FRAX Price: $0.83 (-1.37%)

Contract

0xBf912c6711a2702F1AB05E8F9B75A3Bf48505ED1

Overview

FRAX Balance | FXTL Balance

0 FRAX | 12 FXTL

FRAX Value

$0.00

Token Holdings

More Info

Private Name Tags

Multichain Info

No addresses found
Transaction Hash
Block
From
To

There are no matching entries

1 Internal Transaction and 1 Token Transfer found.

Latest 1 internal transaction

Advanced mode:
Parent Transaction Hash Block From To
250386702025-09-03 8:27:31150 days ago1756888051  Contract Creation0 FRAX

Cross-Chain Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
WithdrawFacet

Compiler Version
v0.8.19+commit.7dd6d404

Optimization Enabled:
Yes with 300 runs

Other Settings:
default evmVersion
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

import { LibDiamond } from "../Libraries/LibDiamond.sol";
import { LibAccess } from "../Libraries/LibAccess.sol";
import { LibAsset } from "../Libraries/LibAsset.sol";
import { IWithdrawFacet } from "../Interfaces/IWithdrawFacet.sol";

import { ReentrancyGuard } from "../Helpers/ReentrancyGuard.sol";

import { NotAContract, NoTransferToNullAddress } from "../Errors.sol";

/**
 * @title WithdrawFacet
 * @author DZap
 * @notice Facet contract for withdrawing assets which are transferd by mistake
 */
contract WithdrawFacet is IWithdrawFacet, ReentrancyGuard {
    error WithdrawFailed();

    /* ========= MODIFIER ========= */

    modifier onlyAuthorized() {
        if (msg.sender != LibDiamond.contractOwner()) {
            LibAccess.enforceAccessControl();
        }
        _;
    }

    /* ========= EXTERNAL ========= */

    /// @inheritdoc IWithdrawFacet
    function executeCallAndWithdraw(
        address payable _callTo,
        bytes calldata _callData,
        address _token,
        address _to,
        uint256 _amount
    ) external onlyAuthorized nonReentrant {
        // Check if the _callTo is a contract
        bool success;
        bool isContract = LibAsset.isContract(_callTo);
        if (!isContract) revert NotAContract();

        // solhint-disable-next-line avoid-low-level-calls
        (success, ) = _callTo.call(_callData);

        if (success) _withdrawToken(_token, _to, _amount);
        else revert WithdrawFailed();
    }

    /// @inheritdoc IWithdrawFacet
    function withdraw(address _token, address _to, uint256 _amount) external onlyAuthorized {
        _withdrawToken(_token, _to, _amount);
    }

    /* ========= INTERNAL ========= */

    function _withdrawToken(address _token, address _to, uint256 _amount) internal {
        if (_to == address(0)) revert NoTransferToNullAddress();

        LibAsset.transferToken(_token, _to, _amount);
        emit LogWithdraw(_token, _to, _amount);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(IERC20 token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
     * Revert on invalid signature.
     */
    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return
            success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

File 6 of 18 : Errors.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

// DZap Common Errors

error OnlyContractOwner();
error UnauthorizedCaller();
error UnAuthorized();
error CannotAuthorizeSelf();

error AlreadyInitialized();

error InsufficientBalance(uint256 amount, uint256 contractBalance);
error SlippageTooHigh(uint256 minAmount, uint256 returnAmount);
error AmountExceedsMaximum();

error TransferAmountMismatch();
error NoBridgeFromZeroAmount();
error NoSwapFromZeroAmount();

error ZeroAddress();
error NoTransferToNullAddress();
error NullAddrIsNotAValidSpender();
error NullAddrIsNotAValidRecipient();
error NativeTokenNotSupported();
error InvalidEncodedAddress();

error NotAContract();
error BridgeNotWhitelisted(address bridge);
error AdapterNotWhitelisted(address adapter);
error DexNotWhitelisted(address dex);

error InvalidPermitType();
error CannotBridgeToSameNetwork();

error SwapCallFailed(address target, bytes4 funSig, bytes reason);
error BridgeCallFailed(address target, bytes4 funSig, bytes reason);
error AdapterCallFailed(address adapter, bytes res);
error NativeCallFailed(bytes reason);
error Erc20CallFailed(bytes reason);
error NativeTransferFailed();

File 7 of 18 : ReentrancyGuard.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

/**
 * @title ReentrancyGuard
 * @author DZap
 * @notice Abstract contract to provide protection against reentrancy
 */
abstract contract ReentrancyGuard {
    /* ========= Storage ========= */

    bytes32 private constant NAMESPACE = keccak256("dzap.reentrancyguard");

    /* ========= Types ========= */

    struct ReentrancyStorage {
        uint256 status;
    }

    /* ========= Errors ========= */

    error ReentrancyError();

    /* ========= Constants ========= */

    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    /* ========= Modifiers ========= */

    modifier nonReentrant() {
        ReentrancyStorage storage s = reentrancyStorage();
        if (s.status == _ENTERED) revert ReentrancyError();
        s.status = _ENTERED;
        _;
        s.status = _NOT_ENTERED;
    }

    /* ========= Private Methods ========= */

    /// @dev fetch local storage
    function reentrancyStorage() private pure returns (ReentrancyStorage storage data) {
        bytes32 position = NAMESPACE;
        // solhint-disable-next-line no-inline-assembly
        assembly {
            data.slot := position
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

interface IDiamondCut {
    enum FacetCutAction {
        Add,
        Replace,
        Remove
    }
    // Add=0, Replace=1, Remove=2

    struct FacetCut {
        address facetAddress;
        FacetCutAction action;
        bytes4[] functionSelectors;
    }

    /// @notice Add/replace/remove any number of functions and optionally execute
    ///         a function with delegatecall
    /// @param _diamondCut Contains the facet addresses and function selectors
    /// @param _init The address of the contract or facet to execute _calldata
    /// @param _calldata A function call, including function selector and arguments
    ///                  _calldata is executed with delegatecall on _init
    function diamondCut(FacetCut[] calldata _diamondCut, address _init, bytes calldata _calldata) external;

    event DiamondCut(FacetCut[] _diamondCut, address _init, bytes _calldata);
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

struct PermitDetails {
    address token;
    uint160 amount;
    uint48 expiration;
    uint48 nonce;
}

struct PermitSingle {
    PermitDetails details;
    address spender;
    uint256 sigDeadline;
}

struct TokenPermissions {
    address token;
    uint256 amount;
}

struct PermitTransferFrom {
    TokenPermissions permitted;
    uint256 nonce;
    uint256 deadline;
}

struct SignatureTransferDetails {
    address to;
    uint256 requestedAmount;
}

struct PermitBatchTransferFrom {
    // the tokens and corresponding amounts permitted for a transfer
    TokenPermissions[] permitted;
    // a unique value for every token owner's signature to prevent signature replays
    uint256 nonce;
    // deadline on the permit signature
    uint256 deadline;
}

interface IPermit2 {
    function permit(address owner, PermitSingle memory permitSingle, bytes calldata signature) external;

    function transferFrom(address from, address to, uint160 amount, address token) external;

    function allowance(address, address, address) external view returns (uint160, uint48, uint48);

    function permitWitnessTransferFrom(
        PermitTransferFrom memory permit,
        SignatureTransferDetails calldata transferDetails,
        address owner,
        bytes32 witness,
        string calldata witnessTypeString,
        bytes calldata signature
    ) external;

    function permitWitnessTransferFrom(
        PermitBatchTransferFrom memory permit,
        SignatureTransferDetails[] calldata transferDetails,
        address owner,
        bytes32 witness,
        string calldata witnessTypeString,
        bytes calldata signature
    ) external;
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

/**
 * @title IWithdrawFacet
 * @author DZap
 */
interface IWithdrawFacet {
    event LogWithdraw(address indexed tokenAddress, address to, uint256 amount);

    /// @notice Execute call data and withdraw asset.
    /// @param _callTo The address to execute the calldata on.
    /// @param _callData The data to execute.
    /// @param _token Asset to be withdrawn.
    /// @param _to address to withdraw to.
    /// @param _amount amount of asset to withdraw.
    function executeCallAndWithdraw(address payable _callTo, bytes calldata _callData, address _token, address _to, uint256 _amount) external;

    /// @notice Withdraw asset.
    /// @param _token Asset to be withdrawn.
    /// @param _to address to withdraw to.
    /// @param _amount amount of asset to withdraw.
    function withdraw(address _token, address _to, uint256 _amount) external;
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

import { CannotAuthorizeSelf, UnAuthorized } from "../Errors.sol";

struct AccessStorage {
    mapping(bytes4 => mapping(address => bool)) execAccess;
}

/**
 * @title LibAccess
 * @author DZap
 * @notice Provides functionality for managing method level access control
 */
library LibAccess {
    /// Types ///
    bytes32 internal constant _ACCESS_STORAGE_SLOT = keccak256("dzap.library.access.management");

    /// Events ///
    event AccessGranted(address indexed account, bytes4 indexed method);
    event AccessRevoked(address indexed account, bytes4 indexed method);

    /// @dev Fetch local storage
    function accessStorage() internal pure returns (AccessStorage storage accStor) {
        bytes32 position = _ACCESS_STORAGE_SLOT;
        // solhint-disable-next-line no-inline-assembly
        assembly {
            accStor.slot := position
        }
    }

    /// @notice Gives an address permission to execute a method
    /// @param _selector The method selector to execute
    /// @param _executor The address to grant permission to
    function addAccess(bytes4 _selector, address _executor) internal {
        if (_executor == address(this)) {
            revert CannotAuthorizeSelf();
        }
        AccessStorage storage accStor = accessStorage();
        accStor.execAccess[_selector][_executor] = true;
        emit AccessGranted(_executor, _selector);
    }

    /// @notice Revokes permission to execute a method
    /// @param _selector The method selector to execute
    /// @param _executor The address to revoke permission from
    function removeAccess(bytes4 _selector, address _executor) internal {
        AccessStorage storage accStor = accessStorage();
        accStor.execAccess[_selector][_executor] = false;
        emit AccessRevoked(_executor, _selector);
    }

    /// @notice Enforces access control by reverting if `msg.sender`
    ///     has not been given permission to execute `msg.sig`
    function enforceAccessControl() internal view {
        AccessStorage storage accStor = accessStorage();
        if (accStor.execAccess[msg.sig][msg.sender] != true) revert UnAuthorized();
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

import { LibPermit } from "../Libraries/LibPermit.sol";
import { PermitType, InputToken } from "../Types.sol";
import { PermitBatchTransferFrom } from "../Interfaces/IPermit2.sol";
import { NoTransferToNullAddress, NativeTransferFailed, NullAddrIsNotAValidSpender, InvalidPermitType, TransferAmountMismatch } from "../Errors.sol";

/**
 * @title LibAsset
 * @author DZap
 * @notice This library contains helpers for dealing with onchain transfers
 *         of assets, including accounting for the native asset `assetId`
 *         conventions and any noncompliant ERC20 transfers
 */
library LibAsset {
    // ============= CONSTANTS =============

    address internal constant _NATIVE_TOKEN = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;

    // ============= BALANCE QUERY FUNCTIONS =============

    /// @notice Gets the balance of the inheriting contract for the given asset
    function getOwnBalance(address _token) internal view returns (uint256) {
        return _token == _NATIVE_TOKEN ? address(this).balance : IERC20(_token).balanceOf(address(this));
    }

    /// @notice Gets the balance of the given asset for the given recipient
    function getBalance(address _token, address _recipient) internal view returns (uint256) {
        return _token == _NATIVE_TOKEN ? _recipient.balance : IERC20(_token).balanceOf(_recipient);
    }

    /// @notice Gets the balance of the given erc20 token for the given recipient
    function getErc20Balance(address _token, address _recipient) internal view returns (uint256) {
        return IERC20(_token).balanceOf(_recipient);
    }

    // ============= APPROVAL FUNCTIONS =============

    /// @notice If the current allowance is insufficient, then MAX_UINT allowance for a given spender
    function maxApproveERC20(address _token, address _spender, uint256 _amount) internal {
        if (_spender == address(0)) revert NullAddrIsNotAValidSpender();
        uint256 allowance = IERC20(_token).allowance(address(this), _spender);
        if (allowance < _amount) {
            SafeERC20.forceApprove(IERC20(_token), _spender, type(uint256).max);
        }
    }

    // ============= TRANSFER FUNCTIONS =============

    /// @notice Transfers ether from the inheriting contract to a given recipient
    function transferNativeToken(address _recipient, uint256 _amount) internal {
        if (_recipient == address(0)) revert NoTransferToNullAddress();
        (bool success, ) = _recipient.call{ value: _amount }("");
        if (!success) revert NativeTransferFailed();
    }

    /// @notice Transfers tokens from the inheriting contract to a given recipient
    function transferERC20(address _token, address _recipient, uint256 _amount) internal {
        if (_recipient == address(0)) revert NoTransferToNullAddress();
        SafeERC20.safeTransfer(IERC20(_token), _recipient, _amount);
    }

    /// @notice Transfers tokens from the inheriting contract to a given recipient without checks
    function transferERC20WithoutChecks(address _token, address _recipient, uint256 _amount) internal {
        SafeERC20.safeTransfer(IERC20(_token), _recipient, _amount);
    }

    /// @notice Transfers tokens from a sender to a given recipient without checking the final balance
    /// @dev need to handle deflationary, rebasing or share based tokens
    function transferFromERC20WithoutChecks(address _token, address _from, address _to, uint256 _amount) internal {
        SafeERC20.safeTransferFrom(IERC20(_token), _from, _to, _amount);
    }

    /// @notice Transfers tokens from the inheriting contract to a given recipient with balance check
    function transferERC20WithBalanceCheck(address _token, address _recipient, uint256 _amount) internal {
        if (_recipient == address(0)) revert NoTransferToNullAddress();

        IERC20 token = IERC20(_token);
        uint256 prevBalance = token.balanceOf(_recipient);
        SafeERC20.safeTransfer(token, _recipient, _amount);
        uint256 curr = token.balanceOf(_recipient);
        if (curr < prevBalance || curr - prevBalance != _amount) {
            revert TransferAmountMismatch();
        }
    }

    /// @notice Transfers tokens from a sender to a given recipient with balance check
    function transferFromERC20WithBalanceCheck(address _token, address _sender, address _recipient, uint256 _amount) internal {
        if (_recipient == address(0)) revert NoTransferToNullAddress();

        IERC20 token = IERC20(_token);
        uint256 prevBalance = token.balanceOf(_recipient);
        SafeERC20.safeTransferFrom(token, _sender, _recipient, _amount);
        uint256 curr = token.balanceOf(_recipient);
        if (curr < prevBalance || curr - prevBalance != _amount) {
            revert TransferAmountMismatch();
        }
    }

    /// @notice Wrapper function to transfer a given asset (native or erc20) to
    ///         some recipient. Should handle all non-compliant return value
    ///         tokens as well by using the SafeERC20 contract by open zeppelin.
    function transferToken(address _token, address _recipient, uint256 _amount) internal {
        if (_amount != 0) {
            if (_token == _NATIVE_TOKEN) transferNativeToken(_recipient, _amount);
            else transferERC20(_token, _recipient, _amount);
        }
    }

    // ============= DEPOSIT FUNCTIONS =============

    /// @notice Deposits tokens from a sender to the inheriting contract
    /// @dev only handles erc20 token
    function deposit(address _from, address _token, uint256 _amount, bytes calldata _permit) internal {
        (PermitType permitType, bytes memory data) = abi.decode(_permit, (PermitType, bytes));

        if (permitType == PermitType.PERMIT2_WITNESS_TRANSFER) {
            LibPermit.permit2WitnessTransferFrom(_from, address(this), _token, _amount, data);
        } else if (permitType == PermitType.PERMIT) {
            if (data.length != 0) LibPermit.eip2612Permit(_from, address(this), _token, _amount, data);
            transferFromERC20WithoutChecks(_token, _from, address(this), _amount);
        } else if (permitType == PermitType.PERMIT2_APPROVE) {
            LibPermit.permit2ApproveAndTransfer(_from, address(this), _token, uint160(_amount), data);
        } else {
            revert InvalidPermitType();
        }
    }

    /// @notice Deposits tokens from a sender to the inheriting contract
    function depositBatch(address _from, InputToken[] calldata erc20Tokens) internal {
        uint256 i;
        uint256 length = erc20Tokens.length;
        for (i; i < length; ) {
            deposit(_from, erc20Tokens[i].token, erc20Tokens[i].amount, erc20Tokens[i].permit);
            unchecked {
                ++i;
            }
        }
    }

    function depositBatch(address _from, PermitBatchTransferFrom calldata permit, bytes calldata permitSignature) internal {
        LibPermit.permit2BatchWitnessTransferFrom(_from, address(this), permit, permitSignature);
    }

    // ============= UTILITY FUNCTIONS =============

    /// @notice Determines whether the given token is the native token
    function isNativeToken(address _token) internal pure returns (bool) {
        return _token == _NATIVE_TOKEN;
    }

    /// @dev Checks whether the given address is a contract and contains code
    function isContract(address _contractAddr) internal view returns (bool) {
        uint256 size;
        // solhint-disable-next-line no-inline-assembly
        assembly {
            size := extcodesize(_contractAddr)
        }
        return size != 0;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

/// https://github.com/Cryptorubic/multi-proxy-rubic/blob/master/src/Libraries/LibBytes.sol
library LibBytes {
    // solhint-disable no-inline-assembly

    // LibBytes specific errors
    error SliceOverflow();
    error SliceOutOfBounds();
    error AddressOutOfBounds();
    error UintOutOfBounds();

    // -------------------------

    function concat(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bytes memory) {
        bytes memory tempBytes;

        assembly {
            // Get a location of some free memory and store it in tempBytes as
            // Solidity does for memory variables.
            tempBytes := mload(0x40)

            // Store the length of the first bytes array at the beginning of
            // the memory for tempBytes.
            let length := mload(_preBytes)
            mstore(tempBytes, length)

            // Maintain a memory counter for the current write location in the
            // temp bytes array by adding the 32 bytes for the array length to
            // the starting location.
            let mc := add(tempBytes, 0x20)
            // Stop copying when the memory counter reaches the length of the
            // first bytes array.
            let end := add(mc, length)

            for {
                // Initialize a copy counter to the start of the _preBytes data,
                // 32 bytes into its memory.
                let cc := add(_preBytes, 0x20)
            } lt(mc, end) {
                // Increase both counters by 32 bytes each iteration.
                mc := add(mc, 0x20)
                cc := add(cc, 0x20)
            } {
                // Write the _preBytes data into the tempBytes memory 32 bytes
                // at a time.
                mstore(mc, mload(cc))
            }

            // Add the length of _postBytes to the current length of tempBytes
            // and store it as the new length in the first 32 bytes of the
            // tempBytes memory.
            length := mload(_postBytes)
            mstore(tempBytes, add(length, mload(tempBytes)))

            // Move the memory counter back from a multiple of 0x20 to the
            // actual end of the _preBytes data.
            mc := end
            // Stop copying when the memory counter reaches the new combined
            // length of the arrays.
            end := add(mc, length)

            for {
                let cc := add(_postBytes, 0x20)
            } lt(mc, end) {
                mc := add(mc, 0x20)
                cc := add(cc, 0x20)
            } {
                mstore(mc, mload(cc))
            }

            // Update the free-memory pointer by padding our last write location
            // to 32 bytes: add 31 bytes to the end of tempBytes to move to the
            // next 32 byte block, then round down to the nearest multiple of
            // 32. If the sum of the length of the two arrays is zero then add
            // one before rounding down to leave a blank 32 bytes (the length block with 0).
            mstore(
                0x40,
                and(
                    add(add(end, iszero(add(length, mload(_preBytes)))), 31),
                    not(31) // Round down to the nearest 32 bytes.
                )
            )
        }

        return tempBytes;
    }

    function concatStorage(bytes storage _preBytes, bytes memory _postBytes) internal {
        assembly {
            // Read the first 32 bytes of _preBytes storage, which is the length
            // of the array. (We don't need to use the offset into the slot
            // because arrays use the entire slot.)
            let fslot := sload(_preBytes.slot)
            // Arrays of 31 bytes or less have an even value in their slot,
            // while longer arrays have an odd value. The actual length is
            // the slot divided by two for odd values, and the lowest order
            // byte divided by two for even values.
            // If the slot is even, bitwise and the slot with 255 and divide by
            // two to get the length. If the slot is odd, bitwise and the slot
            // with -1 and divide by two.
            let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
            let mlength := mload(_postBytes)
            let newlength := add(slength, mlength)
            // slength can contain both the length and contents of the array
            // if length < 32 bytes so let's prepare for that
            // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
            switch add(lt(slength, 32), lt(newlength, 32))
            case 2 {
                // Since the new array still fits in the slot, we just need to
                // update the contents of the slot.
                // uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length
                sstore(
                    _preBytes.slot,
                    // all the modifications to the slot are inside this
                    // next block
                    add(
                        // we can just add to the slot contents because the
                        // bytes we want to change are the LSBs
                        fslot,
                        add(
                            mul(
                                div(
                                    // load the bytes from memory
                                    mload(add(_postBytes, 0x20)),
                                    // zero all bytes to the right
                                    exp(0x100, sub(32, mlength))
                                ),
                                // and now shift left the number of bytes to
                                // leave space for the length in the slot
                                exp(0x100, sub(32, newlength))
                            ),
                            // increase length by the double of the memory
                            // bytes length
                            mul(mlength, 2)
                        )
                    )
                )
            }
            case 1 {
                // The stored value fits in the slot, but the combined value
                // will exceed it.
                // get the keccak hash to get the contents of the array
                mstore(0x0, _preBytes.slot)
                let sc := add(keccak256(0x0, 0x20), div(slength, 32))

                // save new length
                sstore(_preBytes.slot, add(mul(newlength, 2), 1))

                // The contents of the _postBytes array start 32 bytes into
                // the structure. Our first read should obtain the `submod`
                // bytes that can fit into the unused space in the last word
                // of the stored array. To get this, we read 32 bytes starting
                // from `submod`, so the data we read overlaps with the array
                // contents by `submod` bytes. Masking the lowest-order
                // `submod` bytes allows us to add that value directly to the
                // stored value.

                let submod := sub(32, slength)
                let mc := add(_postBytes, submod)
                let end := add(_postBytes, mlength)
                let mask := sub(exp(0x100, submod), 1)

                sstore(sc, add(and(fslot, 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00), and(mload(mc), mask)))

                for {
                    mc := add(mc, 0x20)
                    sc := add(sc, 1)
                } lt(mc, end) {
                    sc := add(sc, 1)
                    mc := add(mc, 0x20)
                } {
                    sstore(sc, mload(mc))
                }

                mask := exp(0x100, sub(mc, end))

                sstore(sc, mul(div(mload(mc), mask), mask))
            }
            default {
                // get the keccak hash to get the contents of the array
                mstore(0x0, _preBytes.slot)
                // Start copying to the last used word of the stored array.
                let sc := add(keccak256(0x0, 0x20), div(slength, 32))

                // save new length
                sstore(_preBytes.slot, add(mul(newlength, 2), 1))

                // Copy over the first `submod` bytes of the new data as in
                // case 1 above.
                let slengthmod := mod(slength, 32)
                let submod := sub(32, slengthmod)
                let mc := add(_postBytes, submod)
                let end := add(_postBytes, mlength)
                let mask := sub(exp(0x100, submod), 1)

                sstore(sc, add(sload(sc), and(mload(mc), mask)))

                for {
                    sc := add(sc, 1)
                    mc := add(mc, 0x20)
                } lt(mc, end) {
                    sc := add(sc, 1)
                    mc := add(mc, 0x20)
                } {
                    sstore(sc, mload(mc))
                }

                mask := exp(0x100, sub(mc, end))

                sstore(sc, mul(div(mload(mc), mask), mask))
            }
        }
    }

    function slice(bytes memory _bytes, uint256 _start, uint256 _length) internal pure returns (bytes memory) {
        if (_length + 31 < _length) revert SliceOverflow();
        if (_bytes.length < _start + _length) revert SliceOutOfBounds();

        bytes memory tempBytes;

        assembly {
            switch iszero(_length)
            case 0 {
                // Get a location of some free memory and store it in tempBytes as
                // Solidity does for memory variables.
                tempBytes := mload(0x40)

                // The first word of the slice result is potentially a partial
                // word read from the original array. To read it, we calculate
                // the length of that partial word and start copying that many
                // bytes into the array. The first word we copy will start with
                // data we don't care about, but the last `lengthmod` bytes will
                // land at the beginning of the contents of the new array. When
                // we're done copying, we overwrite the full first word with
                // the actual length of the slice.
                let lengthmod := and(_length, 31)

                // The multiplication in the next line is necessary
                // because when slicing multiples of 32 bytes (lengthmod == 0)
                // the following copy loop was copying the origin's length
                // and then ending prematurely not copying everything it should.
                let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                let end := add(mc, _length)

                for {
                    // The multiplication in the next line has the same exact purpose
                    // as the one above.
                    let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                } lt(mc, end) {
                    mc := add(mc, 0x20)
                    cc := add(cc, 0x20)
                } {
                    mstore(mc, mload(cc))
                }

                mstore(tempBytes, _length)

                //update free-memory pointer
                //allocating the array padded to 32 bytes like the compiler does now
                mstore(0x40, and(add(mc, 31), not(31)))
            }
            //if we want a zero-length slice let's just return a zero-length array
            default {
                tempBytes := mload(0x40)
                //zero out the 32 bytes slice we are about to return
                //we need to do it because Solidity does not garbage collect
                mstore(tempBytes, 0)

                mstore(0x40, add(tempBytes, 0x20))
            }
        }

        return tempBytes;
    }

    function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) {
        if (_bytes.length < _start + 20) {
            revert AddressOutOfBounds();
        }
        address tempAddress;

        assembly {
            tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000)
        }

        return tempAddress;
    }

    function toUint8(bytes memory _bytes, uint256 _start) internal pure returns (uint8) {
        if (_bytes.length < _start + 1) {
            revert UintOutOfBounds();
        }
        uint8 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x1), _start))
        }

        return tempUint;
    }

    function toUint16(bytes memory _bytes, uint256 _start) internal pure returns (uint16) {
        if (_bytes.length < _start + 2) {
            revert UintOutOfBounds();
        }
        uint16 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x2), _start))
        }

        return tempUint;
    }

    function toUint32(bytes memory _bytes, uint256 _start) internal pure returns (uint32) {
        if (_bytes.length < _start + 4) {
            revert UintOutOfBounds();
        }
        uint32 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x4), _start))
        }

        return tempUint;
    }

    function toUint64(bytes memory _bytes, uint256 _start) internal pure returns (uint64) {
        if (_bytes.length < _start + 8) {
            revert UintOutOfBounds();
        }
        uint64 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x8), _start))
        }

        return tempUint;
    }

    function toUint96(bytes memory _bytes, uint256 _start) internal pure returns (uint96) {
        if (_bytes.length < _start + 12) {
            revert UintOutOfBounds();
        }
        uint96 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0xc), _start))
        }

        return tempUint;
    }

    function toUint128(bytes memory _bytes, uint256 _start) internal pure returns (uint128) {
        if (_bytes.length < _start + 16) {
            revert UintOutOfBounds();
        }
        uint128 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x10), _start))
        }

        return tempUint;
    }

    function toUint256(bytes memory _bytes, uint256 _start) internal pure returns (uint256) {
        if (_bytes.length < _start + 32) {
            revert UintOutOfBounds();
        }
        uint256 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x20), _start))
        }

        return tempUint;
    }

    function toBytes32(bytes memory _bytes, uint256 _start) internal pure returns (bytes32) {
        if (_bytes.length < _start + 32) {
            revert UintOutOfBounds();
        }
        bytes32 tempBytes32;

        assembly {
            tempBytes32 := mload(add(add(_bytes, 0x20), _start))
        }

        return tempBytes32;
    }

    function equal(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bool) {
        bool success = true;

        assembly {
            let length := mload(_preBytes)

            // if lengths don't match the arrays are not equal
            switch eq(length, mload(_postBytes))
            case 1 {
                // cb is a circuit breaker in the for loop since there's
                //  no said feature for inline assembly loops
                // cb = 1 - don't breaker
                // cb = 0 - break
                let cb := 1

                let mc := add(_preBytes, 0x20)
                let end := add(mc, length)

                for {
                    let cc := add(_postBytes, 0x20)
                    // the next line is the loop condition:
                    // while(uint256(mc < end) + cb == 2)
                } eq(add(lt(mc, end), cb), 2) {
                    mc := add(mc, 0x20)
                    cc := add(cc, 0x20)
                } {
                    // if any of these checks fails then arrays are not equal
                    if iszero(eq(mload(mc), mload(cc))) {
                        // unsuccess:
                        success := 0
                        cb := 0
                    }
                }
            }
            default {
                // unsuccess:
                success := 0
            }
        }

        return success;
    }

    function equalStorage(bytes storage _preBytes, bytes memory _postBytes) internal view returns (bool) {
        bool success = true;

        assembly {
            // we know _preBytes_offset is 0
            let fslot := sload(_preBytes.slot)
            // Decode the length of the stored array like in concatStorage().
            let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
            let mlength := mload(_postBytes)

            // if lengths don't match the arrays are not equal
            switch eq(slength, mlength)
            case 1 {
                // slength can contain both the length and contents of the array
                // if length < 32 bytes so let's prepare for that
                // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
                if iszero(iszero(slength)) {
                    switch lt(slength, 32)
                    case 1 {
                        // blank the last byte which is the length
                        fslot := mul(div(fslot, 0x100), 0x100)

                        if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) {
                            // unsuccess:
                            success := 0
                        }
                    }
                    default {
                        // cb is a circuit breaker in the for loop since there's
                        //  no said feature for inline assembly loops
                        // cb = 1 - don't breaker
                        // cb = 0 - break
                        let cb := 1

                        // get the keccak hash to get the contents of the array
                        mstore(0x0, _preBytes.slot)
                        let sc := keccak256(0x0, 0x20)

                        let mc := add(_postBytes, 0x20)
                        let end := add(mc, mlength)

                        // the next line is the loop condition:
                        // while(uint256(mc < end) + cb == 2)
                        // solhint-disable-next-line no-empty-blocks
                        for {

                        } eq(add(lt(mc, end), cb), 2) {
                            sc := add(sc, 1)
                            mc := add(mc, 0x20)
                        } {
                            if iszero(eq(sload(sc), mload(mc))) {
                                // unsuccess:
                                success := 0
                                cb := 0
                            }
                        }
                    }
                }
            }
            default {
                // unsuccess:
                success := 0
            }
        }

        return success;
    }

    function getFirst4Bytes(bytes memory data) internal pure returns (bytes4 outBytes4) {
        if (data.length == 0) {
            return 0x0;
        }

        assembly {
            outBytes4 := mload(add(data, 32))
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

import { IDiamondCut } from "../Interfaces/IDiamondCut.sol";
import { LibUtil } from "../Libraries/LibUtil.sol";
import { OnlyContractOwner } from "../Errors.sol";

/// Implementation of EIP-2535 Diamond Standard
/// https://eips.ethereum.org/EIPS/eip-2535
library LibDiamond {
    bytes32 internal constant DIAMOND_STORAGE_POSITION = keccak256("diamond.standard.diamond.storage");

    // Diamond specific errors
    error IncorrectFacetCutAction();
    error NoSelectorsInFace();
    error FunctionAlreadyExists();
    error FacetAddressIsZero();
    error FacetAddressIsNotZero();
    error FacetContainsNoCode();
    error FunctionDoesNotExist();
    error FunctionIsImmutable();
    error InitZeroButCalldataNotEmpty();
    error CalldataEmptyButInitNotZero();
    error InitReverted(bytes reason);

    // ----------------

    struct FacetAddressAndPosition {
        address facetAddress;
        uint96 functionSelectorPosition; // position in facetFunctionSelectors.functionSelectors array
    }

    struct FacetFunctionSelectors {
        bytes4[] functionSelectors;
        uint256 facetAddressPosition; // position of facetAddress in facetAddresses array
    }

    struct DiamondStorage {
        // maps function selector to the facet address and
        // the position of the selector in the facetFunctionSelectors.selectors array
        mapping(bytes4 => FacetAddressAndPosition) selectorToFacetAndPosition;
        // maps facet addresses to function selectors
        mapping(address => FacetFunctionSelectors) facetFunctionSelectors;
        // facet addresses
        address[] facetAddresses;
        // Used to query if a contract implements an interface.
        // Used to implement ERC-165.
        mapping(bytes4 => bool) supportedInterfaces;
        // owner of the contract
        address contractOwner;
    }

    function diamondStorage() internal pure returns (DiamondStorage storage ds) {
        bytes32 position = DIAMOND_STORAGE_POSITION;
        // solhint-disable-next-line no-inline-assembly
        assembly {
            ds.slot := position
        }
    }

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    function setContractOwner(address _newOwner) internal {
        DiamondStorage storage ds = diamondStorage();
        address previousOwner = ds.contractOwner;
        ds.contractOwner = _newOwner;
        emit OwnershipTransferred(previousOwner, _newOwner);
    }

    function contractOwner() internal view returns (address contractOwner_) {
        contractOwner_ = diamondStorage().contractOwner;
    }

    function enforceIsContractOwner() internal view {
        if (msg.sender != diamondStorage().contractOwner) revert OnlyContractOwner();
    }

    event DiamondCut(IDiamondCut.FacetCut[] _diamondCut, address _init, bytes _calldata);

    // Internal function version of diamondCut
    function diamondCut(IDiamondCut.FacetCut[] memory _diamondCut, address _init, bytes memory _calldata) internal {
        for (uint256 facetIndex; facetIndex < _diamondCut.length; ) {
            IDiamondCut.FacetCutAction action = _diamondCut[facetIndex].action;
            if (action == IDiamondCut.FacetCutAction.Add) {
                addFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
            } else if (action == IDiamondCut.FacetCutAction.Replace) {
                replaceFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
            } else if (action == IDiamondCut.FacetCutAction.Remove) {
                removeFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
            } else {
                revert IncorrectFacetCutAction();
            }
            unchecked {
                ++facetIndex;
            }
        }
        emit DiamondCut(_diamondCut, _init, _calldata);
        initializeDiamondCut(_init, _calldata);
    }

    function addFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
        if (_functionSelectors.length == 0) {
            revert NoSelectorsInFace();
        }
        DiamondStorage storage ds = diamondStorage();
        if (LibUtil.isZeroAddress(_facetAddress)) {
            revert FacetAddressIsZero();
        }
        uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length);
        // add new facet address if it does not exist
        if (selectorPosition == 0) {
            addFacet(ds, _facetAddress);
        }
        for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
            bytes4 selector = _functionSelectors[selectorIndex];
            address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
            if (!LibUtil.isZeroAddress(oldFacetAddress)) {
                revert FunctionAlreadyExists();
            }
            addFunction(ds, selector, selectorPosition, _facetAddress);
            unchecked {
                ++selectorPosition;
                ++selectorIndex;
            }
        }
    }

    function replaceFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
        if (_functionSelectors.length == 0) {
            revert NoSelectorsInFace();
        }
        DiamondStorage storage ds = diamondStorage();
        if (LibUtil.isZeroAddress(_facetAddress)) {
            revert FacetAddressIsZero();
        }
        uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length);
        // add new facet address if it does not exist
        if (selectorPosition == 0) {
            addFacet(ds, _facetAddress);
        }
        for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
            bytes4 selector = _functionSelectors[selectorIndex];
            address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
            if (oldFacetAddress == _facetAddress) {
                revert FunctionAlreadyExists();
            }
            removeFunction(ds, oldFacetAddress, selector);
            addFunction(ds, selector, selectorPosition, _facetAddress);
            unchecked {
                ++selectorPosition;
                ++selectorIndex;
            }
        }
    }

    function removeFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
        if (_functionSelectors.length == 0) {
            revert NoSelectorsInFace();
        }
        DiamondStorage storage ds = diamondStorage();
        // if function does not exist then do nothing and return
        if (!LibUtil.isZeroAddress(_facetAddress)) {
            revert FacetAddressIsNotZero();
        }
        for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
            bytes4 selector = _functionSelectors[selectorIndex];
            address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
            removeFunction(ds, oldFacetAddress, selector);
            unchecked {
                ++selectorIndex;
            }
        }
    }

    function addFacet(DiamondStorage storage ds, address _facetAddress) internal {
        enforceHasContractCode(_facetAddress);
        ds.facetFunctionSelectors[_facetAddress].facetAddressPosition = ds.facetAddresses.length;
        ds.facetAddresses.push(_facetAddress);
    }

    function addFunction(DiamondStorage storage ds, bytes4 _selector, uint96 _selectorPosition, address _facetAddress) internal {
        ds.selectorToFacetAndPosition[_selector].functionSelectorPosition = _selectorPosition;
        ds.facetFunctionSelectors[_facetAddress].functionSelectors.push(_selector);
        ds.selectorToFacetAndPosition[_selector].facetAddress = _facetAddress;
    }

    function removeFunction(DiamondStorage storage ds, address _facetAddress, bytes4 _selector) internal {
        if (LibUtil.isZeroAddress(_facetAddress)) {
            revert FunctionDoesNotExist();
        }
        // an immutable function is a function defined directly in a diamond
        if (_facetAddress == address(this)) {
            revert FunctionIsImmutable();
        }
        // replace selector with last selector, then delete last selector
        uint256 selectorPosition = ds.selectorToFacetAndPosition[_selector].functionSelectorPosition;
        uint256 lastSelectorPosition = ds.facetFunctionSelectors[_facetAddress].functionSelectors.length - 1;
        // if not the same then replace _selector with lastSelector
        if (selectorPosition != lastSelectorPosition) {
            bytes4 lastSelector = ds.facetFunctionSelectors[_facetAddress].functionSelectors[lastSelectorPosition];
            ds.facetFunctionSelectors[_facetAddress].functionSelectors[selectorPosition] = lastSelector;
            ds.selectorToFacetAndPosition[lastSelector].functionSelectorPosition = uint96(selectorPosition);
        }
        // delete the last selector
        ds.facetFunctionSelectors[_facetAddress].functionSelectors.pop();
        delete ds.selectorToFacetAndPosition[_selector];

        // if no more selectors for facet address then delete the facet address
        if (lastSelectorPosition == 0) {
            // replace facet address with last facet address and delete last facet address
            uint256 lastFacetAddressPosition = ds.facetAddresses.length - 1;
            uint256 facetAddressPosition = ds.facetFunctionSelectors[_facetAddress].facetAddressPosition;
            if (facetAddressPosition != lastFacetAddressPosition) {
                address lastFacetAddress = ds.facetAddresses[lastFacetAddressPosition];
                ds.facetAddresses[facetAddressPosition] = lastFacetAddress;
                ds.facetFunctionSelectors[lastFacetAddress].facetAddressPosition = facetAddressPosition;
            }
            ds.facetAddresses.pop();
            delete ds.facetFunctionSelectors[_facetAddress].facetAddressPosition;
        }
    }

    function initializeDiamondCut(address _init, bytes memory _calldata) internal {
        if (LibUtil.isZeroAddress(_init)) {
            if (_calldata.length != 0) {
                revert InitZeroButCalldataNotEmpty();
            }
        } else {
            if (_calldata.length == 0) {
                revert CalldataEmptyButInitNotZero();
            }
            if (_init != address(this)) {
                enforceHasContractCode(_init);
            }
            // solhint-disable-next-line avoid-low-level-calls
            (bool success, bytes memory error) = _init.delegatecall(_calldata);
            if (!success) {
                revert InitReverted(error);
            }
        }
    }

    function enforceHasContractCode(address _contract) internal view {
        uint256 contractSize;
        // solhint-disable-next-line no-inline-assembly
        assembly {
            contractSize := extcodesize(_contract)
        }
        if (contractSize == 0) {
            revert FacetContainsNoCode();
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

struct GlobalStorage {
    bool initialized;
    address protocolFeeVault;
    address feeValidator;
    address permit2;
    address refundVault;
    bool paused;
}

/**
 * @title LibGlobalStorage
 * @author DZap
 * @notice This library provides functionality for managing global storage
 */
library LibGlobalStorage {
    bytes32 internal constant _GLOBAL_NAMESPACE = keccak256("dzap.storage.library.global");

    function globalStorage() internal pure returns (GlobalStorage storage ds) {
        bytes32 slot = _GLOBAL_NAMESPACE;
        assembly {
            ds.slot := slot
        }
    }

    function getRefundVault() internal view returns (address) {
        return globalStorage().refundVault;
    }

    function getProtocolFeeVault() internal view returns (address) {
        return globalStorage().protocolFeeVault;
    }

    function getFeeValidator() internal view returns (address) {
        return globalStorage().feeValidator;
    }

    function getPermit2() internal view returns (address) {
        return globalStorage().permit2;
    }

    function getPaused() internal view returns (bool) {
        return globalStorage().paused;
    }
}

// SPDX-License-Identifier: MIT

pragma solidity 0.8.19;

import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { IERC20Permit } from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol";
import { LibGlobalStorage } from "./LibGlobalStorage.sol";
import { PermitTransferFrom, PermitBatchTransferFrom, SignatureTransferDetails, PermitSingle, PermitDetails, TokenPermissions, IPermit2 } from "../Interfaces/IPermit2.sol";

/**
 * @title LibPermit
 * @author DZap
 * @notice This library contains helpers for using permit and permit2
 */
library LibPermit {
    // ============= ERRORS =============

    error InvalidPermit(string reason);

    // ============= CONSTANTS =============

    string internal constant _DZAP_TRANSFER_WITNESS_TYPE_STRING =
        "DZapTransferWitness witness)DZapTransferWitness(address owner,address recipient)TokenPermissions(address token,uint256 amount)";
    bytes32 internal constant _DZAP_TRANSFER_WITNESS_TYPEHASH = keccak256("DZapTransferWitness(address owner,address recipient)");

    // ============= VIEW =============

    /// @notice Returns the permit2 address
    function permit2() private view returns (address) {
        return LibGlobalStorage.getPermit2();
    }

    // ============= EIP-2612 PERMIT FUNCTIONS =============

    /// @notice Handles eip2612 permit
    function eip2612Permit(address _owner, address _spender, address _token, uint256 _amount, bytes memory _data) internal {
        (uint256 deadline, uint8 v, bytes32 r, bytes32 s) = abi.decode(_data, (uint256, uint8, bytes32, bytes32));
        try IERC20Permit(_token).permit(_owner, _spender, _amount, deadline, v, r, s) {} catch Error(string memory reason) {
            if (IERC20(_token).allowance(_owner, _spender) < _amount) {
                revert InvalidPermit(reason);
            }
        }
    }

    // ============= PERMIT2 FUNCTIONS =============

    /// @notice Handles permit2 approve and transfer
    function permit2ApproveAndTransfer(address _owner, address _spender, address _token, uint160 _amount, bytes memory data) internal {
        permit2Approve(_owner, _spender, _token, _amount, data);
        IPermit2(permit2()).transferFrom(_owner, _spender, uint160(_amount), _token);
    }

    /// @notice Handles permit2 approve
    function permit2Approve(address _owner, address _spender, address _token, uint160 _amount, bytes memory _data) internal {
        if (_data.length == 0) return;
        IPermit2 permit2Contract = IPermit2(permit2());
        (uint48 nonce, uint48 expiration, uint256 sigDeadline, bytes memory signature) = abi.decode(_data, (uint48, uint48, uint256, bytes));

        try
            permit2Contract.permit(_owner, PermitSingle(PermitDetails(_token, _amount, expiration, nonce), _spender, sigDeadline), signature)
        {} catch Error(string memory reason) {
            (uint256 currentAllowance, uint256 allowanceExpiration, ) = permit2Contract.allowance(_owner, _token, _spender);
            if (currentAllowance < _amount || allowanceExpiration < block.timestamp) revert InvalidPermit(reason);
        }
    }

    /// @notice Handles permit2 witness transfer from
    function permit2WitnessTransferFrom(address _owner, address _recipient, address _token, uint256 _amount, bytes memory _data) internal {
        (uint256 nonce, uint256 deadline, bytes memory _signature) = abi.decode(_data, (uint256, uint256, bytes));
        IPermit2(permit2()).permitWitnessTransferFrom(
            PermitTransferFrom(TokenPermissions(_token, _amount), nonce, deadline),
            SignatureTransferDetails(_recipient, _amount),
            _owner,
            _createWitnessTransferFromHash(_owner, _recipient),
            _DZAP_TRANSFER_WITNESS_TYPE_STRING,
            _signature
        );
    }

    /// @notice Handles permit2 batch witness transfer from
    function permit2BatchWitnessTransferFrom(
        address _owner,
        address _recipient,
        PermitBatchTransferFrom calldata permit,
        bytes calldata _signature
    ) internal {
        uint256 length = permit.permitted.length;
        SignatureTransferDetails[] memory details = new SignatureTransferDetails[](length);

        for (uint256 i; i < length; ) {
            details[i] = SignatureTransferDetails(_recipient, permit.permitted[i].amount);
            unchecked {
                ++i;
            }
        }

        IPermit2(permit2()).permitWitnessTransferFrom(
            permit,
            details,
            _owner,
            _createWitnessTransferFromHash(_owner, _recipient),
            _DZAP_TRANSFER_WITNESS_TYPE_STRING,
            _signature
        );
    }

    /// @notice Handles permit2 batch witness transfer from
    function permit2BatchWitnessTransferFrom(
        address _owner,
        address _recipient,
        bytes32 _witness,
        PermitBatchTransferFrom calldata permit,
        bytes calldata _signature,
        string memory _witnessTypeString
    ) internal {
        uint256 length = permit.permitted.length;
        SignatureTransferDetails[] memory details = new SignatureTransferDetails[](length);

        for (uint256 i; i < length; ) {
            details[i] = SignatureTransferDetails(_recipient, permit.permitted[i].amount);
            unchecked {
                ++i;
            }
        }

        IPermit2(permit2()).permitWitnessTransferFrom(permit, details, _owner, _witness, _witnessTypeString, _signature);
    }

    /* ========= PRIVATE ========= */

    function _createWitnessTransferFromHash(address _owner, address _recipient) private pure returns (bytes32) {
        return keccak256(abi.encode(_DZAP_TRANSFER_WITNESS_TYPEHASH, _owner, _recipient));
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

import "./LibBytes.sol";

library LibUtil {
    using LibBytes for bytes;

    function getRevertMsg(bytes memory _res) internal pure returns (string memory) {
        if (_res.length < 68) return string(_res);
        bytes memory revertData = _res.slice(4, _res.length - 4); // Remove the selector which is the first 4 bytes

        return abi.decode(revertData, (string)); // All that remains is the revert string
    }

    /// @notice Determines whether the given address is the zero address
    /// @param addr The address to verify
    /// @return Boolean indicating if the address is the zero address
    function isZeroAddress(address addr) internal pure returns (bool) {
        return addr == address(0);
    }
}

File 18 of 18 : Types.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

/// @title DZap Types

enum PermitType {
    PERMIT, // EIP2612
    PERMIT2_APPROVE,
    PERMIT2_WITNESS_TRANSFER,
    BATCH_PERMIT2_WITNESS_TRANSFER
}

struct InputToken {
    address token;
    uint256 amount;
    bytes permit;
}

struct SwapInfo {
    string dex;
    address callTo;
    address recipient;
    address fromToken;
    address toToken;
    uint256 fromAmount;
    uint256 returnToAmount;
}

struct SwapData {
    address recipient;
    address from;
    address to;
    uint256 fromAmount;
    uint256 minToAmount;
}

struct BridgeSwapData {
    address recipient;
    address from;
    address to;
    uint256 fromAmount;
    uint256 minToAmount;
    bool updateBridgeInAmount;
}

struct SwapExecutionData {
    string dex;
    address callTo;
    address approveTo;
    bytes swapCallData;
    bool isDirectTransfer;
}

struct TokenInfo {
    address token;
    uint256 amount;
}

struct Fees {
    address token;
    uint256 integratorFeeAmount;
    uint256 protocolFeeAmount;
}

struct FeeConfig {
    address integrator;
    Fees[] fees;
}

struct AdapterInfo {
    address adapter;
    bytes adapterData;
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 300
  },
  "viaIR": true,
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  }
}

Contract Security Audit

Contract ABI

API
[{"inputs":[],"name":"NativeTransferFailed","type":"error"},{"inputs":[],"name":"NoTransferToNullAddress","type":"error"},{"inputs":[],"name":"NotAContract","type":"error"},{"inputs":[],"name":"ReentrancyError","type":"error"},{"inputs":[],"name":"UnAuthorized","type":"error"},{"inputs":[],"name":"WithdrawFailed","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"tokenAddress","type":"address"},{"indexed":false,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"LogWithdraw","type":"event"},{"inputs":[{"internalType":"address payable","name":"_callTo","type":"address"},{"internalType":"bytes","name":"_callData","type":"bytes"},{"internalType":"address","name":"_token","type":"address"},{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"executeCallAndWithdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]

6080806040523461001657610651908161001c8239f35b600080fdfe608060405260048036101561001357600080fd5b600090813560e01c80631458d7ad146100b85763d9caed121461003557600080fd5b346100b45760603660031901126100b457356001600160a01b039081811681036100b05760243582811681036100ac5761009c927fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c13205416330361009f575b60443591610292565b80f35b6100a76104e2565b610093565b8380fd5b8280fd5b5080fd5b50346100b45760a03660031901126100b4578035906001600160a01b038083168093036100ac576024359167ffffffffffffffff9384841161021657366023850112156102165783820135948511610216573660248686010111610216576044359383851685036102125760643593808516850361020e577fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c132054163303610201575b7fa4b36ced7e8b039500cc9c7c393a04e0c8af96ee265b143e79175cc5679ca5399560028754146101f05760028755823b156101df5791602488809493848295604051948593018337810182815203925af16101b4610252565b50156101d05750600192916101cc9160843591610292565b5580f35b604051631d42c86760e21b8152fd5b6040516309ee12d560e01b81528490fd5b6040516329f745a760e01b81528490fd5b6102096104e2565b61015a565b8780fd5b8680fd5b8580fd5b90601f8019910116810190811067ffffffffffffffff82111761023c57604052565b634e487b7160e01b600052604160045260246000fd5b3d1561028d573d9067ffffffffffffffff821161023c5760405191610281601f8201601f19166020018461021a565b82523d6000602084013e565b606090565b9190916001600160a01b0390818416156104d057826102f3575b604080516001600160a01b039095168552602085019390935216917f9207361cc2a04b9c7a06691df1eb87c6a63957ae88bf01d0d18c81e3d127209991819081015b0390a2565b80821673eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee81036103695750600080808086885af1610323610252565b5015610357576102ee7f9207361cc2a04b9c7a06691df1eb87c6a63957ae88bf01d0d18c81e3d1272099935b9350506102ac565b604051633d2cec6f60e21b8152600490fd5b60405163a9059cbb60e01b60208083019182526001600160a01b03881660248401526044808401889052835294959394929091906103a860648361021a565b60405190604082019282841067ffffffffffffffff85111761023c5761040d936040528583527f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c656486840152600080958192519082855af1610407610252565b91610547565b8051918215918483156104a9575b5050509050156104525750906102ee7f9207361cc2a04b9c7a06691df1eb87c6a63957ae88bf01d0d18c81e3d1272099939261034f565b6084906040519062461bcd60e51b82526004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e6044820152691bdd081cdd58d8d9595960b21b6064820152fd5b9193818094500103126100b4578201519081151582036104cd57508038808461041b565b80fd5b6040516321f7434560e01b8152600490fd5b63ffffffff60e01b600035166000527f5d54ae78bb256b3b2ab9aba21ec80ea50728352673b79651649d3494dfcade6a602052604060002033600052602052600160ff6040600020541615150361053557565b60405163be24598360e01b8152600490fd5b919290156105a9575081511561055b575090565b3b156105645790565b60405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e74726163740000006044820152606490fd5b8251909150156105bc5750805190602001fd5b6040519062461bcd60e51b82528160208060048301528251908160248401526000935b828510610602575050604492506000838284010152601f80199101168101030190fd5b84810182015186860160440152938101938593506105df56fea264697066735822122073ab85478185b0bf0444e72b9192b31390aa68e4a992735f94992a8d6c0c238664736f6c63430008130033

Deployed Bytecode

0x608060405260048036101561001357600080fd5b600090813560e01c80631458d7ad146100b85763d9caed121461003557600080fd5b346100b45760603660031901126100b457356001600160a01b039081811681036100b05760243582811681036100ac5761009c927fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c13205416330361009f575b60443591610292565b80f35b6100a76104e2565b610093565b8380fd5b8280fd5b5080fd5b50346100b45760a03660031901126100b4578035906001600160a01b038083168093036100ac576024359167ffffffffffffffff9384841161021657366023850112156102165783820135948511610216573660248686010111610216576044359383851685036102125760643593808516850361020e577fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c132054163303610201575b7fa4b36ced7e8b039500cc9c7c393a04e0c8af96ee265b143e79175cc5679ca5399560028754146101f05760028755823b156101df5791602488809493848295604051948593018337810182815203925af16101b4610252565b50156101d05750600192916101cc9160843591610292565b5580f35b604051631d42c86760e21b8152fd5b6040516309ee12d560e01b81528490fd5b6040516329f745a760e01b81528490fd5b6102096104e2565b61015a565b8780fd5b8680fd5b8580fd5b90601f8019910116810190811067ffffffffffffffff82111761023c57604052565b634e487b7160e01b600052604160045260246000fd5b3d1561028d573d9067ffffffffffffffff821161023c5760405191610281601f8201601f19166020018461021a565b82523d6000602084013e565b606090565b9190916001600160a01b0390818416156104d057826102f3575b604080516001600160a01b039095168552602085019390935216917f9207361cc2a04b9c7a06691df1eb87c6a63957ae88bf01d0d18c81e3d127209991819081015b0390a2565b80821673eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee81036103695750600080808086885af1610323610252565b5015610357576102ee7f9207361cc2a04b9c7a06691df1eb87c6a63957ae88bf01d0d18c81e3d1272099935b9350506102ac565b604051633d2cec6f60e21b8152600490fd5b60405163a9059cbb60e01b60208083019182526001600160a01b03881660248401526044808401889052835294959394929091906103a860648361021a565b60405190604082019282841067ffffffffffffffff85111761023c5761040d936040528583527f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c656486840152600080958192519082855af1610407610252565b91610547565b8051918215918483156104a9575b5050509050156104525750906102ee7f9207361cc2a04b9c7a06691df1eb87c6a63957ae88bf01d0d18c81e3d1272099939261034f565b6084906040519062461bcd60e51b82526004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e6044820152691bdd081cdd58d8d9595960b21b6064820152fd5b9193818094500103126100b4578201519081151582036104cd57508038808461041b565b80fd5b6040516321f7434560e01b8152600490fd5b63ffffffff60e01b600035166000527f5d54ae78bb256b3b2ab9aba21ec80ea50728352673b79651649d3494dfcade6a602052604060002033600052602052600160ff6040600020541615150361053557565b60405163be24598360e01b8152600490fd5b919290156105a9575081511561055b575090565b3b156105645790565b60405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e74726163740000006044820152606490fd5b8251909150156105bc5750805190602001fd5b6040519062461bcd60e51b82528160208060048301528251908160248401526000935b828510610602575050604492506000838284010152601f80199101168101030190fd5b84810182015186860160440152938101938593506105df56fea264697066735822122073ab85478185b0bf0444e72b9192b31390aa68e4a992735f94992a8d6c0c238664736f6c63430008130033

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.