BALANCE_OVERFLOW = 512;
uint256 internal constant INSUFFICIENT_INTERNAL_BALANCE = 513;
uint256 internal constant INVALID_ETH_INTERNAL_BALANCE = 514;
uint256 internal constant INVALID_POST_LOAN_BALANCE = 515;
uint256 internal constant INSUFFICIENT_ETH = 516;
uint256 internal constant UNALLOCATED_ETH = 517;
uint256 internal constant ETH_TRANSFER = 518;
uint256 internal constant CANNOT_USE_ETH_SENTINEL = 519;
uint256 internal constant TOKENS_MISMATCH = 520;
uint256 internal constant TOKEN_NOT_REGISTERED = 521;
uint256 internal constant TOKEN_ALREADY_REGISTERED = 522;
uint256 internal constant TOKENS_ALREADY_SET = 523;
uint256 internal constant TOKENS_LENGTH_MUST_BE_2 = 524;
uint256 internal constant NONZERO_TOKEN_BALANCE = 525;
uint256 internal constant BALANCE_TOTAL_OVERFLOW = 526;
uint256 internal constant POOL_NO_TOKENS = 527;
uint256 internal constant INSUFFICIENT_FLASH_LOAN_BALANCE = 528;
// Fees
uint256 internal constant SWAP_FEE_PERCENTAGE_TOO_HIGH = 600;
uint256 internal constant FLASH_LOAN_FEE_PERCENTAGE_TOO_HIGH = 601;
uint256 internal constant INSUFFICIENT_FLASH_LOAN_FEE_AMOUNT = 602;
}// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;
import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol";
import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/TemporarilyPausable.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol";
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20.sol";
import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol";
import "@balancer-labs/v2-vault/contracts/interfaces/IBasePool.sol";
import "@balancer-labs/v2-asset-manager-utils/contracts/IAssetManager.sol";
import "./BalancerPoolToken.sol";
import "./BasePoolAuthorization.sol";
// solhint-disable max-states-count
/**
* @dev Reference implementation for the base layer of a Pool contract that manages a single Pool with optional
* Asset Managers, an admin-controlled swap fee percentage, and an emergency pause mechanism.
*
* Note that neither swap fees nor the pause mechanism are used by this contract. They are passed through so that
* derived contracts can use them via the `_addSwapFeeAmount` and `_subtractSwapFeeAmount` functions, and the
* `whenNotPaused` modifier.
*
* No admin permissions are checked here: instead, this contract delegates that to the Vault's own Authorizer.
*
* Because this contract doesn't implement the swap hooks, derived contracts should generally inherit from
* BaseGeneralPool or BaseMinimalSwapInfoPool. Otherwise, subclasses must inherit from the corresponding interfaces
* and implement the swap callbacks themselves.
*/
abstract contract BasePool is IBasePool, BasePoolAuthorization, BalancerPoolToken, TemporarilyPausable {
using WordCodec for bytes32;
using FixedPoint for uint256;
uint256 private constant _MIN_TOKENS = 2;
// 1e18 corresponds to 1.0, or a 100% fee
uint256 private constant _MIN_SWAP_FEE_PERCENTAGE = 1e12; // 0.0001%
uint256 private constant _MAX_SWAP_FEE_PERCENTAGE = 1e17; // 10%
uint256 private constant _MINIMUM_BPT = 1e6;
// Storage slot that can be used to store unrelated pieces of information. In particular, by default is used
// to store only the swap fee percentage of a pool. But it can be extended to store some more pieces of information.
// The swap fee percentage is stored in the most-significant 64 bits, therefore the remaining 192 bits can be
// used to store any other piece of information.
bytes32 private _miscData;
uint256 private constant _SWAP_FEE_PERCENTAGE_OFFSET = 192;
IVault private immutable _vault;
bytes32 private immutable _poolId;
event SwapFeePercentageChanged(uint256 swapFeePercentage);
constructor(
IVault vault,
IVault.PoolSpecialization specialization,
string memory name,
string memory symbol,
IERC20[] memory tokens,
address[] memory assetManagers,
uint256 swapFeePercentage,
uint256 pauseWindowDuration,
uint256 bufferPeriodDuration,
address owner
)
// Base Pools are expected to be deployed using factories. By using the factory address as the action
// disambiguator, we make all Pools deployed by the same factory share action identifiers. This allows for
// simpler management of permissions (such as being able to manage granting the 'set fee percentage' action in
// any Pool created by the same factory), while still making action identifiers unique among different factories
// if the selectors match, preventing accidental errors.
Authentication(bytes32(uint256(msg.sender)))
BalancerPoolToken(name, symbol)
BasePoolAuthorization(owner)
TemporarilyPausable(pauseWindowDuration, bufferPeriodDuration)
{
_require(tokens.length >= _MIN_TOKENS, Errors.MIN_TOKENS);
_require(tokens.length <= _getMaxTokens(), Errors.MAX_TOKENS);
// The Vault only requires the token list to be ordered for the Two Token Pools specialization. However,
// to make the developer experience consistent, we are requiring this condition for all the native pools.
// Also, since these Pools will register tokens only once, we can ensure the Pool tokens will follow the same
// order. We rely on this property to make Pools simpler to write, as it lets us assume that the
// order of token-specific parameters (such as token weights) will not change.
InputHelpers.ensureArrayIsSorted(tokens);
_setSwapFeePercentage(swapFeePercentage);
bytes32 poolId = vault.registerPool(specialization);
vault.registerTokens(poolId, tokens, assetManagers);
// Set immutable state variables - these cannot be read from during construction
_vault = vault;
_poolId = poolId;
}
// Getters / Setters
function getVault() public view returns (IVault) {
return _vault;
}
function getPoolId() public view override returns (bytes32) {
return _poolId;
}
function _getTotalTokens() internal view virtual returns (uint256);
function _getMaxTokens() internal pure virtual returns (uint256);
function getSwapFeePercentage() public view returns (uint256) {
return _miscData.decodeUint64(_SWAP_FEE_PERCENTAGE_OFFSET);
}
function setSwapFeePercentage(uint256 swapFeePercentage) external virtual authenticate whenNotPaused {
_setSwapFeePercentage(swapFeePercentage);
}
function _setSwapFeePercentage(uint256 swapFeePercentage) private {
_require(swapFeePercentage >= _MIN_SWAP_FEE_PERCENTAGE, Errors.MIN_SWAP_FEE_PERCENTAGE);
_require(swapFeePercentage <= _MAX_SWAP_FEE_PERCENTAGE, Errors.MAX_SWAP_FEE_PERCENTAGE);
_miscData = _miscData.insertUint64(swapFeePercentage, _SWAP_FEE_PERCENTAGE_OFFSET);
emit SwapFeePercentageChanged(swapFeePercentage);
}
function setAssetManagerPoolConfig(IERC20 token, bytes memory poolConfig)
public
virtual
authenticate
whenNotPaused
{
_setAssetManagerPoolConfig(token, poolConfig);
}
function _setAssetManagerPoolConfig(IERC20 token, bytes memory poolConfig) private {
bytes32 poolId = getPoolId();
(, , , address assetManager) = getVault().getPoolTokenInfo(poolId, token);
IAssetManager(assetManager).setConfig(poolId, poolConfig);
}
function setPaused(bool paused) external authenticate {
_setPaused(paused);
}
function _isOwnerOnlyAction(bytes32 actionId) internal view virtual override returns (bool) {
return
(actionId == getActionId(this.setSwapFeePercentage.selector)) ||
(actionId == getActionId(this.setAssetManagerPoolConfig.selector));
}
function _getMiscData() internal view returns (bytes32) {
return _miscData;
}
/**
* Inserts data into the least-significant 192 bits of the misc data storage slot.
* Note that the remaining 64 bits are used for the swap fee percentage and cannot be overloaded.
*/
function _setMiscData(bytes32 newData) internal {
_miscData = _miscData.insertBits192(newData, 0);
}
// Join / Exit Hooks
modifier onlyVault(bytes32 poolId) {
_require(msg.sender == address(getVault()), Errors.CALLER_NOT_VAULT);
_require(poolId == getPoolId(), Errors.INVALID_POOL_ID);
_;
}
function onJoinPool(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory balances,
uint256 lastChangeBlock,
uint256 protocolSwapFeePercentage,
bytes memory userData
) public virtual override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) {
uint256[] memory scalingFactors = _scalingFactors();
if (totalSupply() == 0) {
(uint256 bptAmountOut, uint256[] memory amountsIn) = _onInitializePool(
poolId,
sender,
recipient,
scalingFactors,
userData
);
// On initialization, we lock _MINIMUM_BPT by minting it for the zero address. This BPT acts as a minimum
// as it will never be burned, which reduces potential issues with rounding, and also prevents the Pool from
// ever being fully drained.
_require(bptAmountOut >= _MINIMUM_BPT, Errors.MINIMUM_BPT);
_mintPoolTokens(address(0), _MINIMUM_BPT);
_mintPoolTokens(recipient, bptAmountOut - _MINIMUM_BPT);
// amountsIn are amounts entering the Pool, so we round up.
_downscaleUpArray(amountsIn, scalingFactors);
return (amountsIn, new uint256[](_getTotalTokens()));
} else {
_upscaleArray(balances, scalingFactors);
(uint256 bptAmountOut, uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts) = _onJoinPool(
poolId,
sender,
recipient,
balances,
lastChangeBlock,
protocolSwapFeePercentage,
scalingFactors,
userData
);
// Note we no longer use `balances` after calling `_onJoinPool`, which may mutate it.
_mintPoolTokens(recipient, bptAmountOut);
// amountsIn are amounts entering the Pool, so we round up.
_downscaleUpArray(amountsIn, scalingFactors);
// dueProtocolFeeAmounts are amounts exiting the Pool, so we round down.
_downscaleDownArray(dueProtocolFeeAmounts, scalingFactors);
return (amountsIn, dueProtocolFeeAmounts);
}
}
function onExitPool(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory balances,
uint256 lastChangeBlock,
uint256 protocolSwapFeePercentage,
bytes memory userData
) public virtual override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) {
uint256[] memory scalingFactors = _scalingFactors();
_upscaleArray(balances, scalingFactors);
(uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts) = _onExitPool(
poolId,
sender,
recipient,
balances,
lastChangeBlock,
protocolSwapFeePercentage,
scalingFactors,
userData
);
// Note we no longer use `balances` after calling `_onExitPool`, which may mutate it.
_burnPoolTokens(sender, bptAmountIn);
// Both amountsOut and dueProtocolFeeAmounts are amounts exiting the Pool, so we round down.
_downscaleDownArray(amountsOut, scalingFactors);
_downscaleDownArray(dueProtocolFeeAmounts, scalingFactors);
return (amountsOut, dueProtocolFeeAmounts);
}
// Query functions
/**
* @dev Returns the amount of BPT that would be granted to `recipient` if the `onJoinPool` hook were called by the
* Vault with the same arguments, along with the number of tokens `sender` would have to supply.
*
* This function is not meant to be called directly, but rather from a helper contract that fetches current Vault
* data, such as the protocol swap fee percentage and Pool balances.
*
* Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must
* explicitly use eth_call instead of eth_sendTransaction.
*/
function queryJoin(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory balances,
uint256 lastChangeBlock,
uint256 protocolSwapFeePercentage,
bytes memory userData
) external returns (uint256 bptOut, uint256[] memory amountsIn) {
InputHelpers.ensureInputLengthMatch(balances.length, _getTotalTokens());
_queryAction(
poolId,
sender,
recipient,
balances,
lastChangeBlock,
protocolSwapFeePercentage,
userData,
_onJoinPool,
_downscaleUpArray
);
// The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement,
// and we don't need to return anything here - it just silences compiler warnings.
return (bptOut, amountsIn);
}
/**
* @dev Returns the amount of BPT that would be burned from `sender` if the `onExitPool` hook were called by the
* Vault with the same arguments, along with the number of tokens `recipient` would receive.
*
* This function is not meant to be called directly, but rather from a helper contract that fetches current Vault
* data, such as the protocol swap fee percentage and Pool balances.
*
* Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must
* explicitly use eth_call instead of eth_sendTransaction.
*/
function queryExit(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory balances,
uint256 lastChangeBlock,
uint256 protocolSwapFeePercentage,
bytes memory userData
) external returns (uint256 bptIn, uint256[] memory amountsOut) {
InputHelpers.ensureInputLengthMatch(balances.length, _getTotalTokens());
_queryAction(
poolId,
sender,
recipient,
balances,
lastChangeBlock,
protocolSwapFeePercentage,
userData,
_onExitPool,
_downscaleDownArray
);
// The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement,
// and we don't need to return anything here - it just silences compiler warnings.
return (bptIn, amountsOut);
}
// Internal hooks to be overridden by derived contracts - all token amounts (except BPT) in these interfaces are
// upscaled.
/**
* @dev Called when the Pool is joined for the first time; that is, when the BPT total supply is zero.
*
* Returns the amount of BPT to mint, and the token amounts the Pool will receive in return.
*
* Minted BPT will be sent to `recipient`, except for _MINIMUM_BPT, which will be deducted from this amount and sent
* to the zero address instead. This will cause that BPT to remain forever locked there, preventing total BTP from
* ever dropping below that value, and ensuring `_onInitializePool` can only be called once in the entire Pool's
* lifetime.
*
* The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will
* be downscaled (rounding up) before being returned to the Vault.
*/
function _onInitializePool(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory scalingFactors,
bytes memory userData
) internal virtual returns (uint256 bptAmountOut, uint256[] memory amountsIn);
/**
* @dev Called whenever the Pool is joined after the first initialization join (see `_onInitializePool`).
*
* Returns the amount of BPT to mint, the token amounts that the Pool will receive in return, and the number of
* tokens to pay in protocol swap fees.
*
* Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when
* performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely.
*
* Minted BPT will be sent to `recipient`.
*
* The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will
* be downscaled (rounding up) before being returned to the Vault.
*
* Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onJoinPool`). These
* amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault.
*/
function _onJoinPool(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory balances,
uint256 lastChangeBlock,
uint256 protocolSwapFeePercentage,
uint256[] memory scalingFactors,
bytes memory userData
)
internal
virtual
returns (
uint256 bptAmountOut,
uint256[] memory amountsIn,
uint256[] memory dueProtocolFeeAmounts
);
/**
* @dev Called whenever the Pool is exited.
*
* Returns the amount of BPT to burn, the token amounts for each Pool token that the Pool will grant in return, and
* the number of tokens to pay in protocol swap fees.
*
* Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when
* performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely.
*
* BPT will be burnt from `sender`.
*
* The Pool will grant tokens to `recipient`. These amounts are considered upscaled and will be downscaled
* (rounding down) before being returned to the Vault.
*
* Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onExitPool`). These
* amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault.
*/
function _onExitPool(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory balances,
uint256 lastChangeBlock,
uint256 protocolSwapFeePercentage,
uint256[] memory scalingFactors,
bytes memory userData
)
internal
virtual
returns (
uint256 bptAmountIn,
uint256[] memory amountsOut,
uint256[] memory dueProtocolFeeAmounts
);
// Internal functions
/**
* @dev Adds swap fee amount to `amount`, returning a higher value.
*/
function _addSwapFeeAmount(uint256 amount) internal view returns (uint256) {
// This returns amount + fee amount, so we round up (favoring a higher fee amount).
return amount.divUp(FixedPoint.ONE.sub(getSwapFeePercentage()));
}
/**
* @dev Subtracts swap fee amount from `amount`, returning a lower value.
*/
function _subtractSwapFeeAmount(uint256 amount) internal view returns (uint256) {
// This returns amount - fee amount, so we round up (favoring a higher fee amount).
uint256 feeAmount = amount.mulUp(getSwapFeePercentage());
return amount.sub(feeAmount);
}
// Scaling
/**
* @dev Returns a scaling factor that, when multiplied to a token amount for `token`, normalizes its balance as if
* it had 18 decimals.
*/
function _computeScalingFactor(IERC20 token) internal view returns (uint256) {
// Tokens that don't implement the `decimals` method are not supported.
uint256 tokenDecimals = ERC20(address(token)).decimals();
// Tokens with more than 18 decimals are not supported.
uint256 decimalsDifference = Math.sub(18, tokenDecimals);
return FixedPoint.ONE * 10**decimalsDifference;
}
/**
* @dev Returns the scaling factor for one of the Pool's tokens. Reverts if `token` is not a token registered by the
* Pool.
*
* All scaling factors are fixed-point values with 18 decimals, to allow for this function to be overridden by
* derived contracts that need to apply further scaling, making these factors potentially non-integer.
*
* The largest 'base' scaling factor (i.e. in tokens with less than 18 decimals) is 10**18, which in fixed-point is
* 10**36. This value can be multiplied with a 112 bit Vault balance with no overflow by a factor of ~1e7, making
* even relatively 'large' factors safe to use.
*
* The 1e7 figure is the result of 2**256 / (1e18 * 1e18 * 2**112).
*/
function _scalingFactor(IERC20 token) internal view virtual returns (uint256);
/**
* @dev Same as `_scalingFactor()`, except for all registered tokens (in the same order as registered). The Vault
* will always pass balances in this order when calling any of the Pool hooks.
*/
function _scalingFactors() internal view virtual returns (uint256[] memory);
function getScalingFactors() external view returns (uint256[] memory) {
return _scalingFactors();
}
/**
* @dev Applies `scalingFactor` to `amount`, resulting in a larger or equal value depending on whether it needed
* scaling or not.
*/
function _upscale(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) {
// Upscale rounding wouldn't necessarily always go in the same direction: in a swap for example the balance of
// token in should be rounded up, and that of token out rounded down. This is the only place where we round in
// the same direction for all amounts, as the impact of this rounding is expected to be minimal (and there's no
// rounding error unless `_scalingFactor()` is overriden).
return FixedPoint.mulDown(amount, scalingFactor);
}
/**
* @dev Same as `_upscale`, but for an entire array. This function does not return anything, but instead *mutates*
* the `amounts` array.
*/
function _upscaleArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view {
for (uint256 i = 0; i < _getTotalTokens(); ++i) {
amounts[i] = FixedPoint.mulDown(amounts[i], scalingFactors[i]);
}
}
/**
* @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on
* whether it needed scaling or not. The result is rounded down.
*/
function _downscaleDown(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) {
return FixedPoint.divDown(amount, scalingFactor);
}
/**
* @dev Same as `_downscaleDown`, but for an entire array. This function does not return anything, but instead
* *mutates* the `amounts` array.
*/
function _downscaleDownArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view {
for (uint256 i = 0; i < _getTotalTokens(); ++i) {
amounts[i] = FixedPoint.divDown(amounts[i], scalingFactors[i]);
}
}
/**
* @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on
* whether it needed scaling or not. The result is rounded up.
*/
function _downscaleUp(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) {
return FixedPoint.divUp(amount, scalingFactor);
}
/**
* @dev Same as `_downscaleUp`, but for an entire array. This function does not return anything, but instead
* *mutates* the `amounts` array.
*/
function _downscaleUpArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view {
for (uint256 i = 0; i < _getTotalTokens(); ++i) {
amounts[i] = FixedPoint.divUp(amounts[i], scalingFactors[i]);
}
}
function _getAuthorizer() internal view override returns (IAuthorizer) {
// Access control management is delegated to the Vault's Authorizer. This lets Balancer Governance manage which
// accounts can call permissioned functions: for example, to perform emergency pauses.
// If the owner is delegated, then *all* permissioned functions, including `setSwapFeePercentage`, will be under
// Governance control.
return getVault().getAuthorizer();
}
function _queryAction(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory balances,
uint256 lastChangeBlock,
uint256 protocolSwapFeePercentage,
bytes memory userData,
function(bytes32, address, address, uint256[] memory, uint256, uint256, uint256[] memory, bytes memory)
internal
returns (uint256, uint256[] memory, uint256[] memory) _action,
function(uint256[] memory, uint256[] memory) internal view _downscaleArray
) private {
// This uses the same technique used by the Vault in queryBatchSwap. Refer to that function for a detailed
// explanation.
if (msg.sender != address(this)) {
// We perform an external call to ourselves, forwarding the same calldata. In this call, the else clause of
// the preceding if statement will be executed instead.
// solhint-disable-next-line avoid-low-level-calls
(bool success, ) = address(this).call(msg.data);
// solhint-disable-next-line no-inline-assembly
assembly {
// This call should always revert to decode the bpt and token amounts from the revert reason
switch success
case 0 {
// Note we are manually writing the memory slot 0. We can safely overwrite whatever is
// stored there as we take full control of the execution and then immediately return.
// We copy the first 4 bytes to check if it matches with the expected signature, otherwise
// there was another revert reason and we should forward it.
returndatacopy(0, 0, 0x04)
let error := and(mload(0), 0xffffffff00000000000000000000000000000000000000000000000000000000)
// If the first 4 bytes don't match with the expected signature, we forward the revert reason.
if eq(eq(error, 0x43adbafb00000000000000000000000000000000000000000000000000000000), 0) {
returndatacopy(0, 0, returndatasize())
revert(0, returndatasize())
}
// The returndata contains the signature, followed by the raw memory representation of the
// `bptAmount` and `tokenAmounts` (array: length + data). We need to return an ABI-encoded
// representation of these.
// An ABI-encoded response will include one additional field to indicate the starting offset of
// the `tokenAmounts` array. The `bptAmount` will be laid out in the first word of the
// returndata.
//
// In returndata:
// [ signature ][ bptAmount ][ tokenAmounts length ][ tokenAmounts values ]
// [ 4 bytes ][ 32 bytes ][ 32 bytes ][ (32 * length) bytes ]
//
// We now need to return (ABI-encoded values):
// [ bptAmount ][ tokeAmounts offset ][ tokenAmounts length ][ tokenAmounts values ]
// [ 32 bytes ][ 32 bytes ][ 32 bytes ][ (32 * length) bytes ]
// We copy 32 bytes for the `bptAmount` from returndata into memory.
// Note that we skip the first 4 bytes for the error signature
returndatacopy(0, 0x04, 32)
// The offsets are 32-bytes long, so the array of `tokenAmounts` will start after
// the initial 64 bytes.
mstore(0x20, 64)
// We now copy the raw memory array for the `tokenAmounts` from returndata into memory.
// Since bpt amount and offset take up 64 bytes, we start copying at address 0x40. We also
// skip the first 36 bytes from returndata, which correspond to the signature plus bpt amount.
returndatacopy(0x40, 0x24, sub(returndatasize(), 36))
// We finally return the ABI-encoded uint256 and the array, which has a total length equal to
// the size of returndata, plus the 32 bytes of the offset but without the 4 bytes of the
// error signature.
return(0, add(returndatasize(), 28))
}
default {
// This call should always revert, but we fail nonetheless if that didn't happen
invalid()
}
}
} else {
uint256[] memory scalingFactors = _scalingFactors();
_upscaleArray(balances, scalingFactors);
(uint256 bptAmount, uint256[] memory tokenAmounts, ) = _action(
poolId,
sender,
recipient,
balances,
lastChangeBlock,
protocolSwapFeePercentage,
scalingFactors,
userData
);
_downscaleArray(tokenAmounts, scalingFactors);
// solhint-disable-next-line no-inline-assembly
assembly {
// We will return a raw representation of `bptAmount` and `tokenAmounts` in memory, which is composed of
// a 32-byte uint256, followed by a 32-byte for the array length, and finally the 32-byte uint256 values
// Because revert expects a size in bytes, we multiply the array length (stored at `tokenAmounts`) by 32
let size := mul(mload(tokenAmounts), 32)
// We store the `bptAmount` in the previous slot to the `tokenAmounts` array. We can make sure there
// will be at least one available slot due to how the memory scratch space works.
// We can safely overwrite whatever is stored in this slot as we will revert immediately after that.
let start := sub(tokenAmounts, 0x20)
mstore(start, bptAmount)
// We send one extra value for the error signature "QueryError(uint256,uint256[])" which is 0x43adbafb
// We use the previous slot to `bptAmount`.
mstore(sub(start, 0x20), 0x0000000000000000000000000000000000000000000000000000000043adbafb)
start := sub(start, 0x04)
// When copying from `tokenAmounts` into returndata, we copy the additional 68 bytes to also return
// the `bptAmount`, the array 's length, and the error signature.
revert(start, add(size, 68))
}
}
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;
import "./IBasePool.sol";
/**
* @dev Pool contracts with the MinimalSwapInfo or TwoToken specialization settings should implement this interface.
*
* This is called by the Vault when a user calls `IVault.swap` or `IVault.batchSwap` to swap with this Pool.
* Returns the number of tokens the Pool will grant to the user in a 'given in' swap, or that the user will grant
* to the pool in a 'given out' swap.
*
* This can often be implemented by a `view` function, since many pricing algorithms don't need to track state
* changes in swaps. However, contracts implementing this in non-view functions should check that the caller is
* indeed the Vault.
*/
interface IMinimalSwapInfoPool is IBasePool {
function onSwap(
SwapRequest memory swapRequest,
uint256 currentBalanceTokenIn,
uint256 currentBalanceTokenOut
) external returns (uint256 amount);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
import "../helpers/BalancerErrors.sol";
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow checks.
* Adapted from OpenZeppelin's SafeMath library
*/
library Math {
/**
* @dev Returns the addition of two unsigned integers of 256 bits, reverting on overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
_require(c >= a, Errors.ADD_OVERFLOW);
return c;
}
/**
* @dev Returns the addition of two signed integers, reverting on overflow.
*/
function add(int256 a, int256 b) internal pure returns (int256) {
int256 c = a + b;
_require((b >= 0 && c >= a) || (b < 0 && c < a), Errors.ADD_OVERFLOW);
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers of 256 bits, reverting on overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
_require(b <= a, Errors.SUB_OVERFLOW);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the subtraction of two signed integers, reverting on overflow.
*/
function sub(int256 a, int256 b) internal pure returns (int256) {
int256 c = a - b;
_require((b >= 0 && c <= a) || (b < 0 && c > a), Errors.SUB_OVERFLOW);
return c;
}
/**
* @dev Returns the largest of two numbers of 256 bits.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a >= b ? a : b;
}
/**
* @dev Returns the smallest of two numbers of 256 bits.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a * b;
_require(a == 0 || c / a == b, Errors.MUL_OVERFLOW);
return c;
}
function div(
uint256 a,
uint256 b,
bool roundUp
) internal pure returns (uint256) {
return roundUp ? divUp(a, b) : divDown(a, b);
}
function divDown(uint256 a, uint256 b) internal pure returns (uint256) {
_require(b != 0, Errors.ZERO_DIVISION);
return a / b;
}
function divUp(uint256 a, uint256 b) internal pure returns (uint256) {
_require(b != 0, Errors.ZERO_DIVISION);
if (a == 0) {
return 0;
} else {
return 1 + (a - 1) / b;
}
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "./BalancerErrors.sol";
import "./ITemporarilyPausable.sol";
/**
* @dev Allows for a contract to be paused during an initial period after deployment, disabling functionality. Can be
* used as an emergency switch in case a security vulnerability or threat is identified.
*
* The contract can only be paused during the Pause Window, a period that starts at deployment. It can also be
* unpaused and repaused any number of times during this period. This is intended to serve as a safety measure: it lets
* system managers react quickly to potentially dangerous situations, knowing that this action is reversible if careful
* analysis later determines there was a false alarm.
*
* If the contract is paused when the Pause Window finishes, it will remain in the paused state through an additional
* Buffer Period, after which it will be automatically unpaused forever. This is to ensure there is always enough time
* to react to an emergency, even if the threat is discovered shortly before the Pause Window expires.
*
* Note that since the contract can only be paused within the Pause Window, unpausing during the Buffer Period is
* irreversible.
*/
abstract contract TemporarilyPausable is ITemporarilyPausable {
// The Pause Window and Buffer Period are timestamp-based: they should not be relied upon for sub-minute accuracy.
// solhint-disable not-rely-on-time
uint256 private constant _MAX_PAUSE_WINDOW_DURATION = 90 days;
uint256 private constant _MAX_BUFFER_PERIOD_DURATION = 30 days;
uint256 private immutable _pauseWindowEndTime;
uint256 private immutable _bufferPeriodEndTime;
bool private _paused;
constructor(uint256 pauseWindowDuration, uint256 bufferPeriodDuration) {
_require(pauseWindowDuration <= _MAX_PAUSE_WINDOW_DURATION, Errors.MAX_PAUSE_WINDOW_DURATION);
_require(bufferPeriodDuration <= _MAX_BUFFER_PERIOD_DURATION, Errors.MAX_BUFFER_PERIOD_DURATION);
uint256 pauseWindowEndTime = block.timestamp + pauseWindowDuration;
_pauseWindowEndTime = pauseWindowEndTime;
_bufferPeriodEndTime = pauseWindowEndTime + bufferPeriodDuration;
}
/**
* @dev Reverts if the contract is paused.
*/
modifier whenNotPaused() {
_ensureNotPaused();
_;
}
/**
* @dev Returns the current contract pause status, as well as the end times of the Pause Window and Buffer
* Period.
*/
function getPausedState()
external
view
override
returns (
bool paused,
uint256 pauseWindowEndTime,
uint256 bufferPeriodEndTime
)
{
paused = !_isNotPaused();
pauseWindowEndTime = _getPauseWindowEndTime();
bufferPeriodEndTime = _getBufferPeriodEndTime();
}
/**
* @dev Sets the pause state to `paused`. The contract can only be paused until the end of the Pause Window, and
* unpaused until the end of the Buffer Period.
*
* Once the Buffer Period expires, this function reverts unconditionally.
*/
function _setPaused(bool paused) internal {
if (paused) {
_require(block.timestamp < _getPauseWindowEndTime(), Errors.PAUSE_WINDOW_EXPIRED);
} else {
_require(block.timestamp < _getBufferPeriodEndTime(), Errors.BUFFER_PERIOD_EXPIRED);
}
_paused = paused;
emit PausedStateChanged(paused);
}
/**
* @dev Reverts if the contract is paused.
*/
function _ensureNotPaused() internal view {
_require(_isNotPaused(), Errors.PAUSED);
}
/**
* @dev Returns true if the contract is unpaused.
*
* Once the Buffer Period expires, the gas cost of calling this function is reduced dramatically, as storage is no
* longer accessed.
*/
function _isNotPaused() internal view returns (bool) {
// After the Buffer Period, the (inexpensive) timestamp check short-circuits the storage access.
return block.timestamp > _getBufferPeriodEndTime() || !_paused;
}
// These getters lead to reduced bytecode size by inlining the immutable variables in a single place.
function _getPauseWindowEndTime() private view returns (uint256) {
return _pauseWindowEndTime;
}
function _getBufferPeriodEndTime() private view returns (uint256) {
return _bufferPeriodEndTime;
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
/**
* @dev Library for encoding and decoding values stored inside a 256 bit word. Typically used to pack multiple values in
* a single storage slot, saving gas by performing less storage accesses.
*
* Each value is defined by its size and the least significant bit in the word, also known as offset. For example, two
* 128 bit values may be encoded in a word by assigning one an offset of 0, and the other an offset of 128.
*/
library WordCodec {
// Masks are values with the least significant N bits set. They can be used to extract an encoded value from a word,
// or to insert a new one replacing the old.
uint256 private constant _MASK_1 = 2**(1) - 1;
uint256 private constant _MASK_10 = 2**(10) - 1;
uint256 private constant _MASK_16 = 2**(16) - 1;
uint256 private constant _MASK_22 = 2**(22) - 1;
uint256 private constant _MASK_31 = 2**(31) - 1;
uint256 private constant _MASK_32 = 2**(32) - 1;
uint256 private constant _MASK_53 = 2**(53) - 1;
uint256 private constant _MASK_64 = 2**(64) - 1;
uint256 private constant _MASK_128 = 2**(128) - 1;
uint256 private constant _MASK_192 = 2**(192) - 1;
// Largest positive values that can be represented as N bits signed integers.
int256 private constant _MAX_INT_22 = 2**(21) - 1;
int256 private constant _MAX_INT_53 = 2**(52) - 1;
// In-place insertion
/**
* @dev Inserts a boolean value shifted by an offset into a 256 bit word, replacing the old value. Returns the new
* word.
*/
function insertBool(
bytes32 word,
bool value,
uint256 offset
) internal pure returns (bytes32) {
bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_1 << offset));
return clearedWord | bytes32(uint256(value ? 1 : 0) << offset);
}
// Unsigned
/**
* @dev Inserts a 10 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns
* the new word.
*
* Assumes `value` only uses its least significant 10 bits, otherwise it may overwrite sibling bytes.
*/
function insertUint10(
bytes32 word,
uint256 value,
uint256 offset
) internal pure returns (bytes32) {
bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_10 << offset));
return clearedWord | bytes32(value << offset);
}
/**
* @dev Inserts a 16 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value.
* Returns the new word.
*
* Assumes `value` only uses its least significant 16 bits, otherwise it may overwrite sibling bytes.
*/
function insertUint16(
bytes32 word,
uint256 value,
uint256 offset
) internal pure returns (bytes32) {
bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_16 << offset));
return clearedWord | bytes32(value << offset);
}
/**
* @dev Inserts a 31 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns
* the new word.
*
* Assumes `value` can be represented using 31 bits.
*/
function insertUint31(
bytes32 word,
uint256 value,
uint256 offset
) internal pure returns (bytes32) {
bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_31 << offset));
return clearedWord | bytes32(value << offset);
}
/**
* @dev Inserts a 32 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns
* the new word.
*
* Assumes `value` only uses its least significant 32 bits, otherwise it may overwrite sibling bytes.
*/
function insertUint32(
bytes32 word,
uint256 value,
uint256 offset
) internal pure returns (bytes32) {
bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_32 << offset));
return clearedWord | bytes32(value << offset);
}
/**
* @dev Inserts a 64 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns
* the new word.
*
* Assumes `value` only uses its least significant 64 bits, otherwise it may overwrite sibling bytes.
*/
function insertUint64(
bytes32 word,
uint256 value,
uint256 offset
) internal pure returns (bytes32) {
bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_64 << offset));
return clearedWord | bytes32(value << offset);
}
// Signed
/**
* @dev Inserts a 22 bits signed integer shifted by an offset into a 256 bit word, replacing the old value. Returns
* the new word.
*
* Assumes `value` can be represented using 22 bits.
*/
function insertInt22(
bytes32 word,
int256 value,
uint256 offset
) internal pure returns (bytes32) {
bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_22 << offset));
// Integer values need masking to remove the upper bits of negative values.
return clearedWord | bytes32((uint256(value) & _MASK_22) << offset);
}
// Bytes
/**
* @dev Inserts 192 bit shifted by an offset into a 256 bit word, replacing the old value. Returns the new word.
*
* Assumes `value` can be represented using 192 bits.
*/
function insertBits192(
bytes32 word,
bytes32 value,
uint256 offset
) internal pure returns (bytes32) {
bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_192 << offset));
return clearedWord | bytes32((uint256(value) & _MASK_192) << offset);
}
// Encoding
// Unsigned
/**
* @dev Encodes an unsigned integer shifted by an offset. This performs no size checks: it is up to the caller to
* ensure that the values are bounded.
*
* The return value can be logically ORed with other encoded values to form a 256 bit word.
*/
function encodeUint(uint256 value, uint256 offset) internal pure returns (bytes32) {
return bytes32(value << offset);
}
// Signed
/**
* @dev Encodes a 22 bits signed integer shifted by an offset.
*
* The return value can be logically ORed with other encoded values to form a 256 bit word.
*/
function encodeInt22(int256 value, uint256 offset) internal pure returns (bytes32) {
// Integer values need masking to remove the upper bits of negative values.
return bytes32((uint256(value) & _MASK_22) << offset);
}
/**
* @dev Encodes a 53 bits signed integer shifted by an offset.
*
* The return value can be logically ORed with other encoded values to form a 256 bit word.
*/
function encodeInt53(int256 value, uint256 offset) internal pure returns (bytes32) {
// Integer values need masking to remove the upper bits of negative values.
return bytes32((uint256(value) & _MASK_53) << offset);
}
// Decoding
/**
* @dev Decodes and returns a boolean shifted by an offset from a 256 bit word.
*/
function decodeBool(bytes32 word, uint256 offset) internal pure returns (bool) {
return (uint256(word >> offset) & _MASK_1) == 1;
}
// Unsigned
/**
* @dev Decodes and returns a 10 bit unsigned integer shifted by an offset from a 256 bit word.
*/
function decodeUint10(bytes32 word, uint256 offset) internal pure returns (uint256) {
return uint256(word >> offset) & _MASK_10;
}
/**
* @dev Decodes and returns a 16 bit unsigned integer shifted by an offset from a 256 bit word.
*/
function decodeUint16(bytes32 word, uint256 offset) internal pure returns (uint256) {
return uint256(word >> offset) & _MASK_16;
}
/**
* @dev Decodes and returns a 31 bit unsigned integer shifted by an offset from a 256 bit word.
*/
function decodeUint31(bytes32 word, uint256 offset) internal pure returns (uint256) {
return uint256(word >> offset) & _MASK_31;
}
/**
* @dev Decodes and returns a 32 bit unsigned integer shifted by an offset from a 256 bit word.
*/
function decodeUint32(bytes32 word, uint256 offset) internal pure returns (uint256) {
return uint256(word >> offset) & _MASK_32;
}
/**
* @dev Decodes and returns a 64 bit unsigned integer shifted by an offset from a 256 bit word.
*/
function decodeUint64(bytes32 word, uint256 offset) internal pure returns (uint256) {
return uint256(word >> offset) & _MASK_64;
}
/**
* @dev Decodes and returns a 128 bit unsigned integer shifted by an offset from a 256 bit word.
*/
function decodeUint128(bytes32 word, uint256 offset) internal pure returns (uint256) {
return uint256(word >> offset) & _MASK_128;
}
// Signed
/**
* @dev Decodes and returns a 22 bits signed integer shifted by an offset from a 256 bit word.
*/
function decodeInt22(bytes32 word, uint256 offset) internal pure returns (int256) {
int256 value = int256(uint256(word >> offset) & _MASK_22);
// In case the decoded value is greater than the max positive integer that can be represented with 22 bits,
// we know it was originally a negative integer. Therefore, we mask it to restore the sign in the 256 bit
// representation.
return value > _MAX_INT_22 ? (value | int256(~_MASK_22)) : value;
}
/**
* @dev Decodes and returns a 53 bits signed integer shifted by an offset from a 256 bit word.
*/
function decodeInt53(bytes32 word, uint256 offset) internal pure returns (int256) {
int256 value = int256(uint256(word >> offset) & _MASK_53);
// In case the decoded value is greater than the max positive integer that can be represented with 53 bits,
// we know it was originally a negative integer. Therefore, we mask it to restore the sign in the 256 bit
// representation.
return value > _MAX_INT_53 ? (value | int256(~_MASK_53)) : value;
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
import "../helpers/BalancerErrors.sol";
import "./IERC20.sol";
import "./SafeMath.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin guidelines: functions revert instead
* of returning `false` on failure. This behavior is nonetheless conventional
* and does not conflict with the expectations of ERC20 applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is IERC20 {
using SafeMath for uint256;
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
uint8 private _decimals;
/**
* @dev Sets the values for {name} and {symbol}, initializes {decimals} with
* a default value of 18.
*
* To select a different value for {decimals}, use {_setupDecimals}.
*
* All three of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
_decimals = 18;
}
/**
* @dev Returns the name of the token.
*/
function name() public view returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5,05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
* called.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view returns (uint8) {
return _decimals;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `recipient` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(msg.sender, recipient, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
_approve(msg.sender, spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* Requirements:
*
* - `sender` and `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
* - the caller must have allowance for ``sender``'s tokens of at least
* `amount`.
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) public virtual override returns (bool) {
_transfer(sender, recipient, amount);
_approve(
sender,
msg.sender,
_allowances[sender][msg.sender].sub(amount, Errors.ERC20_TRANSFER_EXCEEDS_ALLOWANCE)
);
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
_approve(msg.sender, spender, _allowances[msg.sender][spender].add(addedValue));
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
_approve(
msg.sender,
spender,
_allowances[msg.sender][spender].sub(subtractedValue, Errors.ERC20_DECREASED_ALLOWANCE_BELOW_ZERO)
);
return true;
}
/**
* @dev Moves tokens `amount` from `sender` to `recipient`.
*
* This is internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `sender` cannot be the zero address.
* - `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
*/
function _transfer(
address sender,
address recipient,
uint256 amount
) internal virtual {
_require(sender != address(0), Errors.ERC20_TRANSFER_FROM_ZERO_ADDRESS);
_require(recipient != address(0), Errors.ERC20_TRANSFER_TO_ZERO_ADDRESS);
_beforeTokenTransfer(sender, recipient, amount);
_balances[sender] = _balances[sender].sub(amount, Errors.ERC20_TRANSFER_EXCEEDS_BALANCE);
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `to` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
_beforeTokenTransfer(address(0), account, amount);
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
_require(account != address(0), Errors.ERC20_BURN_FROM_ZERO_ADDRESS);
_beforeTokenTransfer(account, address(0), amount);
_balances[account] = _balances[account].sub(amount, Errors.ERC20_BURN_EXCEEDS_ALLOWANCE);
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(
address owner,
address spender,
uint256 amount
) internal virtual {
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Sets {decimals} to a value other than the default one of 18.
*
* WARNING: This function should only be called from the constructor. Most
* applications that interact with token contracts will not expect
* {decimals} to ever change, and may work incorrectly if it does.
*/
function _setupDecimals(uint8 decimals_) internal {
_decimals = decimals_;
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be to transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma experimental ABIEncoderV2;
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/ISignaturesValidator.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/ITemporarilyPausable.sol";
import "@balancer-labs/v2-solidity-utils/contracts/misc/IWETH.sol";
import "./IAsset.sol";
import "./IAuthorizer.sol";
import "./IFlashLoanRecipient.sol";
import "./IProtocolFeesCollector.sol";
pragma solidity ^0.7.0;
/**
* @dev Full external interface for the Vault core contract - no external or public methods exist in the contract that
* don't override one of these declarations.
*/
interface IVault is ISignaturesValidator, ITemporarilyPausable {
// Generalities about the Vault:
//
// - Whenever documentation refers to 'tokens', it strictly refers to ERC20-compliant token contracts. Tokens are
// transferred out of the Vault by calling the `IERC20.transfer` function, and transferred in by calling
// `IERC20.transferFrom`. In these cases, the sender must have previously allowed the Vault to use their tokens by
// calling `IERC20.approve`. The only deviation from the ERC20 standard that is supported is functions not returning
// a boolean value: in these scenarios, a non-reverting call is assumed to be successful.
//
// - All non-view functions in the Vault are non-reentrant: calling them while another one is mid-execution (e.g.
// while execution control is transferred to a token contract during a swap) will result in a revert. View
// functions can be called in a re-reentrant way, but doing so might cause them to return inconsistent results.
// Contracts calling view functions in the Vault must make sure the Vault has not already been entered.
//
// - View functions revert if referring to either unregistered Pools, or unregistered tokens for registered Pools.
// Authorizer
//
// Some system actions are permissioned, like setting and collecting protocol fees. This permissioning system exists
// outside of the Vault in the Authorizer contract: the Vault simply calls the Authorizer to check if the caller
// can perform a given action.
/**
* @dev Returns the Vault's Authorizer.
*/
function getAuthorizer() external view returns (IAuthorizer);
/**
* @dev Sets a new Authorizer for the Vault. The caller must be allowed by the current Authorizer to do this.
*
* Emits an `AuthorizerChanged` event.
*/
function setAuthorizer(IAuthorizer newAuthorizer) external;
/**
* @dev Emitted when a new authorizer is set by `setAuthorizer`.
*/
event AuthorizerChanged(IAuthorizer indexed newAuthorizer);
// Relayers
//
// Additionally, it is possible for an account to perform certain actions on behalf of another one, using their
// Vault ERC20 allowance and Internal Balance. These accounts are said to be 'relayers' for these Vault functions,
// and are expected to be smart contracts with sound authentication mechanisms. For an account to be able to wield
// this power, two things must occur:
// - The Authorizer must grant the account the permission to be a relayer for the relevant Vault function. This
// means that Balancer governance must approve each individual contract to act as a relayer for the intended
// functions.
// - Each user must approve the relayer to act on their behalf.
// This double protection means users cannot be tricked into approving malicious relayers (because they will not
// have been allowed by the Authorizer via governance), nor can malicious relayers approved by a compromised
// Authorizer or governance drain user funds, since they would also need to be approved by each individual user.
/**
* @dev Returns true if `user` has approved `relayer` to act as a relayer for them.
*/
function hasApprovedRelayer(address user, address relayer) external view returns (bool);
/**
* @dev Allows `relayer` to act as a relayer for `sender` if `approved` is true, and disallows it otherwise.
*
* Emits a `RelayerApprovalChanged` event.
*/
function setRelayerApproval(
address sender,
address relayer,
bool approved
) external;
/**
* @dev Emitted every time a relayer is approved or disapproved by `setRelayerApproval`.
*/
event RelayerApprovalChanged(address indexed relayer, address indexed sender, bool approved);
// Internal Balance
//
// Users can deposit tokens into the Vault, where they are allocated to their Internal Balance, and later
// transferred or withdrawn. It can also be used as a source of tokens when joining Pools, as a destination
// when exiting them, and as either when performing swaps. This usage of Internal Balance results in greatly reduced
// gas costs when compared to relying on plain ERC20 transfers, leading to large savings for frequent users.
//
// Internal Balance management features batching, which means a single contract call can be used to perform multiple
// operations of different kinds, with different senders and recipients, at once.
/**
* @dev Returns `user`'s Internal Balance for a set of tokens.
*/
function getInternalBalance(address user, IERC20[] memory tokens) external view returns (uint256[] memory);
/**
* @dev Performs a set of user balance operations, which involve Internal Balance (deposit, withdraw or transfer)
* and plain ERC20 transfers using the Vault's allowance. This last feature is particularly useful for relayers, as
* it lets integrators reuse a user's Vault allowance.
*
* For each operation, if the caller is not `sender`, it must be an authorized relayer for them.
*/
function manageUserBalance(UserBalanceOp[] memory ops) external payable;
/**
* @dev Data for `manageUserBalance` operations, which include the possibility for ETH to be sent and received
without manual WETH wrapping or unwrapping.
*/
struct UserBalanceOp {
UserBalanceOpKind kind;
IAsset asset;
uint256 amount;
address sender;
address payable recipient;
}
// There are four possible operations in `manageUserBalance`:
//
// - DEPOSIT_INTERNAL
// Increases the Internal Balance of the `recipient` account by transferring tokens from the corresponding
// `sender`. The sender must have allowed the Vault to use their tokens via `IERC20.approve()`.
//
// ETH can be used by passing the ETH sentinel value as the asset and forwarding ETH in the call: it will be wrapped
// and deposited as WETH. Any ETH amount remaining will be sent back to the caller (not the sender, which is
// relevant for relayers).
//
// Emits an `InternalBalanceChanged` event.
//
//
// - WITHDRAW_INTERNAL
// Decreases the Internal Balance of the `sender` account by transferring tokens to the `recipient`.
//
// ETH can be used by passing the ETH sentinel value as the asset. This will deduct WETH instead, unwrap it and send
// it to the recipient as ETH.
//
// Emits an `InternalBalanceChanged` event.
//
//
// - TRANSFER_INTERNAL
// Transfers tokens from the Internal Balance of the `sender` account to the Internal Balance of `recipient`.
//
// Reverts if the ETH sentinel value is passed.
//
// Emits an `InternalBalanceChanged` event.
//
//
// - TRANSFER_EXTERNAL
// Transfers tokens from `sender` to `recipient`, using the Vault's ERC20 allowance. This is typically used by
// relayers, as it lets them reuse a user's Vault allowance.
//
// Reverts if the ETH sentinel value is passed.
//
// Emits an `ExternalBalanceTransfer` event.
enum UserBalanceOpKind { DEPOSIT_INTERNAL, WITHDRAW_INTERNAL, TRANSFER_INTERNAL, TRANSFER_EXTERNAL }
/**
* @dev Emitted when a user's Internal Balance changes, either from calls to `manageUserBalance`, or through
* interacting with Pools using Internal Balance.
*
* Because Internal Balance works exclusively with ERC20 tokens, ETH deposits and withdrawals will use the WETH
* address.
*/
event InternalBalanceChanged(address indexed user, IERC20 indexed token, int256 delta);
/**
* @dev Emitted when a user's Vault ERC20 allowance is used by the Vault to transfer tokens to an external account.
*/
event ExternalBalanceTransfer(IERC20 indexed token, address indexed sender, address recipient, uint256 amount);
// Pools
//
// There are three specialization settings for Pools, which allow for cheaper swaps at the cost of reduced
// functionality:
//
// - General: no specialization, suited for all Pools. IGeneralPool is used for swap request callbacks, passing the
// balance of all tokens in the Pool. These Pools have the largest swap costs (because of the extra storage reads),
// which increase with the number of registered tokens.
//
// - Minimal Swap Info: IMinimalSwapInfoPool is used instead of IGeneralPool, which saves gas by only passing the
// balance of the two tokens involved in the swap. This is suitable for some pricing algorithms, like the weighted
// constant product one popularized by Balancer V1. Swap costs are smaller compared to general Pools, and are
// independent of the number of registered tokens.
//
// - Two Token: only allows two tokens to be registered. This achieves the lowest possible swap gas cost. Like
// minimal swap info Pools, these are called via IMinimalSwapInfoPool.
enum PoolSpecialization { GENERAL, MINIMAL_SWAP_INFO, TWO_TOKEN }
/**
* @dev Registers the caller account as a Pool with a given specialization setting. Returns the Pool's ID, which
* is used in all Pool-related functions. Pools cannot be deregistered, nor can the Pool's specialization be
* changed.
*
* The caller is expected to be a smart contract that implements either `IGeneralPool` or `IMinimalSwapInfoPool`,
* depending on the chosen specialization setting. This contract is known as the Pool's contract.
*
* Note that the same contract may register itself as multiple Pools with unique Pool IDs, or in other words,
* multiple Pools may share the same contract.
*
* Emits a `PoolRegistered` event.
*/
function registerPool(PoolSpecialization specialization) external returns (bytes32);
/**
* @dev Emitted when a Pool is registered by calling `registerPool`.
*/
event PoolRegistered(bytes32 indexed poolId, address indexed poolAddress, PoolSpecialization specialization);
/**
* @dev Returns a Pool's contract address and specialization setting.
*/
function getPool(bytes32 poolId) external view returns (address, PoolSpecialization);
/**
* @dev Registers `tokens` for the `poolId` Pool. Must be called by the Pool's contract.
*
* Pools can only interact with tokens they have registered. Users join a Pool by transferring registered tokens,
* exit by receiving registered tokens, and can only swap registered tokens.
*
* Each token can only be registered once. For Pools with the Two Token specialization, `tokens` must have a length
* of two, that is, both tokens must be registered in the same `registerTokens` call, and they must be sorted in
* ascending order.
*
* The `tokens` and `assetManagers` arrays must have the same length, and each entry in these indicates the Asset
* Manager for the corresponding token. Asset Managers can manage a Pool's tokens via `managePoolBalance`,
* depositing and withdrawing them directly, and can even set their balance to arbitrary amounts. They are therefore
* expected to be highly secured smart contracts with sound design principles, and the decision to register an
* Asset Manager should not be made lightly.
*
* Pools can choose not to assign an Asset Manager to a given token by passing in the zero address. Once an Asset
* Manager is set, it cannot be changed except by deregistering the associated token and registering again with a
* different Asset Manager.
*
* Emits a `TokensRegistered` event.
*/
function registerTokens(
bytes32 poolId,
IERC20[] memory tokens,
address[] memory assetManagers
) external;
/**
* @dev Emitted when a Pool registers tokens by calling `registerTokens`.
*/
event TokensRegistered(bytes32 indexed poolId, IERC20[] tokens, address[] assetManagers);
/**
* @dev Deregisters `tokens` for the `poolId` Pool. Must be called by the Pool's contract.
*
* Only registered tokens (via `registerTokens`) can be deregistered. Additionally, they must have zero total
* balance. For Pools with the Two Token specialization, `tokens` must have a length of two, that is, both tokens
* must be deregistered in the same `deregisterTokens` call.
*
* A deregistered token can be re-registered later on, possibly with a different Asset Manager.
*
* Emits a `TokensDeregistered` event.
*/
function deregisterTokens(bytes32 poolId, IERC20[] memory tokens) external;
/**
* @dev Emitted when a Pool deregisters tokens by calling `deregisterTokens`.
*/
event TokensDeregistered(bytes32 indexed poolId, IERC20[] tokens);
/**
* @dev Returns detailed information for a Pool's registered token.
*
* `cash` is the number of tokens the Vault currently holds for the Pool. `managed` is the number of tokens
* withdrawn and held outside the Vault by the Pool's token Asset Manager. The Pool's total balance for `token`
* equals the sum of `cash` and `managed`.
*
* Internally, `cash` and `managed` are stored using 112 bits. No action can ever cause a Pool's token `cash`,
* `managed` or `total` balance to be greater than 2^112 - 1.
*
* `lastChangeBlock` is the number of the block in which `token`'s total balance was last modified (via either a
* join, exit, swap, or Asset Manager update). This value is useful to avoid so-called 'sandwich attacks', for
* example when developing price oracles. A change of zero (e.g. caused by a swap with amount zero) is considered a
* change for this purpose, and will update `lastChangeBlock`.
*
* `assetManager` is the Pool's token Asset Manager.
*/
function getPoolTokenInfo(bytes32 poolId, IERC20 token)
external
view
returns (
uint256 cash,
uint256 managed,
uint256 lastChangeBlock,
address assetManager
);
/**
* @dev Returns a Pool's registered tokens, the total balance for each, and the latest block when *any* of
* the tokens' `balances` changed.
*
* The order of the `tokens` array is the same order that will be used in `joinPool`, `exitPool`, as well as in all
* Pool hooks (where applicable). Calls to `registerTokens` and `deregisterTokens` may change this order.
*
* If a Pool only registers tokens once, and these are sorted in ascending order, they will be stored in the same
* order as passed to `registerTokens`.
*
* Total balances include both tokens held by the Vault and those withdrawn by the Pool's Asset Managers. These are
* the amounts used by joins, exits and swaps. For a detailed breakdown of token balances, use `getPoolTokenInfo`
* instead.
*/
function getPoolTokens(bytes32 poolId)
external
view
returns (
IERC20[] memory tokens,
uint256[] memory balances,
uint256 lastChangeBlock
);
/**
* @dev Called by users to join a Pool, which transfers tokens from `sender` into the Pool's balance. This will
* trigger custom Pool behavior, which will typically grant something in return to `recipient` - often tokenized
* Pool shares.
*
* If the caller is not `sender`, it must be an authorized relayer for them.
*
* The `assets` and `maxAmountsIn` arrays must have the same length, and each entry indicates the maximum amount
* to send for each asset. The amounts to send are decided by the Pool and not the Vault: it just enforces
* these maximums.
*
* If joining a Pool that holds WETH, it is possible to send ETH directly: the Vault will do the wrapping. To enable
* this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead of the
* WETH address. Note that it is not possible to combine ETH and WETH in the same join. Any excess ETH will be sent
* back to the caller (not the sender, which is important for relayers).
*
* `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when
* interacting with Pools that register and deregister tokens frequently. If sending ETH however, the array must be
* sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the final
* `assets` array might not be sorted. Pools with no registered tokens cannot be joined.
*
* If `fromInternalBalance` is true, the caller's Internal Balance will be preferred: ERC20 transfers will only
* be made for the difference between the requested amount and Internal Balance (if any). Note that ETH cannot be
* withdrawn from Internal Balance: attempting to do so will trigger a revert.
*
* This causes the Vault to call the `IBasePool.onJoinPool` hook on the Pool's contract, where Pools implement
* their own custom logic. This typically requires additional information from the user (such as the expected number
* of Pool shares). This can be encoded in the `userData` argument, which is ignored by the Vault and passed
* directly to the Pool's contract, as is `recipient`.
*
* Emits a `PoolBalanceChanged` event.
*/
function joinPool(
bytes32 poolId,
address sender,
address recipient,
JoinPoolRequest memory request
) external payable;
struct JoinPoolRequest {
IAsset[] assets;
uint256[] maxAmountsIn;
bytes userData;
bool fromInternalBalance;
}
/**
* @dev Called by users to exit a Pool, which transfers tokens from the Pool's balance to `recipient`. This will
* trigger custom Pool behavior, which will typically ask for something in return from `sender` - often tokenized
* Pool shares. The amount of tokens that can be withdrawn is limited by the Pool's `cash` balance (see
* `getPoolTokenInfo`).
*
* If the caller is not `sender`, it must be an authorized relayer for them.
*
* The `tokens` and `minAmountsOut` arrays must have the same length, and each entry in these indicates the minimum
* token amount to receive for each token contract. The amounts to send are decided by the Pool and not the Vault:
* it just enforces these minimums.
*
* If exiting a Pool that holds WETH, it is possible to receive ETH directly: the Vault will do the unwrapping. To
* enable this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead
* of the WETH address. Note that it is not possible to combine ETH and WETH in the same exit.
*
* `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when
* interacting with Pools that register and deregister tokens frequently. If receiving ETH however, the array must
* be sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the
* final `assets` array might not be sorted. Pools with no registered tokens cannot be exited.
*
* If `toInternalBalance` is true, the tokens will be deposited to `recipient`'s Internal Balance. Otherwise,
* an ERC20 transfer will be performed. Note that ETH cannot be deposited to Internal Balance: attempting to
* do so will trigger a revert.
*
* `minAmountsOut` is the minimum amount of tokens the user expects to get out of the Pool, for each token in the
* `tokens` array. This array must match the Pool's registered tokens.
*
* This causes the Vault to call the `IBasePool.onExitPool` hook on the Pool's contract, where Pools implement
* their own custom logic. This typically requires additional information from the user (such as the expected number
* of Pool shares to return). This can be encoded in the `userData` argument, which is ignored by the Vault and
* passed directly to the Pool's contract.
*
* Emits a `PoolBalanceChanged` event.
*/
function exitPool(
bytes32 poolId,
address sender,
address payable recipient,
ExitPoolRequest memory request
) external;
struct ExitPoolRequest {
IAsset[] assets;
uint256[] minAmountsOut;
bytes userData;
bool toInternalBalance;
}
/**
* @dev Emitted when a user joins or exits a Pool by calling `joinPool` or `exitPool`, respectively.
*/
event PoolBalanceChanged(
bytes32 indexed poolId,
address indexed liquidityProvider,
IERC20[] tokens,
int256[] deltas,
uint256[] protocolFeeAmounts
);
enum PoolBalanceChangeKind { JOIN, EXIT }
// Swaps
//
// Users can swap tokens with Pools by calling the `swap` and `batchSwap` functions. To do this,
// they need not trust Pool contracts in any way: all security checks are made by the Vault. They must however be
// aware of the Pools' pricing algorithms in order to estimate the prices Pools will quote.
//
// The `swap` function executes a single swap, while `batchSwap` can perform multiple swaps in sequence.
// In each individual swap, tokens of one kind are sent from the sender to the Pool (this is the 'token in'),
// and tokens of another kind are sent from the Pool to the recipient in exchange (this is the 'token out').
// More complex swaps, such as one token in to multiple tokens out can be achieved by batching together
// individual swaps.
//
// There are two swap kinds:
// - 'given in' swaps, where the amount of tokens in (sent to the Pool) is known, and the Pool determines (via the
// `onSwap` hook) the amount of tokens out (to send to the recipient).
// - 'given out' swaps, where the amount of tokens out (received from the Pool) is known, and the Pool determines
// (via the `onSwap` hook) the amount of tokens in (to receive from the sender).
//
// Additionally, it is possible to chain swaps using a placeholder input amount, which the Vault replaces with
// the calculated output of the previous swap. If the previous swap was 'given in', this will be the calculated
// tokenOut amount. If the previous swap was 'given out', it will use the calculated tokenIn amount. These extended
// swaps are known as 'multihop' swaps, since they 'hop' through a number of intermediate tokens before arriving at
// the final intended token.
//
// In all cases, tokens are only transferred in and out of the Vault (or withdrawn from and deposited into Internal
// Balance) after all individual swaps have been completed, and the net token balance change computed. This makes
// certain swap patterns, such as multihops, or swaps that interact with the same token pair in multiple Pools, cost
// much less gas than they would otherwise.
//
// It also means that under certain conditions it is possible to perform arbitrage by swapping with multiple
// Pools in a way that results in net token movement out of the Vault (profit), with no tokens being sent in (only
// updating the Pool's internal accounting).
//
// To protect users from front-running or the market changing rapidly, they supply a list of 'limits' for each token
// involved in the swap, where either the maximum number of tokens to send (by passing a positive value) or the
// minimum amount of tokens to receive (by passing a negative value) is specified.
//
// Additionally, a 'deadline' timestamp can also be provided, forcing the swap to fail if it occurs after
// this point in time (e.g. if the transaction failed to be included in a block promptly).
//
// If interacting with Pools that hold WETH, it is possible to both send and receive ETH directly: the Vault will do
// the wrapping and unwrapping. To enable this mechanism, the IAsset sentinel value (the zero address) must be
// passed in the `assets` array instead of the WETH address. Note that it is possible to combine ETH and WETH in the
// same swap. Any excess ETH will be sent back to the caller (not the sender, which is relevant for relayers).
//
// Finally, Internal Balance can be used when either sending or receiving tokens.
enum SwapKind { GIVEN_IN, GIVEN_OUT }
/**
* @dev Performs a swap with a single Pool.
*
* If the swap is 'given in' (the number of tokens to send to the Pool is known), it returns the amount of tokens
* taken from the Pool, which must be greater than or equal to `limit`.
*
* If the swap is 'given out' (the number of tokens to take from the Pool is known), it returns the amount of tokens
* sent to the Pool, which must be less than or equal to `limit`.
*
* Internal Balance usage and the recipient are determined by the `funds` struct.
*
* Emits a `Swap` event.
*/
function swap(
SingleSwap memory singleSwap,
FundManagement memory funds,
uint256 limit,
uint256 deadline
) external payable returns (uint256);
/**
* @dev Data for a single swap executed by `swap`. `amount` is either `amountIn` or `amountOut` depending on
* the `kind` value.
*
* `assetIn` and `assetOut` are either token addresses, or the IAsset sentinel value for ETH (the zero address).
* Note that Pools never interact with ETH directly: it will be wrapped to or unwrapped from WETH by the Vault.
*
* The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be
* used to extend swap behavior.
*/
struct SingleSwap {
bytes32 poolId;
SwapKind kind;
IAsset assetIn;
IAsset assetOut;
uint256 amount;
bytes userData;
}
/**
* @dev Performs a series of swaps with one or multiple Pools. In each individual swap, the caller determines either
* the amount of tokens sent to or received from the Pool, depending on the `kind` value.
*
* Returns an array with the net Vault asset balance deltas. Positive amounts represent tokens (or ETH) sent to the
* Vault, and negative amounts represent tokens (or ETH) sent by the Vault. Each delta corresponds to the asset at
* the same index in the `assets` array.
*
* Swaps are executed sequentially, in the order specified by the `swaps` array. Each array element describes a
* Pool, the token to be sent to this Pool, the token to receive from it, and an amount that is either `amountIn` or
* `amountOut` depending on the swap kind.
*
* Multihop swaps can be executed by passing an `amount` value of zero for a swap. This will cause the amount in/out
* of the previous swap to be used as the amount in for the current one. In a 'given in' swap, 'tokenIn' must equal
* the previous swap's `tokenOut`. For a 'given out' swap, `tokenOut` must equal the previous swap's `tokenIn`.
*
* The `assets` array contains the addresses of all assets involved in the swaps. These are either token addresses,
* or the IAsset sentinel value for ETH (the zero address). Each entry in the `swaps` array specifies tokens in and
* out by referencing an index in `assets`. Note that Pools never interact with ETH directly: it will be wrapped to
* or unwrapped from WETH by the Vault.
*
* Internal Balance usage, sender, and recipient are determined by the `funds` struct. The `limits` array specifies
* the minimum or maximum amount of each token the vault is allowed to transfer.
*
* `batchSwap` can be used to make a single swap, like `swap` does, but doing so requires more gas than the
* equivalent `swap` call.
*
* Emits `Swap` events.
*/
function batchSwap(
SwapKind kind,
BatchSwapStep[] memory swaps,
IAsset[] memory assets,
FundManagement memory funds,
int256[] memory limits,
uint256 deadline
) external payable returns (int256[] memory);
/**
* @dev Data for each individual swap executed by `batchSwap`. The asset in and out fields are indexes into the
* `assets` array passed to that function, and ETH assets are converted to WETH.
*
* If `amount` is zero, the multihop mechanism is used to determine the actual amount based on the amount in/out
* from the previous swap, depending on the swap kind.
*
* The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be
* used to extend swap behavior.
*/
struct BatchSwapStep {
bytes32 poolId;
uint256 assetInIndex;
uint256 assetOutIndex;
uint256 amount;
bytes userData;
}
/**
* @dev Emitted for each individual swap performed by `swap` or `batchSwap`.
*/
event Swap(
bytes32 indexed poolId,
IERC20 indexed tokenIn,
IERC20 indexed tokenOut,
uint256 amountIn,
uint256 amountOut
);
/**
* @dev All tokens in a swap are either sent from the `sender` account to the Vault, or from the Vault to the
* `recipient` account.
*
* If the caller is not `sender`, it must be an authorized relayer for them.
*
* If `fromInternalBalance` is true, the `sender`'s Internal Balance will be preferred, performing an ERC20
* transfer for the difference between the requested amount and the User's Internal Balance (if any). The `sender`
* must have allowed the Vault to use their tokens via `IERC20.approve()`. This matches the behavior of
* `joinPool`.
*
* If `toInternalBalance` is true, tokens will be deposited to `recipient`'s internal balance instead of
* transferred. This matches the behavior of `exitPool`.
*
* Note that ETH cannot be deposited to or withdrawn from Internal Balance: attempting to do so will trigger a
* revert.
*/
struct FundManagement {
address sender;
bool fromInternalBalance;
address payable recipient;
bool toInternalBalance;
}
/**
* @dev Simulates a call to `batchSwap`, returning an array of Vault asset deltas. Calls to `swap` cannot be
* simulated directly, but an equivalent `batchSwap` call can and will yield the exact same result.
*
* Each element in the array corresponds to the asset at the same index, and indicates the number of tokens (or ETH)
* the Vault would take from the sender (if positive) or send to the recipient (if negative). The arguments it
* receives are the same that an equivalent `batchSwap` call would receive.
*
* Unlike `batchSwap`, this function performs no checks on the sender or recipient field in the `funds` struct.
* This makes it suitable to be called by off-chain applications via eth_call without needing to hold tokens,
* approve them for the Vault, or even know a user's address.
*
* Note that this function is not 'view' (due to implementation details): the client code must explicitly execute
* eth_call instead of eth_sendTransaction.
*/
function queryBatchSwap(
SwapKind kind,
BatchSwapStep[] memory swaps,
IAsset[] memory assets,
FundManagement memory funds
) external returns (int256[] memory assetDeltas);
// Flash Loans
/**
* @dev Performs a 'flash loan', sending tokens to `recipient`, executing the `receiveFlashLoan` hook on it,
* and then reverting unless the tokens plus a proportional protocol fee have been returned.
*
* The `tokens` and `amounts` arrays must have the same length, and each entry in these indicates the loan amount
* for each token contract. `tokens` must be sorted in ascending order.
*
* The 'userData' field is ignored by the Vault, and forwarded as-is to `recipient` as part of the
* `receiveFlashLoan` call.
*
* Emits `FlashLoan` events.
*/
function flashLoan(
IFlashLoanRecipient recipient,
IERC20[] memory tokens,
uint256[] memory amounts,
bytes memory userData
) external;
/**
* @dev Emitted for each individual flash loan performed by `flashLoan`.
*/
event FlashLoan(IFlashLoanRecipient indexed recipient, IERC20 indexed token, uint256 amount, uint256 feeAmount);
// Asset Management
//
// Each token registered for a Pool can be assigned an Asset Manager, which is able to freely withdraw the Pool's
// tokens from the Vault, deposit them, or assign arbitrary values to its `managed` balance (see
// `getPoolTokenInfo`). This makes them extremely powerful and dangerous. Even if an Asset Manager only directly
// controls one of the tokens in a Pool, a malicious manager could set that token's balance to manipulate the
// prices of the other tokens, and then drain the Pool with swaps. The risk of using Asset Managers is therefore
// not constrained to the tokens they are managing, but extends to the entire Pool's holdings.
//
// However, a properly designed Asset Manager smart contract can be safely used for the Pool's benefit,
// for example by lending unused tokens out for interest, or using them to participate in voting protocols.
//
// This concept is unrelated to the IAsset interface.
/**
* @dev Performs a set of Pool balance operations, which may be either withdrawals, deposits or updates.
*
* Pool Balance management features batching, which means a single contract call can be used to perform multiple
* operations of different kinds, with different Pools and tokens, at once.
*
* For each operation, the caller must be registered as the Asset Manager for `token` in `poolId`.
*/
function managePoolBalance(PoolBalanceOp[] memory ops) external;
struct PoolBalanceOp {
PoolBalanceOpKind kind;
bytes32 poolId;
IERC20 token;
uint256 amount;
}
/**
* Withdrawals decrease the Pool's cash, but increase its managed balance, leaving the total balance unchanged.
*
* Deposits increase the Pool's cash, but decrease its managed balance, leaving the total balance unchanged.
*
* Updates don't affect the Pool's cash balance, but because the managed balance changes, it does alter the total.
* The external amount can be either increased or decreased by this call (i.e., reporting a gain or a loss).
*/
enum PoolBalanceOpKind { WITHDRAW, DEPOSIT, UPDATE }
/**
* @dev Emitted when a Pool's token Asset Manager alters its balance via `managePoolBalance`.
*/
event PoolBalanceManaged(
bytes32 indexed poolId,
address indexed assetManager,
IERC20 indexed token,
int256 cashDelta,
int256 managedDelta
);
// Protocol Fees
//
// Some operations cause the Vault to collect tokens in the form of protocol fees, which can then be withdrawn by
// permissioned accounts.
//
// There are two kinds of protocol fees:
//
// - flash loan fees: charged on all flash loans, as a percentage of the amounts lent.
//
// - swap fees: a percentage of the fees charged by Pools when performing swaps. For a number of reasons, including
// swap gas costs and interface simplicity, protocol swap fees are not charged on each individual swap. Rather,
// Pools are expected to keep track of how much they have charged in swap fees, and pay any outstanding debts to the
// Vault when they are joined or exited. This prevents users from joining a Pool with unpaid debt, as well as
// exiting a Pool in debt without first paying their share.
/**
* @dev Returns the current protocol fee module.
*/
function getProtocolFeesCollector() external view returns (IProtocolFeesCollector);
/**
* @dev Safety mechanism to pause most Vault operations in the event of an emergency - typically detection of an
* error in some part of the system.
*
* The Vault can only be paused during an initial time period, after which pausing is forever disabled.
*
* While the contract is paused, the following features are disabled:
* - depositing and transferring internal balance
* - transferring external balance (using the Vault's allowance)
* - swaps
* - joining Pools
* - Asset Manager interactions
*
* Internal Balance can still be withdrawn, and Pools exited.
*/
function setPaused(bool paused) external;
/**
* @dev Returns the Vault's WETH instance.
*/
function WETH() external view returns (IWETH);
// solhint-disable-previous-line func-name-mixedcase
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;
import "./IVault.sol";
import "./IPoolSwapStructs.sol";
/**
* @dev Interface for adding and removing liquidity that all Pool contracts should implement. Note that this is not
* the complete Pool contract interface, as it is missing the swap hooks. Pool contracts should also inherit from
* either IGeneralPool or IMinimalSwapInfoPool
*/
interface IBasePool is IPoolSwapStructs {
/**
* @dev Called by the Vault when a user calls `IVault.joinPool` to add liquidity to this Pool. Returns how many of
* each registered token the user should provide, as well as the amount of protocol fees the Pool owes to the Vault.
* The Vault will then take tokens from `sender` and add them to the Pool's balances, as well as collect
* the reported amount in protocol fees, which the pool should calculate based on `protocolSwapFeePercentage`.
*
* Protocol fees are reported and charged on join events so that the Pool is free of debt whenever new users join.
*
* `sender` is the account performing the join (from which tokens will be withdrawn), and `recipient` is the account
* designated to receive any benefits (typically pool shares). `balances` contains the total balances
* for each token the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return.
*
* `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total
* balance.
*
* `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of
* join (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.)
*
* Contracts implementing this function should check that the caller is indeed the Vault before performing any
* state-changing operations, such as minting pool shares.
*/
function onJoinPool(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory balances,
uint256 lastChangeBlock,
uint256 protocolSwapFeePercentage,
bytes memory userData
) external returns (uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts);
/**
* @dev Called by the Vault when a user calls `IVault.exitPool` to remove liquidity from this Pool. Returns how many
* tokens the Vault should deduct from the Pool's balances, as well as the amount of protocol fees the Pool owes
* to the Vault. The Vault will then take tokens from the Pool's balances and send them to `recipient`,
* as well as collect the reported amount in protocol fees, which the Pool should calculate based on
* `protocolSwapFeePercentage`.
*
* Protocol fees are charged on exit events to guarantee that users exiting the Pool have paid their share.
*
* `sender` is the account performing the exit (typically the pool shareholder), and `recipient` is the account
* to which the Vault will send the proceeds. `balances` contains the total token balances for each token
* the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return.
*
* `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total
* balance.
*
* `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of
* exit (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.)
*
* Contracts implementing this function should check that the caller is indeed the Vault before performing any
* state-changing operations, such as burning pool shares.
*/
function onExitPool(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory balances,
uint256 lastChangeBlock,
uint256 protocolSwapFeePercentage,
bytes memory userData
) external returns (uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts);
function getPoolId() external view returns (bytes32);
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol";
interface IAssetManager {
/**
* @notice Emitted when asset manager is rebalanced
*/
event Rebalance(bytes32 poolId);
/**
* @notice Sets the config
*/
function setConfig(bytes32 poolId, bytes calldata config) external;
/**
* Note: No function to read the asset manager config is included in IAssetManager
* as the signature is expected to vary between asset manager implementations
*/
/**
* @notice Returns the asset manager's token
*/
function getToken() external view returns (IERC20);
/**
* @return the current assets under management of this asset manager
*/
function getAUM(bytes32 poolId) external view returns (uint256);
/**
* @return poolCash - The up-to-date cash balance of the pool
* @return poolManaged - The up-to-date managed balance of the pool
*/
function getPoolBalances(bytes32 poolId) external view returns (uint256 poolCash, uint256 poolManaged);
/**
* @return The difference in tokens between the target investment
* and the currently invested amount (i.e. the amount that can be invested)
*/
function maxInvestableBalance(bytes32 poolId) external view returns (int256);
/**
* @notice Updates the Vault on the value of the pool's investment returns
*/
function updateBalanceOfPool(bytes32 poolId) external;
/**
* @notice Determines whether the pool should rebalance given the provided balances
*/
function shouldRebalance(uint256 cash, uint256 managed) external view returns (bool);
/**
* @notice Rebalances funds between the pool and the asset manager to maintain target investment percentage.
* @param poolId - the poolId of the pool to be rebalanced
* @param force - a boolean representing whether a rebalance should be forced even when the pool is near balance
*/
function rebalance(bytes32 poolId, bool force) external;
/**
* @notice allows an authorized rebalancer to remove capital to facilitate large withdrawals
* @param poolId - the poolId of the pool to withdraw funds back to
* @param amount - the amount of tokens to withdraw back to the pool
*/
function capitalOut(bytes32 poolId, uint256 amount) external;
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20.sol";
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20Permit.sol";
/**
* @title Highly opinionated token implementation
* @author Balancer Labs
* @dev
* - Includes functions to increase and decrease allowance as a workaround
* for the well-known issue with `approve`:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
* - Allows for 'infinite allowance', where an allowance of 0xff..ff is not
* decreased by calls to transferFrom
* - Lets a token holder use `transferFrom` to send their own tokens,
* without first setting allowance
* - Emits 'Approval' events whenever allowance is changed by `transferFrom`
*/
contract BalancerPoolToken is ERC20, ERC20Permit {
constructor(string memory tokenName, string memory tokenSymbol)
ERC20(tokenName, tokenSymbol)
ERC20Permit(tokenName)
{
// solhint-disable-previous-line no-empty-blocks
}
// Overrides
/**
* @dev Override to allow for 'infinite allowance' and let the token owner use `transferFrom` with no self-allowance
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) public override returns (bool) {
uint256 currentAllowance = allowance(sender, msg.sender);
_require(msg.sender == sender || currentAllowance >= amount, Errors.ERC20_TRANSFER_EXCEEDS_ALLOWANCE);
_transfer(sender, recipient, amount);
if (msg.sender != sender && currentAllowance != uint256(-1)) {
// Because of the previous require, we know that if msg.sender != sender then currentAllowance >= amount
_approve(sender, msg.sender, currentAllowance - amount);
}
return true;
}
/**
* @dev Override to allow decreasing allowance by more than the current amount (setting it to zero)
*/
function decreaseAllowance(address spender, uint256 amount) public override returns (bool) {
uint256 currentAllowance = allowance(msg.sender, spender);
if (amount >= currentAllowance) {
_approve(msg.sender, spender, 0);
} else {
// No risk of underflow due to if condition
_approve(msg.sender, spender, currentAllowance - amount);
}
return true;
}
// Internal functions
function _mintPoolTokens(address recipient, uint256 amount) internal {
_mint(recipient, amount);
}
function _burnPoolTokens(address sender, uint256 amount) internal {
_burn(sender, amount);
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "@balancer-labs/v2-solidity-utils/contracts/helpers/Authentication.sol";
import "@balancer-labs/v2-vault/contracts/interfaces/IAuthorizer.sol";
import "./BasePool.sol";
/**
* @dev Base authorization layer implementation for Pools.
*
* The owner account can call some of the permissioned functions - access control of the rest is delegated to the
* Authorizer. Note that this owner is immutable: more sophisticated permission schemes, such as multiple ownership,
* granular roles, etc., could be built on top of this by making the owner a smart contract.
*
* Access control of all other permissioned functions is delegated to an Authorizer. It is also possible to delegate
* control of *all* permissioned functions to the Authorizer by setting the owner address to `_DELEGATE_OWNER`.
*/
abstract contract BasePoolAuthorization is Authentication {
address private immutable _owner;
address private constant _DELEGATE_OWNER = 0xBA1BA1ba1BA1bA1bA1Ba1BA1ba1BA1bA1ba1ba1B;
constructor(address owner) {
_owner = owner;
}
function getOwner() public view returns (address) {
return _owner;
}
function getAuthorizer() external view returns (IAuthorizer) {
return _getAuthorizer();
}
function _canPerform(bytes32 actionId, address account) internal view override returns (bool) {
if ((getOwner() != _DELEGATE_OWNER) && _isOwnerOnlyAction(actionId)) {
// Only the owner can perform "owner only" actions, unless the owner is delegated.
return msg.sender == getOwner();
} else {
// Non-owner actions are always processed via the Authorizer, as "owner only" ones are when delegated.
return _getAuthorizer().canPerform(actionId, account, address(this));
}
}
function _isOwnerOnlyAction(bytes32 actionId) internal view virtual returns (bool);
function _getAuthorizer() internal view virtual returns (IAuthorizer);
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
/**
* @dev Interface for the TemporarilyPausable helper.
*/
interface ITemporarilyPausable {
/**
* @dev Emitted every time the pause state changes by `_setPaused`.
*/
event PausedStateChanged(bool paused);
/**
* @dev Returns the current paused state.
*/
function getPausedState()
external
view
returns (
bool paused,
uint256 pauseWindowEndTime,
uint256 bufferPeriodEndTime
);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
import "../helpers/BalancerErrors.sol";
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
_require(c >= a, Errors.ADD_OVERFLOW);
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, Errors.SUB_OVERFLOW);
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, uint256 errorCode) internal pure returns (uint256) {
_require(b <= a, errorCode);
uint256 c = a - b;
return c;
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
/**
* @dev Interface for the SignatureValidator helper, used to support meta-transactions.
*/
interface ISignaturesValidator {
/**
* @dev Returns the EIP712 domain separator.
*/
function getDomainSeparator() external view returns (bytes32);
/**
* @dev Returns the next nonce used by an address to sign messages.
*/
function getNextNonce(address user) external view returns (uint256);
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "../openzeppelin/IERC20.sol";
/**
* @dev Interface for WETH9.
* See https://github.com/gnosis/canonical-weth/blob/0dd1ea3e295eef916d0c6223ec63141137d22d67/contracts/WETH9.sol
*/
interface IWETH is IERC20 {
function deposit() external payable;
function withdraw(uint256 amount) external;
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
/**
* @dev This is an empty interface used to represent either ERC20-conforming token contracts or ETH (using the zero
* address sentinel value). We're just relying on the fact that `interface` can be used to declare new address-like
* types.
*
* This concept is unrelated to a Pool's Asset Managers.
*/
interface IAsset {
// solhint-disable-previous-line no-empty-blocks
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
interface IAuthorizer {
/**
* @dev Returns true if `account` can perform the action described by `actionId` in the contract `where`.
*/
function canPerform(
bytes32 actionId,
address account,
address where
) external view returns (bool);
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
// Inspired by Aave Protocol's IFlashLoanReceiver.
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol";
interface IFlashLoanRecipient {
/**
* @dev When `flashLoan` is called on the Vault, it invokes the `receiveFlashLoan` hook on the recipient.
*
* At the time of the call, the Vault will have transferred `amounts` for `tokens` to the recipient. Before this
* call returns, the recipient must have transferred `amounts` plus `feeAmounts` for each token back to the
* Vault, or else the entire flash loan will revert.
*
* `userData` is the same value passed in the `IVault.flashLoan` call.
*/
function receiveFlashLoan(
IERC20[] memory tokens,
uint256[] memory amounts,
uint256[] memory feeAmounts,
bytes memory userData
) external;
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol";
import "./IVault.sol";
import "./IAuthorizer.sol";
interface IProtocolFeesCollector {
event SwapFeePercentageChanged(uint256 newSwapFeePercentage);
event FlashLoanFeePercentageChanged(uint256 newFlashLoanFeePercentage);
function withdrawCollectedFees(
IERC20[] calldata tokens,
uint256[] calldata amounts,
address recipient
) external;
function setSwapFeePercentage(uint256 newSwapFeePercentage) external;
function setFlashLoanFeePercentage(uint256 newFlashLoanFeePercentage) external;
function getSwapFeePercentage() external view returns (uint256);
function getFlashLoanFeePercentage() external view returns (uint256);
function getCollectedFeeAmounts(IERC20[] memory tokens) external view returns (uint256[] memory feeAmounts);
function getAuthorizer() external view returns (IAuthorizer);
function vault() external view returns (IVault);
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol";
import "./IVault.sol";
interface IPoolSwapStructs {
// This is not really an interface - it just defines common structs used by other interfaces: IGeneralPool and
// IMinimalSwapInfoPool.
//
// This data structure represents a request for a token swap, where `kind` indicates the swap type ('given in' or
// 'given out') which indicates whether or not the amount sent by the pool is known.
//
// The pool receives `tokenIn` and sends `tokenOut`. `amount` is the number of `tokenIn` tokens the pool will take
// in, or the number of `tokenOut` tokens the Pool will send out, depending on the given swap `kind`.
//
// All other fields are not strictly necessary for most swaps, but are provided to support advanced scenarios in
// some Pools.
//
// `poolId` is the ID of the Pool involved in the swap - this is useful for Pool contracts that implement more than
// one Pool.
//
// The meaning of `lastChangeBlock` depends on the Pool specialization:
// - Two Token or Minimal Swap Info: the last block in which either `tokenIn` or `tokenOut` changed its total
// balance.
// - General: the last block in which *any* of the Pool's registered tokens changed its total balance.
//
// `from` is the origin address for the funds the Pool receives, and `to` is the destination address
// where the Pool sends the outgoing tokens.
//
// `userData` is extra data provided by the caller - typically a signature from a trusted party.
struct SwapRequest {
IVault.SwapKind kind;
IERC20 tokenIn;
IERC20 tokenOut;
uint256 amount;
// Misc data
bytes32 poolId;
uint256 lastChangeBlock;
address from;
address to;
bytes userData;
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
import "./ERC20.sol";
import "./IERC20Permit.sol";
import "./EIP712.sol";
/**
* @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* _Available since v3.4._
*/
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712 {
mapping(address => uint256) private _nonces;
// solhint-disable-next-line var-name-mixedcase
bytes32 private immutable _PERMIT_TYPEHASH =
keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
/**
* @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
*
* It's a good idea to use the same `name` that is defined as the ERC20 token name.
*/
constructor(string memory name) EIP712(name, "1") {}
/**
* @dev See {IERC20Permit-permit}.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) public virtual override {
// solhint-disable-next-line not-rely-on-time
_require(block.timestamp <= deadline, Errors.EXPIRED_PERMIT);
uint256 nonce = _nonces[owner];
bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, nonce, deadline));
bytes32 hash = _hashTypedDataV4(structHash);
address signer = ecrecover(hash, v, r, s);
_require((signer != address(0)) && (signer == owner), Errors.INVALID_SIGNATURE);
_nonces[owner] = nonce + 1;
_approve(owner, spender, value);
}
/**
* @dev See {IERC20Permit-nonces}.
*/
function nonces(address owner) public view override returns (uint256) {
return _nonces[owner];
}
/**
* @dev See {IERC20Permit-DOMAIN_SEPARATOR}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view override returns (bytes32) {
return _domainSeparatorV4();
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over `owner`'s tokens,
* given `owner`'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for `permit`, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
*
* The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
* thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
* they need in their contracts using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* _Available since v3.4._
*/
abstract contract EIP712 {
/* solhint-disable var-name-mixedcase */
bytes32 private immutable _HASHED_NAME;
bytes32 private immutable _HASHED_VERSION;
bytes32 private immutable _TYPE_HASH;
/* solhint-enable var-name-mixedcase */
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
constructor(string memory name, string memory version) {
_HASHED_NAME = keccak256(bytes(name));
_HASHED_VERSION = keccak256(bytes(version));
_TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view virtual returns (bytes32) {
return keccak256(abi.encode(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION, _getChainId(), address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x01", _domainSeparatorV4(), structHash));
}
function _getChainId() private view returns (uint256 chainId) {
// Silence state mutability warning without generating bytecode.
// See https://github.com/ethereum/solidity/issues/10090#issuecomment-741789128 and
// https://github.com/ethereum/solidity/issues/2691
this;
// solhint-disable-next-line no-inline-assembly
assembly {
chainId := chainid()
}
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "./BalancerErrors.sol";
import "./IAuthentication.sol";
/**
* @dev Building block for performing access control on external functions.
*
* This contract is used via the `authenticate` modifier (or the `_authenticateCaller` function), which can be applied
* to external functions to only make them callable by authorized accounts.
*
* Derived contracts must implement the `_canPerform` function, which holds the actual access control logic.
*/
abstract contract Authentication is IAuthentication {
bytes32 private immutable _actionIdDisambiguator;
/**
* @dev The main purpose of the `actionIdDisambiguator` is to prevent accidental function selector collisions in
* multi contract systems.
*
* There are two main uses for it:
* - if the contract is a singleton, any unique identifier can be used to make the associated action identifiers
* unique. The contract's own address is a good option.
* - if the contract belongs to a family that shares action identifiers for the same functions, an identifier
* shared by the entire family (and no other contract) should be used instead.
*/
constructor(bytes32 actionIdDisambiguator) {
_actionIdDisambiguator = actionIdDisambiguator;
}
/**
* @dev Reverts unless the caller is allowed to call this function. Should only be applied to external functions.
*/
modifier authenticate() {
_authenticateCaller();
_;
}
/**
* @dev Reverts unless the caller is allowed to call the entry point function.
*/
function _authenticateCaller() internal view {
bytes32 actionId = getActionId(msg.sig);
_require(_canPerform(actionId, msg.sender), Errors.SENDER_NOT_ALLOWED);
}
function getActionId(bytes4 selector) public view override returns (bytes32) {
// Each external function is dynamically assigned an action identifier as the hash of the disambiguator and the
// function selector. Disambiguation is necessary to avoid potential collisions in the function selectors of
// multiple contracts.
return keccak256(abi.encodePacked(_actionIdDisambiguator, selector));
}
function _canPerform(bytes32 actionId, address user) internal view virtual returns (bool);
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
interface IAuthentication {
/**
* @dev Returns the action identifier associated with the external function described by `selector`.
*/
function getActionId(bytes4 selector) external view returns (bytes32);
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;
import "@balancer-labs/v2-solidity-utils/contracts/helpers/BaseSplitCodeFactory.sol";
import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol";
/**
* @dev Same as `BasePoolFactory`, for Pools whose creation code is so large that the factory cannot hold it.
*/
abstract contract BasePoolSplitCodeFactory is BaseSplitCodeFactory {
IVault private immutable _vault;
mapping(address => bool) private _isPoolFromFactory;
event PoolCreated(address indexed pool);
constructor(IVault vault, bytes memory creationCode) BaseSplitCodeFactory(creationCode) {
_vault = vault;
}
/**
* @dev Returns the Vault's address.
*/
function getVault() public view returns (IVault) {
return _vault;
}
/**
* @dev Returns true if `pool` was created by this factory.
*/
function isPoolFromFactory(address pool) external view returns (bool) {
return _isPoolFromFactory[pool];
}
function _create(bytes memory constructorArgs) internal override returns (address) {
address pool = super._create(constructorArgs);
_isPoolFromFactory[pool] = true;
emit PoolCreated(pool);
return pool;
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;
/**
* @dev Utility to create Pool factories for Pools that use the `TemporarilyPausable` contract.
*
* By calling `TemporarilyPausable`'s constructor with the result of `getPauseConfiguration`, all Pools created by this
* factory will share the same Pause Window end time, after which both old and new Pools will not be pausable.
*/
contract FactoryWidePauseWindow {
// This contract relies on timestamps in a similar way as `TemporarilyPausable` does - the same caveats apply.
// solhint-disable not-rely-on-time
uint256 private constant _INITIAL_PAUSE_WINDOW_DURATION = 90 days;
uint256 private constant _BUFFER_PERIOD_DURATION = 30 days;
// Time when the pause window for all created Pools expires, and the pause window duration of new Pools becomes
// zero.
uint256 private immutable _poolsPauseWindowEndTime;
constructor() {
_poolsPauseWindowEndTime = block.timestamp + _INITIAL_PAUSE_WINDOW_DURATION;
}
/**
* @dev Returns the current `TemporarilyPausable` configuration that will be applied to Pools created by this
* factory.
*
* `pauseWindowDuration` will decrease over time until it reaches zero, at which point both it and
* `bufferPeriodDuration` will be zero forever, meaning deployed Pools will not be pausable.
*/
function getPauseConfiguration() public view returns (uint256 pauseWindowDuration, uint256 bufferPeriodDuration) {
uint256 currentTime = block.timestamp;
if (currentTime < _poolsPauseWindowEndTime) {
// The buffer period is always the same since its duration is related to how much time is needed to respond
// to a potential emergency. The Pause Window duration however decreases as the end time approaches.
pauseWindowDuration = _poolsPauseWindowEndTime - currentTime; // No need for checked arithmetic.
bufferPeriodDuration = _BUFFER_PERIOD_DURATION;
} else {
// After the end time, newly created Pools have no Pause Window, nor Buffer Period (since they are not
// pausable in the first place).
pauseWindowDuration = 0;
bufferPeriodDuration = 0;
}
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;
import "./BalancerErrors.sol";
import "./CodeDeployer.sol";
/**
* @dev Base factory for contracts whose creation code is so large that the factory cannot hold it. This happens when
* the contract's creation code grows close to 24kB.
*
* Note that this factory cannot help with contracts that have a *runtime* (deployed) bytecode larger than 24kB.
*/
abstract contract BaseSplitCodeFactory {
// The contract's creation code is stored as code in two separate addresses, and retrieved via `extcodecopy`. This
// means this factory supports contracts with creation code of up to 48kB.
// We rely on inline-assembly to achieve this, both to make the entire operation highly gas efficient, and because
// `extcodecopy` is not available in Solidity.
// solhint-disable no-inline-assembly
address private immutable _creationCodeContractA;
uint256 private immutable _creationCodeSizeA;
address private immutable _creationCodeContractB;
uint256 private immutable _creationCodeSizeB;
/**
* @dev The creation code of a contract Foo can be obtained inside Solidity with `type(Foo).creationCode`.
*/
constructor(bytes memory creationCode) {
uint256 creationCodeSize = creationCode.length;
// We are going to deploy two contracts: one with approximately the first half of `creationCode`'s contents
// (A), and another with the remaining half (B).
// We store the lengths in both immutable and stack variables, since immutable variables cannot be read during
// construction.
uint256 creationCodeSizeA = creationCodeSize / 2;
_creationCodeSizeA = creationCodeSizeA;
uint256 creationCodeSizeB = creationCodeSize - creationCodeSizeA;
_creationCodeSizeB = creationCodeSizeB;
// To deploy the contracts, we're going to use `CodeDeployer.deploy()`, which expects a memory array with
// the code to deploy. Note that we cannot simply create arrays for A and B's code by copying or moving
// `creationCode`'s contents as they are expected to be very large (> 24kB), so we must operate in-place.
// Memory: [ code length ] [ A.data ] [ B.data ]
// Creating A's array is simple: we simply replace `creationCode`'s length with A's length. We'll later restore
// the original length.
bytes memory creationCodeA;
assembly {
creationCodeA := creationCode
mstore(creationCodeA, creationCodeSizeA)
}
// Memory: [ A.length ] [ A.data ] [ B.data ]
// ^ creationCodeA
_creationCodeContractA = CodeDeployer.deploy(creationCodeA);
// Creating B's array is a bit more involved: since we cannot move B's contents, we are going to create a 'new'
// memory array starting at A's last 32 bytes, which will be replaced with B's length. We'll back-up this last
// byte to later restore it.
bytes memory creationCodeB;
bytes32 lastByteA;
assembly {
// `creationCode` points to the array's length, not data, so by adding A's length to it we arrive at A's
// last 32 bytes.
creationCodeB := add(creationCode, creationCodeSizeA)
lastByteA := mload(creationCodeB)
mstore(creationCodeB, creationCodeSizeB)
}
// Memory: [ A.length ] [ A.data[ : -1] ] [ B.length ][ B.data ]
// ^ creationCodeA ^ creationCodeB
_creationCodeContractB = CodeDeployer.deploy(creationCodeB);
// We now restore the original contents of `creationCode` by writing back the original length and A's last byte.
assembly {
mstore(creationCodeA, creationCodeSize)
mstore(creationCodeB, lastByteA)
}
}
/**
* @dev Returns the two addresses where the creation code of the contract crated by this factory is stored.
*/
function getCreationCodeContracts() public view returns (address contractA, address contractB) {
return (_creationCodeContractA, _creationCodeContractB);
}
/**
* @dev Returns the creation code of the contract this factory creates.
*/
function getCreationCode() public view returns (bytes memory) {
return _getCreationCodeWithArgs("");
}
/**
* @dev Returns the creation code that will result in a contract being deployed with `constructorArgs`.
*/
function _getCreationCodeWithArgs(bytes memory constructorArgs) private view returns (bytes memory code) {
// This function exists because `abi.encode()` cannot be instructed to place its result at a specific address.
// We need for the ABI-encoded constructor arguments to be located immediately after the creation code, but
// cannot rely on `abi.encodePacked()` to perform concatenation as that would involve copying the creation code,
// which would be prohibitively expensive.
// Instead, we compute the creation code in a pre-allocated array that is large enough to hold *both* the
// creation code and the constructor arguments, and then copy the ABI-encoded arguments (which should not be
// overly long) right after the end of the creation code.
// Immutable variables cannot be used in assembly, so we store them in the stack first.
address creationCodeContractA = _creationCodeContractA;
uint256 creationCodeSizeA = _creationCodeSizeA;
address creationCodeContractB = _creationCodeContractB;
uint256 creationCodeSizeB = _creationCodeSizeB;
uint256 creationCodeSize = creationCodeSizeA + creationCodeSizeB;
uint256 constructorArgsSize = constructorArgs.length;
uint256 codeSize = creationCodeSize + constructorArgsSize;
assembly {
// First, we allocate memory for `code` by retrieving the free memory pointer and then moving it ahead of
// `code` by the size of the creation code plus constructor arguments, and 32 bytes for the array length.
code := mload(0x40)
mstore(0x40, add(code, add(codeSize, 32)))
// We now store the length of the code plus constructor arguments.
mstore(code, codeSize)
// Next, we concatenate the creation code stored in A and B.
let dataStart := add(code, 32)
extcodecopy(creationCodeContractA, dataStart, 0, creationCodeSizeA)
extcodecopy(creationCodeContractB, add(dataStart, creationCodeSizeA), 0, creationCodeSizeB)
}
// Finally, we copy the constructorArgs to the end of the array. Unfortunately there is no way to avoid this
// copy, as it is not possible to tell Solidity where to store the result of `abi.encode()`.
uint256 constructorArgsDataPtr;
uint256 constructorArgsCodeDataPtr;
assembly {
constructorArgsDataPtr := add(constructorArgs, 32)
constructorArgsCodeDataPtr := add(add(code, 32), creationCodeSize)
}
_memcpy(constructorArgsCodeDataPtr, constructorArgsDataPtr, constructorArgsSize);
}
/**
* @dev Deploys a contract with constructor arguments. To create `constructorArgs`, call `abi.encode()` with the
* contract's constructor arguments, in order.
*/
function _create(bytes memory constructorArgs) internal virtual returns (address) {
bytes memory creationCode = _getCreationCodeWithArgs(constructorArgs);
address destination;
assembly {
destination := create(0, add(creationCode, 32), mload(creationCode))
}
if (destination == address(0)) {
// Bubble up inner revert reason
// solhint-disable-next-line no-inline-assembly
assembly {
returndatacopy(0, 0, returndatasize())
revert(0, returndatasize())
}
}
return destination;
}
// From
// https://github.com/Arachnid/solidity-stringutils/blob/b9a6f6615cf18a87a823cbc461ce9e140a61c305/src/strings.sol
function _memcpy(
uint256 dest,
uint256 src,
uint256 len
) private pure {
// Copy word-length chunks while possible
for (; len >= 32; len -= 32) {
assembly {
mstore(dest, mload(src))
}
dest += 32;
src += 32;
}
// Copy remaining bytes
uint256 mask = 256**(32 - len) - 1;
assembly {
let srcpart := and(mload(src), not(mask))
let destpart := and(mload(dest), mask)
mstore(dest, or(destpart, srcpart))
}
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "./BalancerErrors.sol";
/**
* @dev Library used to deploy contracts with specific code. This can be used for long-term storage of immutable data as
* contract code, which can be retrieved via the `extcodecopy` opcode.
*/
library CodeDeployer {
// During contract construction, the full code supplied exists as code, and can be accessed via `codesize` and
// `codecopy`. This is not the contract's final code however: whatever the constructor returns is what will be
// stored as its code.
//
// We use this mechanism to have a simple constructor that stores whatever is appended to it. The following opcode
// sequence corresponds to the creation code of the following equivalent Solidity contract, plus padding to make the
// full code 32 bytes long:
//
// contract CodeDeployer {
// constructor() payable {
// uint256 size;
// assembly {
// size := sub(codesize(), 32) // size of appended data, as constructor is 32 bytes long
// codecopy(0, 32, size) // copy all appended data to memory at position 0
// return(0, size) // return appended data for it to be stored as code
// }
// }
// }
//
// More specifically, it is composed of the following opcodes (plus padding):
//
// [1] PUSH1 0x20
// [2] CODESIZE
// [3] SUB
// [4] DUP1
// [6] PUSH1 0x20
// [8] PUSH1 0x00
// [9] CODECOPY
// [11] PUSH1 0x00
// [12] RETURN
//
// The padding is just the 0xfe sequence (invalid opcode).
bytes32
private constant _DEPLOYER_CREATION_CODE = 0x602038038060206000396000f3fefefefefefefefefefefefefefefefefefefe;
/**
* @dev Deploys a contract with `code` as its code, returning the destination address.
*
* Reverts if deployment fails.
*/
function deploy(bytes memory code) internal returns (address destination) {
bytes32 deployerCreationCode = _DEPLOYER_CREATION_CODE;
// solhint-disable-next-line no-inline-assembly
assembly {
let codeLength := mload(code)
// `code` is composed of length and data. We've already stored its length in `codeLength`, so we simply
// replace it with the deployer creation code (which is exactly 32 bytes long).
mstore(code, deployerCreationCode)
// At this point, `code` now points to the deployer creation code immediately followed by `code`'s data
// contents. This is exactly what the deployer expects to receive when created.
destination := create(0, code, add(codeLength, 32))
// Finally, we restore the original length in order to not mutate `code`.
mstore(code, codeLength)
}
// The create opcode returns the zero address when contract creation fails, so we revert if this happens.
_require(destination != address(0), Errors.CODE_DEPLOYMENT_FAILED);
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;
import "./LiquidityBootstrappingPool.sol";
/**
* @dev The original Liquidity Bootstrapping Pool computes accumulated swap fees from invariant growth, which
* incorrectly assumes that the token weights do not change. This version is an exact copy of that flawed contract, with
* a hotfix that hard-codes the protocol fee swap percentage to 0, ignoring the value stored in the Fee Collector.
*/
contract NoProtocolFeeLiquidityBootstrappingPool is LiquidityBootstrappingPool {
constructor(
IVault vault,
string memory name,
string memory symbol,
IERC20[] memory tokens,
uint256[] memory normalizedWeights,
uint256 swapFeePercentage,
uint256 pauseWindowDuration,
uint256 bufferPeriodDuration,
address owner,
bool swapEnabledOnStart
)
LiquidityBootstrappingPool(
vault,
name,
symbol,
tokens,
normalizedWeights,
swapFeePercentage,
pauseWindowDuration,
bufferPeriodDuration,
owner,
swapEnabledOnStart
)
{
// solhint-disable-previous-line no-empty-blocks
}
function onJoinPool(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory balances,
uint256 lastChangeBlock,
uint256,
bytes memory userData
) public virtual override returns (uint256[] memory, uint256[] memory) {
return super.onJoinPool(poolId, sender, recipient, balances, lastChangeBlock, 0, userData);
}
function onExitPool(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory balances,
uint256 lastChangeBlock,
uint256,
bytes memory userData
) public virtual override returns (uint256[] memory, uint256[] memory) {
return super.onExitPool(poolId, sender, recipient, balances, lastChangeBlock, 0, userData);
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ReentrancyGuard.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol";
import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol";
import "../BaseWeightedPool.sol";
import "./WeightCompression.sol";
/**
* @dev Weighted Pool with mutable weights, designed to support V2 Liquidity Bootstrapping
*/
contract LiquidityBootstrappingPool is BaseWeightedPool, ReentrancyGuard {
// The Pause Window and Buffer Period are timestamp-based: they should not be relied upon for sub-minute accuracy.
// solhint-disable not-rely-on-time
using FixedPoint for uint256;
using WordCodec for bytes32;
using WeightCompression for uint256;
// LBPs often involve only two tokens - we support up to four since we're able to pack the entire config in a single
// storage slot.
uint256 private constant _MAX_LBP_TOKENS = 4;
// State variables
uint256 private immutable _totalTokens;
IERC20 internal immutable _token0;
IERC20 internal immutable _token1;
IERC20 internal immutable _token2;
IERC20 internal immutable _token3;
// All token balances are normalized to behave as if the token had 18 decimals. We assume a token's decimals will
// not change throughout its lifetime, and store the corresponding scaling factor for each at construction time.
// These factors are always greater than or equal to one: tokens with more than 18 decimals are not supported.
uint256 internal immutable _scalingFactor0;
uint256 internal immutable _scalingFactor1;
uint256 internal immutable _scalingFactor2;
uint256 internal immutable _scalingFactor3;
// For gas optimization, store start/end weights and timestamps in one bytes32
// Start weights need to be high precision, since restarting the update resets them to "spot"
// values. Target end weights do not need as much precision.
// [ 32 bits | 32 bits | 64 bits | 124 bits | 3 bits | 1 bit ]
// [ end timestamp | start timestamp | 4x16 end weights | 4x31 start weights | not used | swap enabled ]
// |MSB LSB|
bytes32 private _poolState;
// Offsets for data elements in _poolState
uint256 private constant _SWAP_ENABLED_OFFSET = 0;
uint256 private constant _START_WEIGHT_OFFSET = 4;
uint256 private constant _END_WEIGHT_OFFSET = 128;
uint256 private constant _START_TIME_OFFSET = 192;
uint256 private constant _END_TIME_OFFSET = 224;
// Event declarations
event SwapEnabledSet(bool swapEnabled);
event GradualWeightUpdateScheduled(
uint256 startTime,
uint256 endTime,
uint256[] startWeights,
uint256[] endWeights
);
constructor(
IVault vault,
string memory name,
string memory symbol,
IERC20[] memory tokens,
uint256[] memory normalizedWeights,
uint256 swapFeePercentage,
uint256 pauseWindowDuration,
uint256 bufferPeriodDuration,
address owner,
bool swapEnabledOnStart
)
BaseWeightedPool(
vault,
name,
symbol,
tokens,
new address[](tokens.length), // Pass the zero address: LBPs can't have asset managers
swapFeePercentage,
pauseWindowDuration,
bufferPeriodDuration,
owner
)
{
uint256 totalTokens = tokens.length;
InputHelpers.ensureInputLengthMatch(totalTokens, normalizedWeights.length);
_totalTokens = totalTokens;
// Immutable variables cannot be initialized inside an if statement, so we must do conditional assignments
_token0 = tokens[0];
_token1 = tokens[1];
_token2 = totalTokens > 2 ? tokens[2] : IERC20(0);
_token3 = totalTokens > 3 ? tokens[3] : IERC20(0);
_scalingFactor0 = _computeScalingFactor(tokens[0]);
_scalingFactor1 = _computeScalingFactor(tokens[1]);
_scalingFactor2 = totalTokens > 2 ? _computeScalingFactor(tokens[2]) : 0;
_scalingFactor3 = totalTokens > 3 ? _computeScalingFactor(tokens[3]) : 0;
uint256 currentTime = block.timestamp;
_startGradualWeightChange(currentTime, currentTime, normalizedWeights, normalizedWeights);
// If false, the pool will start in the disabled state (prevents front-running the enable swaps transaction)
_setSwapEnabled(swapEnabledOnStart);
}
// External functions
/**
* @dev Tells whether swaps are enabled or not for the given pool.
*/
function getSwapEnabled() public view returns (bool) {
return _poolState.decodeBool(_SWAP_ENABLED_OFFSET);
}
/**
* @dev Return start time, end time, and endWeights as an array.
* Current weights should be retrieved via `getNormalizedWeights()`.
*/
function getGradualWeightUpdateParams()
external
view
returns (
uint256 startTime,
uint256 endTime,
uint256[] memory endWeights
)
{
// Load current pool state from storage
bytes32 poolState = _poolState;
startTime = poolState.decodeUint32(_START_TIME_OFFSET);
endTime = poolState.decodeUint32(_END_TIME_OFFSET);
uint256 totalTokens = _getTotalTokens();
endWeights = new uint256[](totalTokens);
for (uint256 i = 0; i < totalTokens; i++) {
endWeights[i] = poolState.decodeUint16(_END_WEIGHT_OFFSET + i * 16).uncompress16();
}
}
/**
* @dev Can pause/unpause trading
*/
function setSwapEnabled(bool swapEnabled) external authenticate whenNotPaused nonReentrant {
_setSwapEnabled(swapEnabled);
}
/**
* @dev Schedule a gradual weight change, from the current weights to the given endWeights,
* over startTime to endTime
*/
function updateWeightsGradually(
uint256 startTime,
uint256 endTime,
uint256[] memory endWeights
) external authenticate whenNotPaused nonReentrant {
InputHelpers.ensureInputLengthMatch(_getTotalTokens(), endWeights.length);
// If the start time is in the past, "fast forward" to start now
// This avoids discontinuities in the weight curve. Otherwise, if you set the start/end times with
// only 10% of the period in the future, the weights would immediately jump 90%
uint256 currentTime = block.timestamp;
startTime = Math.max(currentTime, startTime);
_require(startTime <= endTime, Errors.GRADUAL_UPDATE_TIME_TRAVEL);
_startGradualWeightChange(startTime, endTime, _getNormalizedWeights(), endWeights);
}
// Internal functions
function _getNormalizedWeight(IERC20 token) internal view override returns (uint256) {
uint256 i;
// First, convert token address to a token index
// prettier-ignore
if (token == _token0) { i = 0; }
else if (token == _token1) { i = 1; }
else if (token == _token2) { i = 2; }
else if (token == _token3) { i = 3; }
else {
_revert(Errors.INVALID_TOKEN);
}
return _getNormalizedWeightByIndex(i, _poolState);
}
function _getNormalizedWeightByIndex(uint256 i, bytes32 poolState) internal view returns (uint256) {
uint256 startWeight = poolState.decodeUint31(_START_WEIGHT_OFFSET + i * 31).uncompress31();
uint256 endWeight = poolState.decodeUint16(_END_WEIGHT_OFFSET + i * 16).uncompress16();
uint256 pctProgress = _calculateWeightChangeProgress(poolState);
return _interpolateWeight(startWeight, endWeight, pctProgress);
}
function _getNormalizedWeights() internal view override returns (uint256[] memory) {
uint256 totalTokens = _getTotalTokens();
uint256[] memory normalizedWeights = new uint256[](totalTokens);
bytes32 poolState = _poolState;
// prettier-ignore
{
normalizedWeights[0] = _getNormalizedWeightByIndex(0, poolState);
normalizedWeights[1] = _getNormalizedWeightByIndex(1, poolState);
if (totalTokens == 2) return normalizedWeights;
normalizedWeights[2] = _getNormalizedWeightByIndex(2, poolState);
if (totalTokens == 3) return normalizedWeights;
normalizedWeights[3] = _getNormalizedWeightByIndex(3, poolState);
}
return normalizedWeights;
}
function _getNormalizedWeightsAndMaxWeightIndex()
internal
view
override
returns (uint256[] memory normalizedWeights, uint256 maxWeightTokenIndex)
{
normalizedWeights = _getNormalizedWeights();
maxWeightTokenIndex = 0;
uint256 maxNormalizedWeight = normalizedWeights[0];
for (uint256 i = 1; i < normalizedWeights.length; i++) {
if (normalizedWeights[i] > maxNormalizedWeight) {
maxWeightTokenIndex = i;
maxNormalizedWeight = normalizedWeights[i];
}
}
}
// Pool callback functions
// Prevent any account other than the owner from joining the pool
function _onInitializePool(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory scalingFactors,
bytes memory userData
) internal override returns (uint256, uint256[] memory) {
// Only the owner can initialize the pool
_require(sender == getOwner(), Errors.CALLER_IS_NOT_LBP_OWNER);
return super._onInitializePool(poolId, sender, recipient, scalingFactors, userData);
}
function _onJoinPool(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory balances,
uint256 lastChangeBlock,
uint256 protocolSwapFeePercentage,
uint256[] memory scalingFactors,
bytes memory userData
)
internal
override
returns (
uint256,
uint256[] memory,
uint256[] memory
)
{
// Only the owner can add liquidity; block public LPs
_require(sender == getOwner(), Errors.CALLER_IS_NOT_LBP_OWNER);
return
super._onJoinPool(
poolId,
sender,
recipient,
balances,
lastChangeBlock,
protocolSwapFeePercentage,
scalingFactors,
userData
);
}
// Swap overrides - revert unless swaps are enabled
function _onSwapGivenIn(
SwapRequest memory swapRequest,
uint256 currentBalanceTokenIn,
uint256 currentBalanceTokenOut
) internal view override returns (uint256) {
_require(getSwapEnabled(), Errors.SWAPS_DISABLED);
return super._onSwapGivenIn(swapRequest, currentBalanceTokenIn, currentBalanceTokenOut);
}
function _onSwapGivenOut(
SwapRequest memory swapRequest,
uint256 currentBalanceTokenIn,
uint256 currentBalanceTokenOut
) internal view override returns (uint256) {
_require(getSwapEnabled(), Errors.SWAPS_DISABLED);
return super._onSwapGivenOut(swapRequest, currentBalanceTokenIn, currentBalanceTokenOut);
}
/**
* @dev Extend ownerOnly functions to include the LBP control functions
*/
function _isOwnerOnlyAction(bytes32 actionId) internal view override returns (bool) {
return
(actionId == getActionId(LiquidityBootstrappingPool.setSwapEnabled.selector)) ||
(actionId == getActionId(LiquidityBootstrappingPool.updateWeightsGradually.selector)) ||
super._isOwnerOnlyAction(actionId);
}
// Private functions
/**
* @dev Returns a fixed-point number representing how far along the current weight change is, where 0 means the
* change has not yet started, and FixedPoint.ONE means it has fully completed.
*/
function _calculateWeightChangeProgress(bytes32 poolState) private view returns (uint256) {
uint256 currentTime = block.timestamp;
uint256 startTime = poolState.decodeUint32(_START_TIME_OFFSET);
uint256 endTime = poolState.decodeUint32(_END_TIME_OFFSET);
if (currentTime > endTime) {
return FixedPoint.ONE;
} else if (currentTime < startTime) {
return 0;
}
// No need for SafeMath as it was checked right above: endTime >= currentTime >= startTime
uint256 totalSeconds = endTime - startTime;
uint256 secondsElapsed = currentTime - startTime;
// In the degenerate case of a zero duration change, consider it completed (and avoid division by zero)
return totalSeconds == 0 ? FixedPoint.ONE : secondsElapsed.divDown(totalSeconds);
}
/**
* @dev When calling updateWeightsGradually again during an update, reset the start weights to the current weights,
* if necessary.
*/
function _startGradualWeightChange(
uint256 startTime,
uint256 endTime,
uint256[] memory startWeights,
uint256[] memory endWeights
) internal virtual {
bytes32 newPoolState = _poolState;
uint256 normalizedSum = 0;
for (uint256 i = 0; i < endWeights.length; i++) {
uint256 endWeight = endWeights[i];
_require(endWeight >= _MIN_WEIGHT, Errors.MIN_WEIGHT);
newPoolState = newPoolState
.insertUint31(startWeights[i].compress31(), _START_WEIGHT_OFFSET + i * 31)
.insertUint16(endWeight.compress16(), _END_WEIGHT_OFFSET + i * 16);
normalizedSum = normalizedSum.add(endWeight);
}
// Ensure that the normalized weights sum to ONE
_require(normalizedSum == FixedPoint.ONE, Errors.NORMALIZED_WEIGHT_INVARIANT);
_poolState = newPoolState.insertUint32(startTime, _START_TIME_OFFSET).insertUint32(endTime, _END_TIME_OFFSET);
emit GradualWeightUpdateScheduled(startTime, endTime, startWeights, endWeights);
}
function _interpolateWeight(
uint256 startWeight,
uint256 endWeight,
uint256 pctProgress
) private pure returns (uint256) {
if (pctProgress == 0 || startWeight == endWeight) return startWeight;
if (pctProgress >= FixedPoint.ONE) return endWeight;
if (startWeight > endWeight) {
uint256 weightDelta = pctProgress.mulDown(startWeight - endWeight);
return startWeight.sub(weightDelta);
} else {
uint256 weightDelta = pctProgress.mulDown(endWeight - startWeight);
return startWeight.add(weightDelta);
}
}
function _setSwapEnabled(bool swapEnabled) private {
_poolState = _poolState.insertBool(swapEnabled, _SWAP_ENABLED_OFFSET);
emit SwapEnabledSet(swapEnabled);
}
function _getMaxTokens() internal pure override returns (uint256) {
return _MAX_LBP_TOKENS;
}
function _getTotalTokens() internal view virtual override returns (uint256) {
return _totalTokens;
}
function _scalingFactor(IERC20 token) internal view virtual override returns (uint256) {
// prettier-ignore
if (token == _token0) { return _scalingFactor0; }
else if (token == _token1) { return _scalingFactor1; }
else if (token == _token2) { return _scalingFactor2; }
else if (token == _token3) { return _scalingFactor3; }
else {
_revert(Errors.INVALID_TOKEN);
}
}
function _scalingFactors() internal view virtual override returns (uint256[] memory) {
uint256 totalTokens = _getTotalTokens();
uint256[] memory scalingFactors = new uint256[](totalTokens);
// prettier-ignore
{
if (totalTokens > 0) { scalingFactors[0] = _scalingFactor0; } else { return scalingFactors; }
if (totalTokens > 1) { scalingFactors[1] = _scalingFactor1; } else { return scalingFactors; }
if (totalTokens > 2) { scalingFactors[2] = _scalingFactor2; } else { return scalingFactors; }
if (totalTokens > 3) { scalingFactors[3] = _scalingFactor3; } else { return scalingFactors; }
}
return scalingFactors;
}
}// SPDX-License-Identifier: MIT
// Based on the ReentrancyGuard library from OpenZeppelin Contracts, altered to reduce bytecode size.
// Modifier code is inlined by the compiler, which causes its code to appear multiple times in the codebase. By using
// private functions, we achieve the same end result with slightly higher runtime gas costs, but reduced bytecode size.
pragma solidity ^0.7.0;
import "../helpers/BalancerErrors.sol";
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and make it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_enterNonReentrant();
_;
_exitNonReentrant();
}
function _enterNonReentrant() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
_require(_status != _ENTERED, Errors.REENTRANCY);
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _exitNonReentrant() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
/**
* @dev Library for compressing and uncompresing numbers by using smaller types.
* All values are 18 decimal fixed-point numbers in the [0.0, 1.0] range,
* so heavier compression (fewer bits) results in fewer decimals.
*/
library WeightCompression {
uint256 private constant _UINT31_MAX = 2**(31) - 1;
using FixedPoint for uint256;
/**
* @dev Convert a 16-bit value to full FixedPoint
*/
function uncompress16(uint256 value) internal pure returns (uint256) {
return value.mulUp(FixedPoint.ONE).divUp(type(uint16).max);
}
/**
* @dev Compress a FixedPoint value to 16 bits
*/
function compress16(uint256 value) internal pure returns (uint256) {
return value.mulUp(type(uint16).max).divUp(FixedPoint.ONE);
}
/**
* @dev Convert a 31-bit value to full FixedPoint
*/
function uncompress31(uint256 value) internal pure returns (uint256) {
return value.mulUp(FixedPoint.ONE).divUp(_UINT31_MAX);
}
/**
* @dev Compress a FixedPoint value to 31 bits
*/
function compress31(uint256 value) internal pure returns (uint256) {
return value.mulUp(_UINT31_MAX).divUp(FixedPoint.ONE);
}
}{
"optimizer": {
"enabled": true,
"runs": 9999
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"libraries": {}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"contract IVault","name":"vault","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[],"name":"FactoryDisabled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pool","type":"address"}],"name":"PoolCreated","type":"event"},{"inputs":[{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"contract IERC20[]","name":"tokens","type":"address[]"},{"internalType":"uint256[]","name":"weights","type":"uint256[]"},{"internalType":"uint256","name":"swapFeePercentage","type":"uint256"},{"internalType":"address","name":"owner","type":"address"},{"internalType":"bool","name":"swapEnabledOnStart","type":"bool"}],"name":"create","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"disable","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"selector","type":"bytes4"}],"name":"getActionId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCreationCode","outputs":[{"internalType":"bytes","name":"","type":"bytes"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCreationCodeContracts","outputs":[{"internalType":"address","name":"contractA","type":"address"},{"internalType":"address","name":"contractB","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPauseConfiguration","outputs":[{"internalType":"uint256","name":"pauseWindowDuration","type":"uint256"},{"internalType":"uint256","name":"bufferPeriodDuration","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getVault","outputs":[{"internalType":"contract IVault","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isDisabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"pool","type":"address"}],"name":"isPoolFromFactory","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"}]Contract Creation Code
6101606040523480156200001257600080fd5b506040516200711b3803806200711b8339810160408190526200003591620001c8565b80604051806020016200004890620001ba565b601f1982820381018352601f90910116604052306080528051819060006002820460c0819052808303610100819052818552909150836200009581620000fe602090811b620003b417901c565b60601b6001600160601b03191660a0528285018051838252620000c482620000fe602090811b620003b417901c565b6001600160601b0319606091821b811660e0529690935290529590951b90911661012052505050426276a700016101405250620001f89050565b80517f602038038060206000396000f3fefefefefefefefefefefefefefefefefefefe808352600091602081018484f090845291506200014c6001600160a01b03831615156101ac62000152565b50919050565b816200016357620001638162000167565b5050565b62461bcd60e51b6000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b616086806200109583390190565b600060208284031215620001da578081fd5b81516001600160a01b0381168114620001f1578182fd5b9392505050565b60805160a05160601c60c05160e05160601c610100516101205160601c61014051610e316200026460003980610249528061027252508061039252508061041b5250806101ad528061049752508061043c52508061018c52806104735250806103425250610e316000f3fe608060405234801561001057600080fd5b50600436106100a25760003560e01c80632f2770db116100765780636c57f5a91161005b5780636c57f5a91461013b578063851c1bb3146101435780638d928af814610163576100a2565b80632f2770db146101115780636634b7531461011b576100a2565b8062c194db146100a7578063174481fa146100c557806323679719146100db5780632da47c40146100fb575b600080fd5b6100af61016b565b6040516100bc9190610c73565b60405180910390f35b6100cd61018a565b6040516100bc929190610c0c565b6100ee6100e9366004610a23565b6101d0565b6040516100bc9190610beb565b610103610243565b6040516100bc929190610d5d565b6101196102ad565b005b61012e61012936600461098f565b61030a565b6040516100bc9190610c33565b61012e610335565b6101566101513660046109c7565b61033e565b6040516100bc9190610c3e565b6100ee610390565b606061018560405180602001604052806000815250610413565b905090565b7f00000000000000000000000000000000000000000000000000000000000000007f00000000000000000000000000000000000000000000000000000000000000009091565b6001546000906101e59060ff161560d36104ec565b6000806101f0610243565b915091506102356101ff610390565b8b8b8b8b8b88888d8d6040516020016102219a99989796959493929190610c86565b6040516020818303038152906040526104fe565b9a9950505050505050505050565b600080427f000000000000000000000000000000000000000000000000000000000000000081101561029f57807f000000000000000000000000000000000000000000000000000000000000000003925062278d0091506102a8565b60009250600091505b509091565b6102b5610589565b600180547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0016811790556040517f432acbfd662dbb5d8b378384a67159b47ca9d0f1b79f97cf64cf8585fa362d5090600090a1565b73ffffffffffffffffffffffffffffffffffffffff1660009081526020819052604090205460ff1690565b60015460ff1690565b60007f000000000000000000000000000000000000000000000000000000000000000082604051602001610373929190610bbb565b604051602081830303815290604052805190602001209050919050565b7f000000000000000000000000000000000000000000000000000000000000000090565b80517f602038038060206000396000f3fefefefefefefefefefefefefefefefefefefe808352600091602081018484f0908452915061040d73ffffffffffffffffffffffffffffffffffffffff831615156101ac6104ec565b50919050565b8051604080517f00000000000000000000000000000000000000000000000000000000000000007f0000000000000000000000000000000000000000000000000000000000000000818101858101848101602090810190965280855293957f00000000000000000000000000000000000000000000000000000000000000009592947f000000000000000000000000000000000000000000000000000000000000000094938801866000828a3c846000888301883c50602089810190898501016104de8183866105d2565b505050505050505050919050565b816104fa576104fa8161064c565b5050565b60008061050a836106b9565b73ffffffffffffffffffffffffffffffffffffffff811660008181526020819052604080822080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001660011790555192935090917f83a48fbcfc991335314e74d0496aab6a1987e992ddc85dddbcc4d6dd6ef2e9fc9190a292915050565b60006105b86000357fffffffff000000000000000000000000000000000000000000000000000000001661033e565b90506105cf6105c78233610701565b6101916104ec565b50565b5b602081106106105781518352602092830192909101907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0016105d3565b905182516020929092036101000a7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0180199091169116179052565b7f08c379a0000000000000000000000000000000000000000000000000000000006000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b600060606106c683610413565b905060008151602083016000f0905073ffffffffffffffffffffffffffffffffffffffff81166106fa573d6000803e3d6000fd5b9392505050565b600061070b610390565b73ffffffffffffffffffffffffffffffffffffffff1663aaabadc56040518163ffffffff1660e01b815260040160206040518083038186803b15801561075057600080fd5b505afa158015610764573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906107889190610a07565b73ffffffffffffffffffffffffffffffffffffffff16639be2a8848484306040518463ffffffff1660e01b81526004016107c493929190610c47565b60206040518083038186803b1580156107dc57600080fd5b505afa1580156107f0573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061081491906109ab565b90505b92915050565b803561081781610dcb565b600082601f830112610838578081fd5b813561084b61084682610d92565b610d6b565b81815291506020808301908481018184028601820187101561086c57600080fd5b60005b8481101561089457813561088281610dcb565b8452928201929082019060010161086f565b505050505092915050565b600082601f8301126108af578081fd5b81356108bd61084682610d92565b8181529150602080830190848101818402860182018710156108de57600080fd5b60005b84811015610894578135845292820192908201906001016108e1565b803561081781610ded565b600082601f830112610918578081fd5b813567ffffffffffffffff81111561092e578182fd5b61095f60207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f84011601610d6b565b915080825283602082850101111561097657600080fd5b8060208401602084013760009082016020015292915050565b6000602082840312156109a0578081fd5b81356106fa81610dcb565b6000602082840312156109bc578081fd5b81516106fa81610ded565b6000602082840312156109d8578081fd5b81357fffffffff00000000000000000000000000000000000000000000000000000000811681146106fa578182fd5b600060208284031215610a18578081fd5b81516106fa81610dcb565b600080600080600080600060e0888a031215610a3d578283fd5b873567ffffffffffffffff80821115610a54578485fd5b610a608b838c01610908565b985060208a0135915080821115610a75578485fd5b610a818b838c01610908565b975060408a0135915080821115610a96578485fd5b610aa28b838c01610828565b965060608a0135915080821115610ab7578485fd5b50610ac48a828b0161089f565b94505060808801359250610adb8960a08a0161081d565b9150610aea8960c08a016108fd565b905092959891949750929550565b73ffffffffffffffffffffffffffffffffffffffff169052565b6000815180845260208085019450808401835b83811015610b4157815187529582019590820190600101610b25565b509495945050505050565b15159052565b60008151808452815b81811015610b7757602081850181015186830182015201610b5b565b81811115610b885782602083870101525b50601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169290920160200192915050565b9182527fffffffff0000000000000000000000000000000000000000000000000000000016602082015260240190565b73ffffffffffffffffffffffffffffffffffffffff91909116815260200190565b73ffffffffffffffffffffffffffffffffffffffff92831681529116602082015260400190565b901515815260200190565b90815260200190565b92835273ffffffffffffffffffffffffffffffffffffffff918216602084015216604082015260600190565b6000602082526108146020830184610b52565b600061014073ffffffffffffffffffffffffffffffffffffffff8d16835260208181850152610cb78285018e610b52565b91508382036040850152610ccb828d610b52565b84810360608601528b51808252828d01935090820190845b81811015610d0757610cf58551610db2565b83529383019391830191600101610ce3565b50508481036080860152610d1b818c610b12565b93505050508660a08301528560c08301528460e0830152610d40610100830185610af8565b610d4e610120830184610b4c565b9b9a5050505050505050505050565b918252602082015260400190565b60405181810167ffffffffffffffff81118282101715610d8a57600080fd5b604052919050565b600067ffffffffffffffff821115610da8578081fd5b5060209081020190565b73ffffffffffffffffffffffffffffffffffffffff1690565b73ffffffffffffffffffffffffffffffffffffffff811681146105cf57600080fd5b80151581146105cf57600080fdfea2646970667358221220c36e9fd0abdd6de45fc245d638cd075eb7c99ceea829eba32c1028982f902aeb64736f6c634300070100336102e06040527f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9610120523480156200003757600080fd5b5060405162006086380380620060868339810160408190526200005a9162000d5c565b89898989898989898989898989898a516001600160401b03811180156200008057600080fd5b50604051908082528060200260200182016040528015620000ab578160200160208202803683370190505b5089898989888651600214620000c3576001620000c6565b60025b8989898989898989828289898180604051806040016040528060018152602001603160f81b815250848489336001600160a01b031660001b806080818152505050806001600160a01b031660a0816001600160a01b031660601b815250505081600390805190602001906200013d92919062000b14565b5080516200015390600490602084019062000b14565b50506005805460ff1916601217905550815160209283012060c052805191012060e05250507f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f6101005250620001b26276a70083111561019462000525565b620001c662278d0082111561019562000525565b4290910161014081905201610160528551620001e8906002111560c862000525565b62000202620001f66200053a565b8751111560c962000525565b62000218866200053f60201b62000e971760201c565b62000223846200054b565b6040516309b2760f60e01b81526000906001600160a01b038c16906309b2760f9062000254908d9060040162000f71565b602060405180830381600087803b1580156200026f57600080fd5b505af115801562000284573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190620002aa919062000d43565b604051633354e3e960e11b81529091506001600160a01b038c16906366a9c7d290620002df9084908b908b9060040162000ed5565b600060405180830381600087803b158015620002fa57600080fd5b505af11580156200030f573d6000803e3d6000fd5b505050508a6001600160a01b0316610180816001600160a01b031660601b81525050806101a0818152505050505050505050505050505050505050505050506001600a8190555060008751905062000374818851620005d760201b62000ea11760201c565b6101c0819052875188906000906200038857fe5b60200260200101516001600160a01b03166101e0816001600160a01b031660601b8152505087600181518110620003bb57fe5b60200260200101516001600160a01b0316610200816001600160a01b031660601b8152505060028111620003f157600062000408565b87600281518110620003ff57fe5b60200260200101515b60601b6001600160601b03191661022052600381116200042a57600062000441565b876003815181106200043857fe5b60200260200101515b6001600160a01b0316610240816001600160a01b031660601b8152505062000484886000815181106200047057fe5b6020026020010151620005e660201b60201c565b6102605287516200049d90899060019081106200047057fe5b6102805260028111620004b2576000620004c4565b620004c4886002815181106200047057fe5b6102a05260038111620004d9576000620004eb565b620004eb886003815181106200047057fe5b6102c05242620004fe81808a8062000692565b620005098362000820565b5050505050505050505050505050505050505050505062001038565b816200053657620005368162000874565b5050565b600490565b806200053681620008c7565b6200056064e8d4a5100082101560cb62000525565b6200057867016345785d8a000082111560ca62000525565b620005978160c06008546200095460201b62000eae179092919060201c565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc90620005cc90839062000f86565b60405180910390a150565b62000536828214606762000525565b600080826001600160a01b031663313ce5676040518163ffffffff1660e01b815260040160206040518083038186803b1580156200062357600080fd5b505afa15801562000638573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906200065e919062000e6b565b60ff16905060006200067d6012836200096960201b62000ec41760201c565b600a0a670de0b6b3a764000002949350505050565b600b546000805b835181101562000783576000848281518110620006b257fe5b60200260200101519050620006da662386f26fc1000082101561012e6200052560201b60201c565b6200075b620006f4826200098660201b62000eda1760201c565b8360100260800162000746620007298a87815181106200071057fe5b6020026020010151620009c760201b62000efa1760201c565b86601f0260040189620009f460201b62000f16179092919060201c565b62000a0660201b62000f28179092919060201c565b935062000777818462000a1660201b62000f381790919060201c565b92505060010162000699565b506200079c670de0b6b3a7640000821461013462000525565b620007d58560e0620007c08960c08762000a3160201b62000f4a179092919060201c565b62000a3160201b62000f4a179092919060201c565b600b556040517f0f3631f9dab08169d1db21c6dc5f32536fb2b0a6b9bb5330d71c52132f968be0906200081090889088908890889062000f8f565b60405180910390a1505050505050565b6200083f816000600b5462000a4360201b62000f5c179092919060201c565b600b556040517f5a9e84f78f7957cb4ed7478eb0fcad35ee4ecbe2e0f298420b28a3955392573f90620005cc90839062000eca565b62461bcd60e51b6000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b600281511015620008d85762000951565b600081600081518110620008e857fe5b602002602001015190506000600190505b82518110156200094e5760008382815181106200091257fe5b6020026020010151905062000943816001600160a01b0316846001600160a01b03161060656200052560201b60201c565b9150600101620008f9565b50505b50565b6001600160401b03811b1992909216911b1790565b60006200097b83831115600162000525565b508082035b92915050565b600062000980670de0b6b3a7640000620009b361ffff80168562000a6c60201b62000f831790919060201c565b62000ac160201b62000fef1790919060201c565b600062000980670de0b6b3a7640000620009b3637fffffff8562000a6c60201b62000f831790919060201c565b637fffffff811b1992909216911b1790565b61ffff811b1992909216911b1790565b600082820162000a2a848210158362000525565b9392505050565b63ffffffff811b1992909216911b1790565b60006001821b198416828462000a5b57600062000a5e565b60015b60ff16901b17949350505050565b600082820262000a9484158062000a8c57508385838162000a8957fe5b04145b600362000525565b8062000aa557600091505062000980565b670de0b6b3a764000060001982015b0460010191505062000980565b600062000ad2821515600462000525565b8262000ae15750600062000980565b670de0b6b3a76400008381029062000b079085838162000afd57fe5b0414600562000525565b82600182038162000ab457fe5b828054600181600116156101000203166002900490600052602060002090601f016020900481019282601f1062000b5757805160ff191683800117855562000b87565b8280016001018555821562000b87579182015b8281111562000b8757825182559160200191906001019062000b6a565b5062000b9592915062000b99565b5090565b5b8082111562000b95576000815560010162000b9a565b8051620009808162001022565b600082601f83011262000bce578081fd5b815162000be562000bdf8262000ff6565b62000fcf565b81815291506020808301908481018184028601820187101562000c0757600080fd5b60005b8481101562000c3357815162000c208162001022565b8452928201929082019060010162000c0a565b505050505092915050565b600082601f83011262000c4f578081fd5b815162000c6062000bdf8262000ff6565b81815291506020808301908481018184028601820187101562000c8257600080fd5b60005b8481101562000c335781518452928201929082019060010162000c85565b805180151581146200098057600080fd5b600082601f83011262000cc5578081fd5b81516001600160401b0381111562000cdb578182fd5b602062000cf1601f8301601f1916820162000fcf565b9250818352848183860101111562000d0857600080fd5b60005b8281101562000d2857848101820151848201830152810162000d0b565b8281111562000d3a5760008284860101525b50505092915050565b60006020828403121562000d55578081fd5b5051919050565b6000806000806000806000806000806101408b8d03121562000d7c578586fd5b62000d888c8c62000bb0565b60208c0151909a506001600160401b038082111562000da5578788fd5b62000db38e838f0162000cb4565b9a5060408d015191508082111562000dc9578788fd5b62000dd78e838f0162000cb4565b995060608d015191508082111562000ded578788fd5b62000dfb8e838f0162000bbd565b985060808d015191508082111562000e11578788fd5b5062000e208d828e0162000c3e565b96505060a08b0151945060c08b0151935060e08b0151925062000e488c6101008d0162000bb0565b915062000e5a8c6101208d0162000ca3565b90509295989b9194979a5092959850565b60006020828403121562000e7d578081fd5b815160ff8116811462000a2a578182fd5b6000815180845260208085019450808401835b8381101562000ebf5781518752958201959082019060010162000ea1565b509495945050505050565b901515815260200190565b60006060820185835260206060818501528186518084526080860191508288019350845b8181101562000f215762000f0e855162001016565b8352938301939183019160010162000ef9565b505084810360408601528551808252908201925081860190845b8181101562000f635762000f50835162001016565b8552938301939183019160010162000f3b565b509298975050505050505050565b602081016003831062000f8057fe5b91905290565b90815260200190565b60008582528460208301526080604083015262000fb0608083018562000e8e565b828103606084015262000fc4818562000e8e565b979650505050505050565b6040518181016001600160401b038111828210171562000fee57600080fd5b604052919050565b60006001600160401b038211156200100c578081fd5b5060209081020190565b6001600160a01b031690565b6001600160a01b03811681146200095157600080fd5b60805160a05160601c60c05160e051610100516101205161014051610160516101805160601c6101a0516101c0516101e05160601c6102005160601c6102205160601c6102405160601c61026051610280516102a0516102c051614f486200113e6000398061131c5280611f1e5250806112d95280611ebd5250806112965280611e5c5250806112455280611dfb525080611ee35280612e89525080611e825280612e47525080611e215280612e05525080611dc05280612dc3525080611580525080610716525080610a355250806111c75250806111a3525080610d1252508061144c52508061148e52508061146d525080610a1152508061099b5250614f486000f3fe608060405234801561001057600080fd5b50600436106102925760003560e01c806374f3b009116101605780639d2c110c116100d8578063d505accf1161008c578063dd62ed3e11610071578063dd62ed3e14610508578063e01af92c1461051b578063f89f27ed1461052e57610292565b8063d505accf146104e2578063d5c096c4146104f557610292565b8063a9059cbb116100bd578063a9059cbb146104bf578063aaabadc5146104d2578063c0ff1a15146104da57610292565b80639d2c110c14610499578063a457c2d7146104ac57610292565b806387ec68171161012f5780638d928af8116101145780638d928af81461048157806395d89b41146104895780639b02cdde1461049157610292565b806387ec681714610459578063893d20e81461046c57610292565b806374f3b009146103fb5780637beed2201461041c5780637ecebe0014610433578063851c1bb31461044657610292565b806338e9922e1161020e57806350dd6ed9116101c25780636028bfd4116101a75780636028bfd4146103bf578063679aefce146103e057806370a08231146103e857610292565b806350dd6ed9146103a457806355c67628146103b757610292565b806339509351116101f357806339509351146103765780633e5692051461038957806347bc4d921461039c57610292565b806338e9922e1461035b57806338fff2d01461036e57610292565b80631c0de0511161026557806323b872dd1161024a57806323b872dd1461032b578063313ce5671461033e5780633644e5151461035357610292565b80631c0de051146102ff5780631dd746ea1461031657610292565b806306fdde0314610297578063095ea7b3146102b557806316c38b3c146102d557806318160ddd146102ea575b600080fd5b61029f610536565b6040516102ac9190614e11565b60405180910390f35b6102c86102c33660046146a8565b6105eb565b6040516102ac9190614d18565b6102e86102e336600461479f565b610602565b005b6102f2610616565b6040516102ac9190614d3b565b61030761061c565b6040516102ac93929190614d23565b61031e610645565b6040516102ac9190614ce0565b6102c86103393660046145f3565b610654565b6103466106e8565b6040516102ac9190614e8d565b6102f26106f1565b6102e8610369366004614b2b565b6106fb565b6102f2610714565b6102c86103843660046146a8565b610738565b6102e8610397366004614b43565b610773565b6102c86107da565b6102e86103b23660046148d6565b6107ea565b6102f2610808565b6103d26103cd3660046147d7565b610819565b6040516102ac929190614e24565b6102f2610850565b6102f26103f636600461459f565b61087b565b61040e6104093660046147d7565b61089a565b6040516102ac929190614cf3565b6104246108bd565b6040516102ac93929190614e3d565b6102f261044136600461459f565b61097c565b6102f261045436600461487a565b610997565b6103d26104673660046147d7565b6109e9565b610474610a0f565b6040516102ac9190614ccc565b610474610a33565b61029f610a57565b6102f2610ad6565b6102f26104a7366004614a2f565b610adc565b6102c86104ba3660046146a8565b610bc3565b6102c86104cd3660046146a8565b610c01565b610474610c0e565b6102f2610c18565b6102e86104f0366004614633565b610cdd565b61040e6105033660046147d7565b610e26565b6102f26105163660046145bb565b610e39565b6102e861052936600461479f565b610e64565b61031e610e8d565b60038054604080516020601f60027fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156105e05780601f106105b5576101008083540402835291602001916105e0565b820191906000526020600020905b8154815290600101906020018083116105c357829003601f168201915b505050505090505b90565b60006105f833848461103a565b5060015b92915050565b61060a6110a2565b610613816110e8565b50565b60025490565b6000806000610629611184565b1592506106346111a1565b915061063e6111c5565b9050909192565b606061064f6111e9565b905090565b6000806106618533610e39565b9050610685336001600160a01b038716148061067d5750838210155b61019e61135a565b610690858585611368565b336001600160a01b038616148015906106c957507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8114155b156106db576106db853385840361103a565b60019150505b9392505050565b60055460ff1690565b600061064f611448565b6107036110a2565b61070b6114e5565b610613816114fa565b7f000000000000000000000000000000000000000000000000000000000000000090565b3360008181526001602090815260408083206001600160a01b038716845290915281205490916105f891859061076e9086610f38565b61103a565b61077b6110a2565b6107836114e5565b61078b611565565b61079d61079661157e565b8251610ea1565b426107a881856115a2565b93506107b98385111561014661135a565b6107cc84846107c66115b9565b856116cd565b506107d56117e2565b505050565b600b5460009061064f90826117e9565b6107f26110a2565b6107fa6114e5565b61080482826117f3565b5050565b60085460009061064f9060c061190b565b6000606061082f865161082a61157e565b610ea1565b610844898989898989896119196119e9611a4a565b97509795505050505050565b600061064f61085d610616565b610875610868610c18565b61087061157e565b611bda565b90611bf4565b6001600160a01b0381166000908152602081905260409020545b919050565b6060806108ad8989898989600089611c3c565b9150915097509795505050505050565b600b5460009081906060906108d38160c0611cdf565b93506108e08160e0611cdf565b925060006108ec61157e565b90508067ffffffffffffffff8111801561090557600080fd5b5060405190808252806020026020018201604052801561092f578160200160208202803683370190505b50925060005b81811015610974576109556109508460806010850201611ce9565b611cf1565b84828151811061096157fe5b6020908102919091010152600101610935565b505050909192565b6001600160a01b031660009081526006602052604090205490565b60007f0000000000000000000000000000000000000000000000000000000000000000826040516020016109cc929190614c56565b604051602081830303815290604052805190602001209050919050565b600060606109fa865161082a61157e565b61084489898989898989611d0b611d5b611a4a565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b60048054604080516020601f60027fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156105e05780601f106105b5576101008083540402835291602001916105e0565b60095490565b600080610aec8560200151611dbc565b90506000610afd8660400151611dbc565b9050600086516001811115610b0e57fe5b1415610b7457610b218660600151611f4d565b6060870152610b308583611f6e565b9450610b3c8482611f6e565b9350610b4c866060015183611f6e565b60608701526000610b5e878787611f7a565b9050610b6a8183611fa2565b93505050506106e1565b610b7e8583611f6e565b9450610b8a8482611f6e565b9350610b9a866060015182611f6e565b60608701526000610bac878787611fae565b9050610bb88184611fc6565b9050610b6a81611fd2565b600080610bd03385610e39565b9050808310610bea57610be53385600061103a565b610bf7565b610bf7338585840361103a565b5060019392505050565b60006105f8338484611368565b600061064f611ff8565b60006060610c24610a33565b6001600160a01b031663f94d4668610c3a610714565b6040518263ffffffff1660e01b8152600401610c569190614d3b565b60006040518083038186803b158015610c6e57600080fd5b505afa158015610c82573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052610caa91908101906146d3565b50915050610cbf81610cba6111e9565b612072565b6060610cc96120d3565b509050610cd68183612151565b9250505090565b610ceb8442111560d161135a565b6001600160a01b0387166000908152600660209081526040808320549051909291610d42917f0000000000000000000000000000000000000000000000000000000000000000918c918c918c9188918d9101614d63565b6040516020818303038152906040528051906020012090506000610d65826121c3565b9050600060018288888860405160008152602001604052604051610d8c9493929190614df3565b6020604051602081039080840390855afa158015610dae573d6000803e3d6000fd5b5050604051601f1901519150610df090506001600160a01b03821615801590610de857508b6001600160a01b0316826001600160a01b0316145b6101f861135a565b6001600160a01b038b166000908152600660205260409020600185019055610e198b8b8b61103a565b5050505050505050505050565b6060806108ad89898989896000896121df565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205490565b610e6c6110a2565b610e746114e5565b610e7c611565565b610e8581612304565b6106136117e2565b606061064f6115b9565b8061080481612346565b610804818314606761135a565b67ffffffffffffffff811b1992909216911b1790565b6000610ed483831115600161135a565b50900390565b60006105fc670de0b6b3a7640000610ef48461ffff610f83565b90610fef565b60006105fc670de0b6b3a7640000610ef484637fffffff610f83565b637fffffff811b1992909216911b1790565b61ffff811b1992909216911b1790565b60008282016106e1848210158361135a565b63ffffffff811b1992909216911b1790565b60006001821b1984168284610f72576000610f75565b60015b60ff16901b17949350505050565b6000828202610fa7841580610fa0575083858381610f9d57fe5b04145b600361135a565b80610fb65760009150506105fc565b670de0b6b3a76400007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff82015b046001019150506105fc565b6000610ffe821515600461135a565b8261100b575060006105fc565b670de0b6b3a76400008381029061102e9085838161102557fe5b0414600561135a565b826001820381610fe357fe5b6001600160a01b0380841660008181526001602090815260408083209487168084529490915290819020849055517f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92590611095908590614d3b565b60405180910390a3505050565b60006110d16000357fffffffff0000000000000000000000000000000000000000000000000000000016610997565b90506106136110e082336123bf565b61019161135a565b8015611108576111036110f96111a1565b421061019361135a565b61111d565b61111d6111136111c5565b42106101a961135a565b600780547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00168215151790556040517f9e3a5e37224532dea67b89face185703738a228a6e8a23dee546960180d3be6490611179908390614d18565b60405180910390a150565b600061118e6111c5565b42118061064f57505060075460ff161590565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b606060006111f561157e565b905060608167ffffffffffffffff8111801561121057600080fd5b5060405190808252806020026020018201604052801561123a578160200160208202803683370190505b5090508115611282577f00000000000000000000000000000000000000000000000000000000000000008160008151811061127157fe5b60200260200101818152505061128b565b91506105e89050565b6001821115611282577f0000000000000000000000000000000000000000000000000000000000000000816001815181106112c257fe5b6020026020010181815250506002821115611282577f00000000000000000000000000000000000000000000000000000000000000008160028151811061130557fe5b6020026020010181815250506003821115611282577f00000000000000000000000000000000000000000000000000000000000000008160038151811061134857fe5b60200260200101818152505091505090565b8161080457610804816124af565b61137f6001600160a01b038416151561019861135a565b6113966001600160a01b038316151561019961135a565b6113a18383836107d5565b6001600160a01b0383166000908152602081905260409020546113c790826101a061251c565b6001600160a01b0380851660009081526020819052604080822093909355908416815220546113f69082610f38565b6001600160a01b0380841660008181526020819052604090819020939093559151908516907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90611095908590614d3b565b60007f00000000000000000000000000000000000000000000000000000000000000007f00000000000000000000000000000000000000000000000000000000000000007f00000000000000000000000000000000000000000000000000000000000000006114b5612532565b306040516020016114ca959493929190614d97565b60405160208183030381529060405280519060200120905090565b6114f86114f0611184565b61019261135a565b565b61150d64e8d4a5100082101560cb61135a565b61152367016345785d8a000082111560ca61135a565b600854611532908260c0610eae565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc90611179908390614d3b565b6115776002600a54141561019061135a565b6002600a55565b7f000000000000000000000000000000000000000000000000000000000000000090565b6000818310156115b257816106e1565b5090919050565b606060006115c561157e565b905060608167ffffffffffffffff811180156115e057600080fd5b5060405190808252806020026020018201604052801561160a578160200160208202803683370190505b50600b5490915061161c600082612536565b8260008151811061162957fe5b602002602001018181525050611640600182612536565b8260018151811061164d57fe5b602002602001018181525050826002141561166c575091506105e89050565b611677600282612536565b8260028151811061168457fe5b60200260200101818152505082600314156116a3575091506105e89050565b6116ae600382612536565b826003815181106116bb57fe5b60209081029190910101525091505090565b600b546000805b83518110156117695760008482815181106116eb57fe5b6020026020010151905061170b662386f26fc1000082101561012e61135a565b61175261171782610eda565b8360100260800161174b61173d8a878151811061173057fe5b6020026020010151610efa565b88906004601f890201610f16565b9190610f28565b935061175e8382610f38565b9250506001016116d4565b50611780670de0b6b3a7640000821461013461135a565b6117998560e0611792858a60c0610f4a565b9190610f4a565b600b556040517f0f3631f9dab08169d1db21c6dc5f32536fb2b0a6b9bb5330d71c52132f968be0906117d2908890889088908890614e5c565b60405180910390a1505050505050565b6001600a55565b1c60019081161490565b60006117fd610714565b90506000611809610a33565b6001600160a01b031663b05f8e4883866040518363ffffffff1660e01b8152600401611836929190614ddc565b60806040518083038186803b15801561184e57600080fd5b505afa158015611862573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906118869190614b91565b6040517f18e736d40000000000000000000000000000000000000000000000000000000081529094506001600160a01b03851693506318e736d492506118d3915085908790600401614dc3565b600060405180830381600087803b1580156118ed57600080fd5b505af1158015611901573d6000803e3d6000fd5b5050505050505050565b1c67ffffffffffffffff1690565b60006060806060600061192a6120d3565b91509150611936611184565b1561196e576000611947838c612151565b90506119598b8484600954858e61258c565b93506119688b85610ec461263b565b506119ba565b61197661157e565b67ffffffffffffffff8111801561198c57600080fd5b506040519080825280602002602001820160405280156119b6578160200160208202803683370190505b5092505b6119c68a8389896126a6565b90955093506119d68a8584612715565b6009555050985098509895505050505050565b60005b6119f461157e565b8110156107d557611a2b838281518110611a0a57fe5b6020026020010151838381518110611a1e57fe5b6020026020010151611bf4565b838281518110611a3757fe5b60209081029190910101526001016119ec565b333014611b39576000306001600160a01b0316600036604051611a6e929190614c86565b6000604051808303816000865af19150503d8060008114611aab576040519150601f19603f3d011682016040523d82523d6000602084013e611ab0565b606091505b505090508060008114611abf57fe5b60046000803e6000517fffffffff00000000000000000000000000000000000000000000000000000000167f43adbafb000000000000000000000000000000000000000000000000000000008114611b1b573d6000803e3d6000fd5b506020600460003e604060205260243d03602460403e601c3d016000f35b6060611b436111e9565b9050611b4f8782612072565b60006060611b678c8c8c8c8c8c898d8d63ffffffff16565b5091509150611b7a81848663ffffffff16565b8051601f1982018390526343adbafb7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc08301526020027fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffdc82016044820181fd5b60008282026106e1841580610fa0575083858381610f9d57fe5b6000611c03821515600461135a565b82611c10575060006105fc565b670de0b6b3a764000083810290611c2a9085838161102557fe5b828181611c3357fe5b049150506105fc565b60608088611c66611c4b610a33565b6001600160a01b0316336001600160a01b03161460cd61135a565b611c7b611c71610714565b82146101f461135a565b6060611c856111e9565b9050611c918882612072565b6000606080611ca68e8e8e8e8e8e8a8f611919565b925092509250611cb68d8461272e565b611cc082856119e9565b611cca81856119e9565b909550935050505b5097509795505050505050565b1c63ffffffff1690565b1c61ffff1690565b60006105fc61ffff610ef484670de0b6b3a7640000610f83565b6000606080611d37611d1b610a0f565b6001600160a01b03168b6001600160a01b03161461014861135a565b611d478b8b8b8b8b8b8b8b612738565b925092509250985098509895505050505050565b60005b611d6661157e565b8110156107d557611d9d838281518110611d7c57fe5b6020026020010151838381518110611d9057fe5b6020026020010151610fef565b838281518110611da957fe5b6020908102919091010152600101611d5e565b60007f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611e1f57507f0000000000000000000000000000000000000000000000000000000000000000610895565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611e8057507f0000000000000000000000000000000000000000000000000000000000000000610895565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611ee157507f0000000000000000000000000000000000000000000000000000000000000000610895565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611f4257507f0000000000000000000000000000000000000000000000000000000000000000610895565b6108956101356124af565b600080611f62611f5b610808565b8490610f83565b90506106e18382610ec4565b60006106e183836127be565b6000611f8f611f876107da565b61014761135a565b611f9a8484846127ea565b949350505050565b60006106e18383611bf4565b6000611fbb611f876107da565b611f9a84848461281d565b60006106e18383610fef565b60006105fc611ff1611fe2610808565b670de0b6b3a764000090610ec4565b8390610fef565b6000612002610a33565b6001600160a01b031663aaabadc56040518163ffffffff1660e01b815260040160206040518083038186803b15801561203a57600080fd5b505afa15801561204e573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061064f91906148ba565b60005b61207d61157e565b8110156107d5576120b483828151811061209357fe5b60200260200101518383815181106120a757fe5b60200260200101516127be565b8382815181106120c057fe5b6020908102919091010152600101612075565b606060006120df6115b9565b9150600090506000826000815181106120f457fe5b602002602001015190506000600190505b835181101561214b578184828151811061211b57fe5b602002602001015111156121435780925083818151811061213857fe5b602002602001015191505b600101612105565b50509091565b670de0b6b3a764000060005b83518110156121b3576121a96121a285838151811061217857fe5b602002602001015185848151811061218c57fe5b602002602001015161285090919063ffffffff16565b83906127be565b915060010161215d565b506105fc6000821161013761135a565b60006121cd611448565b826040516020016109cc929190614c96565b606080886121ee611c4b610a33565b6121f9611c71610714565b60606122036111e9565b905061220d610616565b6122b457600060606122228d8d8d868b61289f565b91509150612237620f424083101560cc61135a565b6122456000620f42406128e5565b6122548b620f424084036128e5565b61225e8184611d5b565b8061226761157e565b67ffffffffffffffff8111801561227d57600080fd5b506040519080825280602002602001820160405280156122a7578160200160208202803683370190505b5095509550505050611cd2565b6122be8882612072565b60006060806122d38e8e8e8e8e8e8a8f611d0b565b9250925092506122e38c846128e5565b6122ed8285611d5b565b6122f781856119e9565b9095509350611cd2915050565b600b5461231390826000610f5c565b600b556040517f5a9e84f78f7957cb4ed7478eb0fcad35ee4ecbe2e0f298420b28a3955392573f90611179908390614d18565b60028151101561235557610613565b60008160008151811061236457fe5b602002602001015190506000600190505b82518110156107d557600083828151811061238c57fe5b602002602001015190506123b5816001600160a01b0316846001600160a01b031610606561135a565b9150600101612375565b600073ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b6123de610a0f565b6001600160a01b0316141580156123f957506123f9836128ef565b1561242157612406610a0f565b6001600160a01b0316336001600160a01b03161490506105fc565b612429611ff8565b6001600160a01b0316639be2a8848484306040518463ffffffff1660e01b815260040161245893929190614d44565b60206040518083038186803b15801561247057600080fd5b505afa158015612484573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906124a891906147bb565b90506105fc565b7f08c379a0000000000000000000000000000000000000000000000000000000006000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b600061252b848411158361135a565b5050900390565b4690565b60008061255161254c846004601f88020161295d565b612967565b905060006125686109508560806010890201611ce9565b9050600061257585612983565b9050612582838383612a02565b9695505050505050565b60608061259761157e565b67ffffffffffffffff811180156125ad57600080fd5b506040519080825280602002602001820160405280156125d7578160200160208202803683370190505b509050826125e6579050612582565b6126198887815181106125f557fe5b602002602001015188888151811061260957fe5b6020026020010151878787612a76565b81878151811061262557fe5b6020908102919091010152979650505050505050565b60005b61264661157e565b8110156126a05761268184828151811061265c57fe5b602002602001015184838151811061267057fe5b60200260200101518463ffffffff16565b84828151811061268d57fe5b602090810291909101015260010161263e565b50505050565b6000606060006126b584612afe565b905060008160028111156126c557fe5b14156126e0576126d6878786612b14565b925092505061270c565b60018160028111156126ee57fe5b14156126fe576126d68785612bf7565b6126d687878787612c29565b505b94509492505050565b60006127248484610ec461263b565b611f9a8285612151565b6108048282612c98565b60006060806127456114e5565b606060006127516120d3565b915091506000612761838c612151565b905060606127758c8585600954868f61258c565b90506127848c82610ec461263b565b600060606127948e878d8d612d54565b915091506127a38e8288612daf565b60095590975095509350505050985098509895505050505050565b60008282026127d8841580610fa0575083858381610f9d57fe5b670de0b6b3a764000090049392505050565b60006127f46114e5565b611f9a836128058660200151612dbe565b846128138860400151612dbe565b8860600151612ee0565b60006128276114e5565b611f9a836128388660200151612dbe565b846128468860400151612dbe565b8860600151612f4d565b60008061285d8484612fc3565b9050600061287761287083612710610f83565b6001610f38565b90508082101561288c576000925050506105fc565b6128968282610ec4565b925050506105fc565b600060606128ca6128ae610a0f565b6001600160a01b0316876001600160a01b03161461014861135a565b6128d787878787876130f6565b915091509550959350505050565b610804828261318a565b600061291a7fe01af92c00000000000000000000000000000000000000000000000000000000610997565b82148061294e575061294b7f3e56920500000000000000000000000000000000000000000000000000000000610997565b82145b806105fc57506105fc82613218565b1c637fffffff1690565b60006105fc637fffffff610ef484670de0b6b3a7640000610f83565b600042816129928460c0611cdf565b905060006129a18560e0611cdf565b9050808311156129be57670de0b6b3a76400009350505050610895565b818310156129d25760009350505050610895565b81810382840381156129ed576129e88183611bf4565b6129f7565b670de0b6b3a76400005b979650505050505050565b6000811580612a1057508284145b15612a1c5750826106e1565b670de0b6b3a76400008210612a325750816106e1565b82841115612a5c576000612a48838587036127be565b9050612a548582610ec4565b9150506106e1565b6000612a6a838686036127be565b9050612a548582610f38565b6000838311612a8757506000612af5565b6000612a938585610fef565b90506000612aa9670de0b6b3a764000088611bf4565b9050612abd826709b6e64a8ec600006115a2565b91506000612acb838361327c565b90506000612ae2612adb836132a8565b8b906127be565b9050612aee81876127be565b9450505050505b95945050505050565b6000818060200190518101906105fc9190614924565b60006060612b206114e5565b600080612b2c856132ce565b91509150612b44612b3b61157e565b8210606461135a565b6060612b4e61157e565b67ffffffffffffffff81118015612b6457600080fd5b50604051908082528060200260200182016040528015612b8e578160200160208202803683370190505b509050612bd2888381518110612ba057fe5b6020026020010151888481518110612bb457fe5b602002602001015185612bc5610616565b612bcd610808565b6132f0565b818381518110612bde57fe5b6020908102919091010152919791965090945050505050565b600060606000612c06846133b0565b90506060612c1c8683612c17610616565b6133c6565b9196919550909350505050565b60006060612c356114e5565b60606000612c4285613478565b91509150612c53825161082a61157e565b612c5d8287612072565b6000612c7a898985612c6d610616565b612c75610808565b613490565b9050612c8a8282111560cf61135a565b989197509095505050505050565b612caf6001600160a01b038316151561019b61135a565b612cbb826000836107d5565b6001600160a01b038216600090815260208190526040902054612ce190826101a161251c565b6001600160a01b038316600090815260208190526040902055600254612d0790826136be565b6002556040516000906001600160a01b038416907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90612d48908590614d3b565b60405180910390a35050565b600060606000612d6384612afe565b90506001816002811115612d7357fe5b1415612d85576126d6878787876136cc565b6002816002811115612d9357fe5b1415612da4576126d6878786613729565b61270a6101366124af565b60006127248484610f3861263b565b6000807f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316836001600160a01b03161415612e0357506000612ed4565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316836001600160a01b03161415612e4557506001612ed4565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316836001600160a01b03161415612e8757506002612ed4565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316836001600160a01b03161415612ec957506003612ed4565b612ed46101356124af565b6106e181600b54612536565b6000612f02612ef787670429d069189e00006127be565b83111561013061135a565b6000612f0e8784610f38565b90506000612f1c8883610fef565b90506000612f2a8887611bf4565b90506000612f38838361327c565b9050612aee612f46826132a8565b89906127be565b6000612f6f612f6485670429d069189e00006127be565b83111561013161135a565b6000612f85612f7e8685610ec4565b8690610fef565b90506000612f938588610fef565b90506000612fa1838361327c565b90506000612fb782670de0b6b3a7640000610ec4565b9050612aee8a82610f83565b600081612fd95750670de0b6b3a76400006105fc565b82612fe6575060006105fc565b6130137f80000000000000000000000000000000000000000000000000000000000000008410600661135a565b82613039770bce5086492111aea88f4bb1ca6bcf584181ea8059f765328410600761135a565b826000670c7d713b49da00008313801561305a5750670f43fc2c04ee000083125b1561309157600061306a846137d6565b9050670de0b6b3a764000080820784020583670de0b6b3a76400008305020191505061309f565b8161309b8461390d565b0290505b670de0b6b3a764000090056130ed7ffffffffffffffffffffffffffffffffffffffffffffffffdc702bd3a30fc000082128015906130e6575068070c1cc73b00c800008213155b600861135a565b61258281613cad565b600060606131026114e5565b600061310d84612afe565b9050613128600082600281111561312057fe5b1460ce61135a565b60606131338561417d565b905061314061079661157e565b61314a8187612072565b60606131546120d3565b50905060006131638284612151565b905060006131738261087061157e565b600992909255509a91995090975050505050505050565b613196600083836107d5565b6002546131a39082610f38565b6002556001600160a01b0382166000908152602081905260409020546131c99082610f38565b6001600160a01b0383166000818152602081905260408082209390935591519091907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90612d48908590614d3b565b60006132437f38e9922e00000000000000000000000000000000000000000000000000000000610997565b8214806105fc57506132747f50dd6ed900000000000000000000000000000000000000000000000000000000610997565b909114919050565b6000806132898484612fc3565b9050600061329c61287083612710610f83565b9050612af58282610f38565b6000670de0b6b3a764000082106132c05760006105fc565b50670de0b6b3a76400000390565b600080828060200190518101906132e591906149b4565b909590945092505050565b60008061330184610ef48188610ec4565b905061331a6709b6e64a8ec6000082101561013261135a565b6000613338613331670de0b6b3a764000089611bf4565b839061327c565b9050600061334f613348836132a8565b8a906127be565b9050600061335c896132a8565b9050600061336a8383610f83565b905060006133788483610ec4565b90506133a0613399613392670de0b6b3a76400008b610ec4565b84906127be565b8290610f38565b9c9b505050505050505050505050565b6000818060200190518101906106e19190614987565b606060006133d48484611bf4565b90506060855167ffffffffffffffff811180156133f057600080fd5b5060405190808252806020026020018201604052801561341a578160200160208202803683370190505b50905060005b865181101561346e5761344f8388838151811061343957fe5b60200260200101516127be90919063ffffffff16565b82828151811061345b57fe5b6020908102919091010152600101613420565b5095945050505050565b60606000828060200190518101906132e59190614940565b60006060845167ffffffffffffffff811180156134ac57600080fd5b506040519080825280602002602001820160405280156134d6578160200160208202803683370190505b5090506000805b885181101561359b576135368982815181106134f557fe5b6020026020010151610ef489848151811061350c57fe5b60200260200101518c858151811061352057fe5b6020026020010151610ec490919063ffffffff16565b83828151811061354257fe5b60200260200101818152505061359161358a89838151811061356057fe5b602002602001015185848151811061357457fe5b6020026020010151610f8390919063ffffffff16565b8390610f38565b91506001016134dd565b50670de0b6b3a764000060005b895181101561369d5760008482815181106135bf57fe5b602002602001015184111561361f5760006135e86135dc866132a8565b8d858151811061343957fe5b905060006135fc828c868151811061352057fe5b905061361661358a611ff1670de0b6b3a76400008c610ec4565b92505050613636565b88828151811061362b57fe5b602002602001015190505b600061365f8c848151811061364757fe5b6020026020010151610875848f878151811061352057fe5b905061369161368a8c858151811061367357fe5b60200260200101518361285090919063ffffffff16565b85906127be565b935050506001016135a8565b506136b16136aa826132a8565b8790610f83565b9998505050505050505050565b60006106e18383600161251c565b600060608060006136dc85613478565b915091506136f26136eb61157e565b8351610ea1565b6136fc8287612072565b600061371989898561370c610616565b613714610808565b614193565b9050612c8a8282101560d061135a565b60006060600080613739856132ce565b91509150613748612b3b61157e565b606061375261157e565b67ffffffffffffffff8111801561376857600080fd5b50604051908082528060200260200182016040528015613792578160200160208202803683370190505b509050612bd28883815181106137a457fe5b60200260200101518884815181106137b857fe5b6020026020010151856137c9610616565b6137d1610808565b6143a5565b670de0b6b3a7640000026000806ec097ce7bc90715b34b9f1000000000808401907fffffffffffffffffffffffffffffffffff3f68318436f8ea4cb460f0000000008501028161382257fe5b05905060006ec097ce7bc90715b34b9f100000000082800205905081806ec097ce7bc90715b34b9f100000000081840205915060038205016ec097ce7bc90715b34b9f100000000082840205915060058205016ec097ce7bc90715b34b9f100000000082840205915060078205016ec097ce7bc90715b34b9f100000000082840205915060098205016ec097ce7bc90715b34b9f1000000000828402059150600b8205016ec097ce7bc90715b34b9f1000000000828402059150600d8205016ec097ce7bc90715b34b9f1000000000828402059150600f826002919005919091010295945050505050565b6000670de0b6b3a764000082121561394a57613940826ec097ce7bc90715b34b9f10000000008161393a57fe5b0561390d565b6000039050610895565b60007e1600ef3172e58d2e933ec884fde10064c63b5372d805e203c0000000000000831261399b57770195e54c5dd42177f53a27172fa9ec630262827000000000830592506806f05b59d3b2000000015b73011798004d755d3c8bc8e03204cf44619e00000083126139d3576b1425982cf597cd205cef7380830592506803782dace9d9000000015b606492830292026e01855144814a7ff805980ff00840008312613a1b576e01855144814a7ff805980ff008400068056bc75e2d63100000840205925068ad78ebc5ac62000000015b6b02df0ab5a80a22c61ab5a7008312613a56576b02df0ab5a80a22c61ab5a70068056bc75e2d6310000084020592506856bc75e2d631000000015b693f1fce3da636ea5cf8508312613a8d57693f1fce3da636ea5cf85068056bc75e2d631000008402059250682b5e3af16b18800000015b690127fa27722cc06cc5e28312613ac457690127fa27722cc06cc5e268056bc75e2d6310000084020592506815af1d78b58c400000015b68280e60114edb805d038312613af95768280e60114edb805d0368056bc75e2d631000008402059250680ad78ebc5ac6200000015b680ebc5fb417461211108312613b2457680ebc5fb4174612111068056bc75e2d631000009384020592015b6808f00f760a4b2db55d8312613b59576808f00f760a4b2db55d68056bc75e2d6310000084020592506802b5e3af16b1880000015b6806f5f17757889379378312613b8e576806f5f177578893793768056bc75e2d63100000840205925068015af1d78b58c40000015b6806248f33704b2866038312613bc2576806248f33704b28660368056bc75e2d63100000840205925067ad78ebc5ac620000015b6805c548670b9510e7ac8312613bf6576805c548670b9510e7ac68056bc75e2d6310000084020592506756bc75e2d6310000015b600068056bc75e2d63100000840168056bc75e2d631000008086030281613c1957fe5b059050600068056bc75e2d63100000828002059050818068056bc75e2d63100000818402059150600382050168056bc75e2d63100000828402059150600582050168056bc75e2d63100000828402059150600782050168056bc75e2d63100000828402059150600982050168056bc75e2d63100000828402059150600b820501600202606485820105979650505050505050565b6000613cf27ffffffffffffffffffffffffffffffffffffffffffffffffdc702bd3a30fc00008312158015613ceb575068070c1cc73b00c800008313155b600961135a565b6000821215613d2657613d0782600003613cad565b6ec097ce7bc90715b34b9f100000000081613d1e57fe5b059050610895565b60006806f05b59d3b20000008312613d7c57507ffffffffffffffffffffffffffffffffffffffffffffffff90fa4a62c4e00000090910190770195e54c5dd42177f53a27172fa9ec630262827000000000613dc8565b6803782dace9d90000008312613dc457507ffffffffffffffffffffffffffffffffffffffffffffffffc87d2531627000000909101906b1425982cf597cd205cef7380613dc8565b5060015b6064929092029168056bc75e2d6310000068ad78ebc5ac620000008412613e2e577fffffffffffffffffffffffffffffffffffffffffffffff5287143a539e0000009093019268056bc75e2d631000006e01855144814a7ff805980ff008400082020590505b6856bc75e2d6310000008412613e80577fffffffffffffffffffffffffffffffffffffffffffffffa9438a1d29cf0000009093019268056bc75e2d631000006b02df0ab5a80a22c61ab5a70082020590505b682b5e3af16b188000008412613ed0577fffffffffffffffffffffffffffffffffffffffffffffffd4a1c50e94e78000009093019268056bc75e2d63100000693f1fce3da636ea5cf85082020590505b6815af1d78b58c4000008412613f20577fffffffffffffffffffffffffffffffffffffffffffffffea50e2874a73c000009093019268056bc75e2d63100000690127fa27722cc06cc5e282020590505b680ad78ebc5ac62000008412613f6f577ffffffffffffffffffffffffffffffffffffffffffffffff5287143a539e000009093019268056bc75e2d6310000068280e60114edb805d0382020590505b68056bc75e2d631000008412613fbe577ffffffffffffffffffffffffffffffffffffffffffffffffa9438a1d29cf000009093019268056bc75e2d63100000680ebc5fb4174612111082020590505b6802b5e3af16b1880000841261400d577ffffffffffffffffffffffffffffffffffffffffffffffffd4a1c50e94e7800009093019268056bc75e2d631000006808f00f760a4b2db55d82020590505b68015af1d78b58c40000841261405c577ffffffffffffffffffffffffffffffffffffffffffffffffea50e2874a73c00009093019268056bc75e2d631000006806f5f177578893793782020590505b68056bc75e2d631000008481019085906002908280020505918201919050600368056bc75e2d631000008783020505918201919050600468056bc75e2d631000008783020505918201919050600568056bc75e2d631000008783020505918201919050600668056bc75e2d631000008783020505918201919050600768056bc75e2d631000008783020505918201919050600868056bc75e2d631000008783020505918201919050600968056bc75e2d631000008783020505918201919050600a68056bc75e2d631000008783020505918201919050600b68056bc75e2d631000008783020505918201919050600c68056bc75e2d631000008783020505918201919050606468056bc75e2d63100000848402058502059695505050505050565b6060818060200190518101906106e191906149ea565b60006060845167ffffffffffffffff811180156141af57600080fd5b506040519080825280602002602001820160405280156141d9578160200160208202803683370190505b5090506000805b8851811015614281576142398982815181106141f857fe5b602002602001015161087589848151811061420f57fe5b60200260200101518c858151811061422357fe5b6020026020010151610f3890919063ffffffff16565b83828151811061424557fe5b60200260200101818152505061427761358a89838151811061426357fe5b602002602001015185848151811061343957fe5b91506001016141e0565b50670de0b6b3a764000060005b8951811015614362576000838583815181106142a657fe5b602002602001015111156143025760006142cb6135dc86670de0b6b3a7640000610ec4565b905060006142df828c868151811061352057fe5b90506142f961358a6121a2670de0b6b3a76400008c610ec4565b92505050614319565b88828151811061430e57fe5b602002602001015190505b60006143428c848151811061432a57fe5b6020026020010151610875848f878151811061422357fe5b905061435661368a8c858151811061367357fe5b9350505060010161428e565b50670de0b6b3a76400008111156143995761438f61438882670de0b6b3a7640000610ec4565b87906127be565b9350505050612af5565b60009350505050612af5565b6000806143b684610ef48188610f38565b90506143cf6729a2241af62c000082111561013361135a565b60006143e6613331670de0b6b3a764000089610fef565b905060006144066143ff83670de0b6b3a7640000610ec4565b8a90610f83565b90506000614413896132a8565b905060006144218383610f83565b9050600061442f8483610ec4565b90506133a0613399614449670de0b6b3a76400008b610ec4565b8490610fef565b80356105fc81614ee2565b600082601f83011261446b578081fd5b813561447e61447982614ec2565b614e9b565b81815291506020808301908481018184028601820187101561449f57600080fd5b60005b848110156144be578135845292820192908201906001016144a2565b505050505092915050565b600082601f8301126144d9578081fd5b81516144e761447982614ec2565b81815291506020808301908481018184028601820187101561450857600080fd5b60005b848110156144be5781518452928201929082019060010161450b565b600082601f830112614537578081fd5b813567ffffffffffffffff81111561454d578182fd5b6145606020601f19601f84011601614e9b565b915080825283602082850101111561457757600080fd5b8060208401602084013760009082016020015292915050565b8035600281106105fc57600080fd5b6000602082840312156145b0578081fd5b81356106e181614ee2565b600080604083850312156145cd578081fd5b82356145d881614ee2565b915060208301356145e881614ee2565b809150509250929050565b600080600060608486031215614607578081fd5b833561461281614ee2565b9250602084013561462281614ee2565b929592945050506040919091013590565b600080600080600080600060e0888a03121561464d578283fd5b873561465881614ee2565b9650602088013561466881614ee2565b95506040880135945060608801359350608088013560ff8116811461468b578384fd5b9699959850939692959460a0840135945060c09093013592915050565b600080604083850312156146ba578182fd5b82356146c581614ee2565b946020939093013593505050565b6000806000606084860312156146e7578081fd5b835167ffffffffffffffff808211156146fe578283fd5b818601915086601f830112614711578283fd5b815161471f61447982614ec2565b80828252602080830192508086018b82838702890101111561473f578788fd5b8796505b8487101561476a57805161475681614ee2565b845260019690960195928101928101614743565b508901519097509350505080821115614781578283fd5b5061478e868287016144c9565b925050604084015190509250925092565b6000602082840312156147b0578081fd5b81356106e181614ef7565b6000602082840312156147cc578081fd5b81516106e181614ef7565b600080600080600080600060e0888a0312156147f1578081fd5b87359650602088013561480381614ee2565b9550604088013561481381614ee2565b9450606088013567ffffffffffffffff8082111561482f578283fd5b61483b8b838c0161445b565b955060808a0135945060a08a0135935060c08a013591508082111561485e578283fd5b5061486b8a828b01614527565b91505092959891949750929550565b60006020828403121561488b578081fd5b81357fffffffff00000000000000000000000000000000000000000000000000000000811681146106e1578182fd5b6000602082840312156148cb578081fd5b81516106e181614ee2565b600080604083850312156148e8578182fd5b82356148f381614ee2565b9150602083013567ffffffffffffffff81111561490e578182fd5b61491a85828601614527565b9150509250929050565b600060208284031215614935578081fd5b81516106e181614f05565b600080600060608486031215614954578081fd5b835161495f81614f05565b602085015190935067ffffffffffffffff81111561497b578182fd5b61478e868287016144c9565b60008060408385031215614999578182fd5b82516149a481614f05565b6020939093015192949293505050565b6000806000606084860312156149c8578081fd5b83516149d381614f05565b602085015160409095015190969495509392505050565b600080604083850312156149fc578182fd5b8251614a0781614f05565b602084015190925067ffffffffffffffff811115614a23578182fd5b61491a858286016144c9565b600080600060608486031215614a43578081fd5b833567ffffffffffffffff80821115614a5a578283fd5b8186019150610120808389031215614a70578384fd5b614a7981614e9b565b9050614a858884614590565b8152614a948860208501614450565b6020820152614aa68860408501614450565b6040820152606083013560608201526080830135608082015260a083013560a0820152614ad68860c08501614450565b60c0820152614ae88860e08501614450565b60e08201526101008084013583811115614b00578586fd5b614b0c8a828701614527565b9183019190915250976020870135975060409096013595945050505050565b600060208284031215614b3c578081fd5b5035919050565b600080600060608486031215614b57578081fd5b8335925060208401359150604084013567ffffffffffffffff811115614b7b578182fd5b614b878682870161445b565b9150509250925092565b60008060008060808587031215614ba6578182fd5b8451935060208501519250604085015191506060850151614bc681614ee2565b939692955090935050565b6000815180845260208085019450808401835b83811015614c0057815187529582019590820190600101614be4565b509495945050505050565b60008151808452815b81811015614c3057602081850181015186830182015201614c14565b81811115614c415782602083870101525b50601f01601f19169290920160200192915050565b9182527fffffffff0000000000000000000000000000000000000000000000000000000016602082015260240190565b6000828483379101908152919050565b7f190100000000000000000000000000000000000000000000000000000000000081526002810192909252602282015260420190565b6001600160a01b0391909116815260200190565b6000602082526106e16020830184614bd1565b600060408252614d066040830185614bd1565b8281036020840152612af58185614bd1565b901515815260200190565b92151583526020830191909152604082015260600190565b90815260200190565b9283526001600160a01b03918216602084015216604082015260600190565b9586526001600160a01b0394851660208701529290931660408501526060840152608083019190915260a082015260c00190565b9485526020850193909352604084019190915260608301526001600160a01b0316608082015260a00190565b600083825260406020830152611f9a6040830184614c0b565b9182526001600160a01b0316602082015260400190565b93845260ff9290921660208401526040830152606082015260800190565b6000602082526106e16020830184614c0b565b600083825260406020830152611f9a6040830184614bd1565b600084825283602083015260606040830152612af56060830184614bd1565b600085825284602083015260806040830152614e7b6080830185614bd1565b82810360608401526129f78185614bd1565b60ff91909116815260200190565b60405181810167ffffffffffffffff81118282101715614eba57600080fd5b604052919050565b600067ffffffffffffffff821115614ed8578081fd5b5060209081020190565b6001600160a01b038116811461061357600080fd5b801515811461061357600080fd5b6003811061061357600080fdfea2646970667358221220a5897244a1f4e9204983271ed4a7d57c09d1ef76e8b605f0151680b0f7bfeaef64736f6c63430007010033000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8
Deployed Bytecode
0x608060405234801561001057600080fd5b50600436106100a25760003560e01c80632f2770db116100765780636c57f5a91161005b5780636c57f5a91461013b578063851c1bb3146101435780638d928af814610163576100a2565b80632f2770db146101115780636634b7531461011b576100a2565b8062c194db146100a7578063174481fa146100c557806323679719146100db5780632da47c40146100fb575b600080fd5b6100af61016b565b6040516100bc9190610c73565b60405180910390f35b6100cd61018a565b6040516100bc929190610c0c565b6100ee6100e9366004610a23565b6101d0565b6040516100bc9190610beb565b610103610243565b6040516100bc929190610d5d565b6101196102ad565b005b61012e61012936600461098f565b61030a565b6040516100bc9190610c33565b61012e610335565b6101566101513660046109c7565b61033e565b6040516100bc9190610c3e565b6100ee610390565b606061018560405180602001604052806000815250610413565b905090565b7f000000000000000000000000d2b83240397280b214c9ec3a098c3a4e4e8537e37f0000000000000000000000008c61ca901cefa9376e0409e5698400c7b5a28fbb9091565b6001546000906101e59060ff161560d36104ec565b6000806101f0610243565b915091506102356101ff610390565b8b8b8b8b8b88888d8d6040516020016102219a99989796959493929190610c86565b6040516020818303038152906040526104fe565b9a9950505050505050505050565b600080427f0000000000000000000000000000000000000000000000000000000066c237b181101561029f57807f0000000000000000000000000000000000000000000000000000000066c237b103925062278d0091506102a8565b60009250600091505b509091565b6102b5610589565b600180547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0016811790556040517f432acbfd662dbb5d8b378384a67159b47ca9d0f1b79f97cf64cf8585fa362d5090600090a1565b73ffffffffffffffffffffffffffffffffffffffff1660009081526020819052604090205460ff1690565b60015460ff1690565b60007f000000000000000000000000956ccab09898c0af2aca5e6c229c3ad4e93d928882604051602001610373929190610bbb565b604051602081830303815290604052805190602001209050919050565b7f000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c890565b80517f602038038060206000396000f3fefefefefefefefefefefefefefefefefefefe808352600091602081018484f0908452915061040d73ffffffffffffffffffffffffffffffffffffffff831615156101ac6104ec565b50919050565b8051604080517f00000000000000000000000000000000000000000000000000000000000030437f0000000000000000000000000000000000000000000000000000000000003043818101858101848101602090810190965280855293957f000000000000000000000000d2b83240397280b214c9ec3a098c3a4e4e8537e39592947f0000000000000000000000008c61ca901cefa9376e0409e5698400c7b5a28fbb94938801866000828a3c846000888301883c50602089810190898501016104de8183866105d2565b505050505050505050919050565b816104fa576104fa8161064c565b5050565b60008061050a836106b9565b73ffffffffffffffffffffffffffffffffffffffff811660008181526020819052604080822080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001660011790555192935090917f83a48fbcfc991335314e74d0496aab6a1987e992ddc85dddbcc4d6dd6ef2e9fc9190a292915050565b60006105b86000357fffffffff000000000000000000000000000000000000000000000000000000001661033e565b90506105cf6105c78233610701565b6101916104ec565b50565b5b602081106106105781518352602092830192909101907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0016105d3565b905182516020929092036101000a7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0180199091169116179052565b7f08c379a0000000000000000000000000000000000000000000000000000000006000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b600060606106c683610413565b905060008151602083016000f0905073ffffffffffffffffffffffffffffffffffffffff81166106fa573d6000803e3d6000fd5b9392505050565b600061070b610390565b73ffffffffffffffffffffffffffffffffffffffff1663aaabadc56040518163ffffffff1660e01b815260040160206040518083038186803b15801561075057600080fd5b505afa158015610764573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906107889190610a07565b73ffffffffffffffffffffffffffffffffffffffff16639be2a8848484306040518463ffffffff1660e01b81526004016107c493929190610c47565b60206040518083038186803b1580156107dc57600080fd5b505afa1580156107f0573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061081491906109ab565b90505b92915050565b803561081781610dcb565b600082601f830112610838578081fd5b813561084b61084682610d92565b610d6b565b81815291506020808301908481018184028601820187101561086c57600080fd5b60005b8481101561089457813561088281610dcb565b8452928201929082019060010161086f565b505050505092915050565b600082601f8301126108af578081fd5b81356108bd61084682610d92565b8181529150602080830190848101818402860182018710156108de57600080fd5b60005b84811015610894578135845292820192908201906001016108e1565b803561081781610ded565b600082601f830112610918578081fd5b813567ffffffffffffffff81111561092e578182fd5b61095f60207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f84011601610d6b565b915080825283602082850101111561097657600080fd5b8060208401602084013760009082016020015292915050565b6000602082840312156109a0578081fd5b81356106fa81610dcb565b6000602082840312156109bc578081fd5b81516106fa81610ded565b6000602082840312156109d8578081fd5b81357fffffffff00000000000000000000000000000000000000000000000000000000811681146106fa578182fd5b600060208284031215610a18578081fd5b81516106fa81610dcb565b600080600080600080600060e0888a031215610a3d578283fd5b873567ffffffffffffffff80821115610a54578485fd5b610a608b838c01610908565b985060208a0135915080821115610a75578485fd5b610a818b838c01610908565b975060408a0135915080821115610a96578485fd5b610aa28b838c01610828565b965060608a0135915080821115610ab7578485fd5b50610ac48a828b0161089f565b94505060808801359250610adb8960a08a0161081d565b9150610aea8960c08a016108fd565b905092959891949750929550565b73ffffffffffffffffffffffffffffffffffffffff169052565b6000815180845260208085019450808401835b83811015610b4157815187529582019590820190600101610b25565b509495945050505050565b15159052565b60008151808452815b81811015610b7757602081850181015186830182015201610b5b565b81811115610b885782602083870101525b50601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169290920160200192915050565b9182527fffffffff0000000000000000000000000000000000000000000000000000000016602082015260240190565b73ffffffffffffffffffffffffffffffffffffffff91909116815260200190565b73ffffffffffffffffffffffffffffffffffffffff92831681529116602082015260400190565b901515815260200190565b90815260200190565b92835273ffffffffffffffffffffffffffffffffffffffff918216602084015216604082015260600190565b6000602082526108146020830184610b52565b600061014073ffffffffffffffffffffffffffffffffffffffff8d16835260208181850152610cb78285018e610b52565b91508382036040850152610ccb828d610b52565b84810360608601528b51808252828d01935090820190845b81811015610d0757610cf58551610db2565b83529383019391830191600101610ce3565b50508481036080860152610d1b818c610b12565b93505050508660a08301528560c08301528460e0830152610d40610100830185610af8565b610d4e610120830184610b4c565b9b9a5050505050505050505050565b918252602082015260400190565b60405181810167ffffffffffffffff81118282101715610d8a57600080fd5b604052919050565b600067ffffffffffffffff821115610da8578081fd5b5060209081020190565b73ffffffffffffffffffffffffffffffffffffffff1690565b73ffffffffffffffffffffffffffffffffffffffff811681146105cf57600080fd5b80151581146105cf57600080fdfea2646970667358221220c36e9fd0abdd6de45fc245d638cd075eb7c99ceea829eba32c1028982f902aeb64736f6c63430007010033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8
-----Decoded View---------------
Arg [0] : vault (address): 0xBA12222222228d8Ba445958a75a0704d566BF2C8
-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8
Loading...
Loading
Loading...
Loading
Loading...
Loading
Net Worth in USD
$0.00
Net Worth in FRAX
0
Multichain Portfolio | 35 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.