Source Code
Overview
FRAX Balance | FXTL Balance
0 FRAX | 0 FXTL
FRAX Value
$0.00
Cross-Chain Transactions
Loading...
Loading
Contract Name:
L2ERC721Bridge
Compiler Version
v0.8.15+commit.e14f2714
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { ERC721Bridge } from "src/universal/ERC721Bridge.sol";
import { ERC165Checker } from "@openzeppelin/contracts/utils/introspection/ERC165Checker.sol";
import { L1ERC721Bridge } from "src/L1/L1ERC721Bridge.sol";
import { IOptimismMintableERC721 } from "src/universal/IOptimismMintableERC721.sol";
import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol";
import { ISemver } from "src/universal/ISemver.sol";
import { Constants } from "src/libraries/Constants.sol";
import { Predeploys } from "src/libraries/Predeploys.sol";
/// @title L2ERC721Bridge
/// @notice The L2 ERC721 bridge is a contract which works together with the L1 ERC721 bridge to
/// make it possible to transfer ERC721 tokens from Ethereum to Optimism. This contract
/// acts as a minter for new tokens when it hears about deposits into the L1 ERC721 bridge.
/// This contract also acts as a burner for tokens being withdrawn.
/// **WARNING**: Do not bridge an ERC721 that was originally deployed on Optimism. This
/// bridge ONLY supports ERC721s originally deployed on Ethereum. Users will need to
/// wait for the one-week challenge period to elapse before their Optimism-native NFT
/// can be refunded on L2.
contract L2ERC721Bridge is ERC721Bridge, ISemver {
/// @custom:semver 1.6.0
string public constant version = "1.6.0";
/// @notice Constructs the L2ERC721Bridge contract.
/// @param _otherBridge Address of the ERC721 bridge on the other network.
constructor(address _otherBridge) ERC721Bridge(Predeploys.L2_CROSS_DOMAIN_MESSENGER, _otherBridge) {
initialize();
}
/// @notice Initializes the contract. This is a noop in the implementation but included to ensure that
/// the contract cannot be initialized a second time.
function initialize() public initializer { }
/// @notice Completes an ERC721 bridge from the other domain and sends the ERC721 token to the
/// recipient on this domain.
/// @param _localToken Address of the ERC721 token on this domain.
/// @param _remoteToken Address of the ERC721 token on the other domain.
/// @param _from Address that triggered the bridge on the other domain.
/// @param _to Address to receive the token on this domain.
/// @param _tokenId ID of the token being deposited.
/// @param _extraData Optional data to forward to L1.
/// Data supplied here will not be used to execute any code on L1 and is
/// only emitted as extra data for the convenience of off-chain tooling.
function finalizeBridgeERC721(
address _localToken,
address _remoteToken,
address _from,
address _to,
uint256 _tokenId,
bytes calldata _extraData
)
external
onlyOtherBridge
{
require(_localToken != address(this), "L2ERC721Bridge: local token cannot be self");
// Note that supportsInterface makes a callback to the _localToken address which is user
// provided.
require(
ERC165Checker.supportsInterface(_localToken, type(IOptimismMintableERC721).interfaceId),
"L2ERC721Bridge: local token interface is not compliant"
);
require(
_remoteToken == IOptimismMintableERC721(_localToken).remoteToken(),
"L2ERC721Bridge: wrong remote token for Optimism Mintable ERC721 local token"
);
// When a deposit is finalized, we give the NFT with the same tokenId to the account
// on L2. Note that safeMint makes a callback to the _to address which is user provided.
IOptimismMintableERC721(_localToken).safeMint(_to, _tokenId);
// slither-disable-next-line reentrancy-events
emit ERC721BridgeFinalized(_localToken, _remoteToken, _from, _to, _tokenId, _extraData);
}
/// @inheritdoc ERC721Bridge
function _initiateBridgeERC721(
address _localToken,
address _remoteToken,
address _from,
address _to,
uint256 _tokenId,
uint32 _minGasLimit,
bytes calldata _extraData
)
internal
override
{
require(_remoteToken != address(0), "L2ERC721Bridge: remote token cannot be address(0)");
// Check that the withdrawal is being initiated by the NFT owner
require(
_from == IOptimismMintableERC721(_localToken).ownerOf(_tokenId),
"L2ERC721Bridge: Withdrawal is not being initiated by NFT owner"
);
// Construct calldata for l1ERC721Bridge.finalizeBridgeERC721(_to, _tokenId)
// slither-disable-next-line reentrancy-events
address remoteToken = IOptimismMintableERC721(_localToken).remoteToken();
require(remoteToken == _remoteToken, "L2ERC721Bridge: remote token does not match given value");
// When a withdrawal is initiated, we burn the withdrawer's NFT to prevent subsequent L2
// usage
// slither-disable-next-line reentrancy-events
IOptimismMintableERC721(_localToken).burn(_from, _tokenId);
bytes memory message = abi.encodeWithSelector(
L1ERC721Bridge.finalizeBridgeERC721.selector, remoteToken, _localToken, _from, _to, _tokenId, _extraData
);
// Send message to L1 bridge
// slither-disable-next-line reentrancy-events
MESSENGER.sendMessage(OTHER_BRIDGE, message, _minGasLimit);
// slither-disable-next-line reentrancy-events
emit ERC721BridgeInitiated(_localToken, remoteToken, _from, _to, _tokenId, _extraData);
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol";
import { SuperchainConfig } from "src/L1/SuperchainConfig.sol";
import { Address } from "@openzeppelin/contracts/utils/Address.sol";
import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
/// @title ERC721Bridge
/// @notice ERC721Bridge is a base contract for the L1 and L2 ERC721 bridges.
abstract contract ERC721Bridge is Initializable {
/// @notice Messenger contract on this domain. This will be removed in the
/// future, use `messenger` instead.
/// @custom:legacy
CrossDomainMessenger public immutable MESSENGER;
/// @notice Address of the bridge on the other network. This will be removed in the
/// future, use `otherBridge` instead.
/// @custom:legacy
address public immutable OTHER_BRIDGE;
/// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
uint256[48] private __gap;
/// @notice Emitted when an ERC721 bridge to the other network is initiated.
/// @param localToken Address of the token on this domain.
/// @param remoteToken Address of the token on the remote domain.
/// @param from Address that initiated bridging action.
/// @param to Address to receive the token.
/// @param tokenId ID of the specific token deposited.
/// @param extraData Extra data for use on the client-side.
event ERC721BridgeInitiated(
address indexed localToken,
address indexed remoteToken,
address indexed from,
address to,
uint256 tokenId,
bytes extraData
);
/// @notice Emitted when an ERC721 bridge from the other network is finalized.
/// @param localToken Address of the token on this domain.
/// @param remoteToken Address of the token on the remote domain.
/// @param from Address that initiated bridging action.
/// @param to Address to receive the token.
/// @param tokenId ID of the specific token deposited.
/// @param extraData Extra data for use on the client-side.
event ERC721BridgeFinalized(
address indexed localToken,
address indexed remoteToken,
address indexed from,
address to,
uint256 tokenId,
bytes extraData
);
/// @notice Ensures that the caller is a cross-chain message from the other bridge.
modifier onlyOtherBridge() {
require(
msg.sender == address(MESSENGER) && MESSENGER.xDomainMessageSender() == OTHER_BRIDGE,
"ERC721Bridge: function can only be called from the other bridge"
);
_;
}
/// @param _messenger Address of the CrossDomainMessenger on this network.
/// @param _otherBridge Address of the ERC721 bridge on the other network.
constructor(address _messenger, address _otherBridge) {
require(_messenger != address(0), "ERC721Bridge: messenger cannot be address(0)");
require(_otherBridge != address(0), "ERC721Bridge: other bridge cannot be address(0)");
MESSENGER = CrossDomainMessenger(_messenger);
OTHER_BRIDGE = _otherBridge;
}
/// @notice Legacy getter for messenger contract.
/// @return Messenger contract on this domain.
function messenger() external view returns (CrossDomainMessenger) {
return MESSENGER;
}
/// @notice Legacy getter for other bridge address.
/// @return Address of the bridge on the other network.
function otherBridge() external view returns (address) {
return OTHER_BRIDGE;
}
/// @notice This function should return true if the contract is paused.
/// On L1 this function will check the SuperchainConfig for its paused status.
/// On L2 this function should be a no-op.
/// @return Whether or not the contract is paused.
function paused() public view virtual returns (bool) {
return false;
}
/// @notice Initiates a bridge of an NFT to the caller's account on the other chain. Note that
/// this function can only be called by EOAs. Smart contract wallets should use the
/// `bridgeERC721To` function after ensuring that the recipient address on the remote
/// chain exists. Also note that the current owner of the token on this chain must
/// approve this contract to operate the NFT before it can be bridged.
/// **WARNING**: Do not bridge an ERC721 that was originally deployed on Optimism. This
/// bridge only supports ERC721s originally deployed on Ethereum. Users will need to
/// wait for the one-week challenge period to elapse before their Optimism-native NFT
/// can be refunded on L2.
/// @param _localToken Address of the ERC721 on this domain.
/// @param _remoteToken Address of the ERC721 on the remote domain.
/// @param _tokenId Token ID to bridge.
/// @param _minGasLimit Minimum gas limit for the bridge message on the other domain.
/// @param _extraData Optional data to forward to the other chain. Data supplied here will not
/// be used to execute any code on the other chain and is only emitted as
/// extra data for the convenience of off-chain tooling.
function bridgeERC721(
address _localToken,
address _remoteToken,
uint256 _tokenId,
uint32 _minGasLimit,
bytes calldata _extraData
)
external
{
// Modifier requiring sender to be EOA. This prevents against a user error that would occur
// if the sender is a smart contract wallet that has a different address on the remote chain
// (or doesn't have an address on the remote chain at all). The user would fail to receive
// the NFT if they use this function because it sends the NFT to the same address as the
// caller. This check could be bypassed by a malicious contract via initcode, but it takes
// care of the user error we want to avoid.
require(!Address.isContract(msg.sender), "ERC721Bridge: account is not externally owned");
_initiateBridgeERC721(_localToken, _remoteToken, msg.sender, msg.sender, _tokenId, _minGasLimit, _extraData);
}
/// @notice Initiates a bridge of an NFT to some recipient's account on the other chain. Note
/// that the current owner of the token on this chain must approve this contract to
/// operate the NFT before it can be bridged.
/// **WARNING**: Do not bridge an ERC721 that was originally deployed on Optimism. This
/// bridge only supports ERC721s originally deployed on Ethereum. Users will need to
/// wait for the one-week challenge period to elapse before their Optimism-native NFT
/// can be refunded on L2.
/// @param _localToken Address of the ERC721 on this domain.
/// @param _remoteToken Address of the ERC721 on the remote domain.
/// @param _to Address to receive the token on the other domain.
/// @param _tokenId Token ID to bridge.
/// @param _minGasLimit Minimum gas limit for the bridge message on the other domain.
/// @param _extraData Optional data to forward to the other chain. Data supplied here will not
/// be used to execute any code on the other chain and is only emitted as
/// extra data for the convenience of off-chain tooling.
function bridgeERC721To(
address _localToken,
address _remoteToken,
address _to,
uint256 _tokenId,
uint32 _minGasLimit,
bytes calldata _extraData
)
external
{
require(_to != address(0), "ERC721Bridge: nft recipient cannot be address(0)");
_initiateBridgeERC721(_localToken, _remoteToken, msg.sender, _to, _tokenId, _minGasLimit, _extraData);
}
/// @notice Internal function for initiating a token bridge to the other domain.
/// @param _localToken Address of the ERC721 on this domain.
/// @param _remoteToken Address of the ERC721 on the remote domain.
/// @param _from Address of the sender on this domain.
/// @param _to Address to receive the token on the other domain.
/// @param _tokenId Token ID to bridge.
/// @param _minGasLimit Minimum gas limit for the bridge message on the other domain.
/// @param _extraData Optional data to forward to the other domain. Data supplied here will
/// not be used to execute any code on the other domain and is only emitted
/// as extra data for the convenience of off-chain tooling.
function _initiateBridgeERC721(
address _localToken,
address _remoteToken,
address _from,
address _to,
uint256 _tokenId,
uint32 _minGasLimit,
bytes calldata _extraData
)
internal
virtual;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.2) (utils/introspection/ERC165Checker.sol)
pragma solidity ^0.8.0;
import "./IERC165.sol";
/**
* @dev Library used to query support of an interface declared via {IERC165}.
*
* Note that these functions return the actual result of the query: they do not
* `revert` if an interface is not supported. It is up to the caller to decide
* what to do in these cases.
*/
library ERC165Checker {
// As per the EIP-165 spec, no interface should ever match 0xffffffff
bytes4 private constant _INTERFACE_ID_INVALID = 0xffffffff;
/**
* @dev Returns true if `account` supports the {IERC165} interface,
*/
function supportsERC165(address account) internal view returns (bool) {
// Any contract that implements ERC165 must explicitly indicate support of
// InterfaceId_ERC165 and explicitly indicate non-support of InterfaceId_Invalid
return
_supportsERC165Interface(account, type(IERC165).interfaceId) &&
!_supportsERC165Interface(account, _INTERFACE_ID_INVALID);
}
/**
* @dev Returns true if `account` supports the interface defined by
* `interfaceId`. Support for {IERC165} itself is queried automatically.
*
* See {IERC165-supportsInterface}.
*/
function supportsInterface(address account, bytes4 interfaceId) internal view returns (bool) {
// query support of both ERC165 as per the spec and support of _interfaceId
return supportsERC165(account) && _supportsERC165Interface(account, interfaceId);
}
/**
* @dev Returns a boolean array where each value corresponds to the
* interfaces passed in and whether they're supported or not. This allows
* you to batch check interfaces for a contract where your expectation
* is that some interfaces may not be supported.
*
* See {IERC165-supportsInterface}.
*
* _Available since v3.4._
*/
function getSupportedInterfaces(address account, bytes4[] memory interfaceIds)
internal
view
returns (bool[] memory)
{
// an array of booleans corresponding to interfaceIds and whether they're supported or not
bool[] memory interfaceIdsSupported = new bool[](interfaceIds.length);
// query support of ERC165 itself
if (supportsERC165(account)) {
// query support of each interface in interfaceIds
for (uint256 i = 0; i < interfaceIds.length; i++) {
interfaceIdsSupported[i] = _supportsERC165Interface(account, interfaceIds[i]);
}
}
return interfaceIdsSupported;
}
/**
* @dev Returns true if `account` supports all the interfaces defined in
* `interfaceIds`. Support for {IERC165} itself is queried automatically.
*
* Batch-querying can lead to gas savings by skipping repeated checks for
* {IERC165} support.
*
* See {IERC165-supportsInterface}.
*/
function supportsAllInterfaces(address account, bytes4[] memory interfaceIds) internal view returns (bool) {
// query support of ERC165 itself
if (!supportsERC165(account)) {
return false;
}
// query support of each interface in _interfaceIds
for (uint256 i = 0; i < interfaceIds.length; i++) {
if (!_supportsERC165Interface(account, interfaceIds[i])) {
return false;
}
}
// all interfaces supported
return true;
}
/**
* @notice Query if a contract implements an interface, does not check ERC165 support
* @param account The address of the contract to query for support of an interface
* @param interfaceId The interface identifier, as specified in ERC-165
* @return true if the contract at account indicates support of the interface with
* identifier interfaceId, false otherwise
* @dev Assumes that account contains a contract that supports ERC165, otherwise
* the behavior of this method is undefined. This precondition can be checked
* with {supportsERC165}.
* Interface identification is specified in ERC-165.
*/
function _supportsERC165Interface(address account, bytes4 interfaceId) private view returns (bool) {
// prepare call
bytes memory encodedParams = abi.encodeWithSelector(IERC165.supportsInterface.selector, interfaceId);
// perform static call
bool success;
uint256 returnSize;
uint256 returnValue;
assembly {
success := staticcall(30000, account, add(encodedParams, 0x20), mload(encodedParams), 0x00, 0x20)
returnSize := returndatasize()
returnValue := mload(0x00)
}
return success && returnSize >= 0x20 && returnValue > 0;
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { ERC721Bridge } from "src/universal/ERC721Bridge.sol";
import { IERC721 } from "@openzeppelin/contracts/token/ERC721/IERC721.sol";
import { L2ERC721Bridge } from "src/L2/L2ERC721Bridge.sol";
import { ISemver } from "src/universal/ISemver.sol";
import { Predeploys } from "src/libraries/Predeploys.sol";
import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol";
import { Constants } from "src/libraries/Constants.sol";
import { SuperchainConfig } from "src/L1/SuperchainConfig.sol";
/// @title L1ERC721Bridge
/// @notice The L1 ERC721 bridge is a contract which works together with the L2 ERC721 bridge to
/// make it possible to transfer ERC721 tokens from Ethereum to Optimism. This contract
/// acts as an escrow for ERC721 tokens deposited into L2.
contract L1ERC721Bridge is ERC721Bridge, ISemver {
/// @notice Mapping of L1 token to L2 token to ID to boolean, indicating if the given L1 token
/// by ID was deposited for a given L2 token.
mapping(address => mapping(address => mapping(uint256 => bool))) public deposits;
/// @notice Address of the SuperchainConfig contract.
SuperchainConfig public superchainConfig;
/// @notice Semantic version.
/// @custom:semver 2.0.0
string public constant version = "2.0.0";
/// @notice Constructs the L1ERC721Bridge contract.
/// @param _messenger Address of the CrossDomainMessenger on this network.
constructor(address _messenger) ERC721Bridge(_messenger, Predeploys.L2_ERC721_BRIDGE) {
initialize(SuperchainConfig(address(0)));
}
/// @notice Initializes the contract.
/// @param _superchainConfig Address of the SuperchainConfig contract on this network.
function initialize(SuperchainConfig _superchainConfig) public initializer {
superchainConfig = _superchainConfig;
}
/// @inheritdoc ERC721Bridge
function paused() public view override returns (bool) {
return superchainConfig.paused();
}
/// @notice Completes an ERC721 bridge from the other domain and sends the ERC721 token to the
/// recipient on this domain.
/// @param _localToken Address of the ERC721 token on this domain.
/// @param _remoteToken Address of the ERC721 token on the other domain.
/// @param _from Address that triggered the bridge on the other domain.
/// @param _to Address to receive the token on this domain.
/// @param _tokenId ID of the token being deposited.
/// @param _extraData Optional data to forward to L2.
/// Data supplied here will not be used to execute any code on L2 and is
/// only emitted as extra data for the convenience of off-chain tooling.
function finalizeBridgeERC721(
address _localToken,
address _remoteToken,
address _from,
address _to,
uint256 _tokenId,
bytes calldata _extraData
)
external
onlyOtherBridge
{
require(paused() == false, "L1ERC721Bridge: paused");
require(_localToken != address(this), "L1ERC721Bridge: local token cannot be self");
// Checks that the L1/L2 NFT pair has a token ID that is escrowed in the L1 Bridge.
require(
deposits[_localToken][_remoteToken][_tokenId] == true,
"L1ERC721Bridge: Token ID is not escrowed in the L1 Bridge"
);
// Mark that the token ID for this L1/L2 token pair is no longer escrowed in the L1
// Bridge.
deposits[_localToken][_remoteToken][_tokenId] = false;
// When a withdrawal is finalized on L1, the L1 Bridge transfers the NFT to the
// withdrawer.
IERC721(_localToken).safeTransferFrom(address(this), _to, _tokenId);
// slither-disable-next-line reentrancy-events
emit ERC721BridgeFinalized(_localToken, _remoteToken, _from, _to, _tokenId, _extraData);
}
/// @inheritdoc ERC721Bridge
function _initiateBridgeERC721(
address _localToken,
address _remoteToken,
address _from,
address _to,
uint256 _tokenId,
uint32 _minGasLimit,
bytes calldata _extraData
)
internal
override
{
require(_remoteToken != address(0), "L1ERC721Bridge: remote token cannot be address(0)");
// Construct calldata for _l2Token.finalizeBridgeERC721(_to, _tokenId)
bytes memory message = abi.encodeWithSelector(
L2ERC721Bridge.finalizeBridgeERC721.selector, _remoteToken, _localToken, _from, _to, _tokenId, _extraData
);
// Lock token into bridge
deposits[_localToken][_remoteToken][_tokenId] = true;
IERC721(_localToken).transferFrom(_from, address(this), _tokenId);
// Send calldata into L2
MESSENGER.sendMessage(OTHER_BRIDGE, message, _minGasLimit);
emit ERC721BridgeInitiated(_localToken, _remoteToken, _from, _to, _tokenId, _extraData);
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { IERC721Enumerable } from "@openzeppelin/contracts/token/ERC721/extensions/IERC721Enumerable.sol";
/// @title IOptimismMintableERC721
/// @notice Interface for contracts that are compatible with the OptimismMintableERC721 standard.
/// Tokens that follow this standard can be easily transferred across the ERC721 bridge.
interface IOptimismMintableERC721 is IERC721Enumerable {
/// @notice Emitted when a token is minted.
/// @param account Address of the account the token was minted to.
/// @param tokenId Token ID of the minted token.
event Mint(address indexed account, uint256 tokenId);
/// @notice Emitted when a token is burned.
/// @param account Address of the account the token was burned from.
/// @param tokenId Token ID of the burned token.
event Burn(address indexed account, uint256 tokenId);
/// @notice Mints some token ID for a user, checking first that contract recipients
/// are aware of the ERC721 protocol to prevent tokens from being forever locked.
/// @param _to Address of the user to mint the token for.
/// @param _tokenId Token ID to mint.
function safeMint(address _to, uint256 _tokenId) external;
/// @notice Burns a token ID from a user.
/// @param _from Address of the user to burn the token from.
/// @param _tokenId Token ID to burn.
function burn(address _from, uint256 _tokenId) external;
/// @notice Chain ID of the chain where the remote token is deployed.
function REMOTE_CHAIN_ID() external view returns (uint256);
/// @notice Address of the token on the remote domain.
function REMOTE_TOKEN() external view returns (address);
/// @notice Address of the ERC721 bridge on this network.
function BRIDGE() external view returns (address);
/// @notice Chain ID of the chain where the remote token is deployed.
function remoteChainId() external view returns (uint256);
/// @notice Address of the token on the remote domain.
function remoteToken() external view returns (address);
/// @notice Address of the ERC721 bridge on this network.
function bridge() external view returns (address);
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import { SafeCall } from "src/libraries/SafeCall.sol";
import { Hashing } from "src/libraries/Hashing.sol";
import { Encoding } from "src/libraries/Encoding.sol";
import { Constants } from "src/libraries/Constants.sol";
/// @custom:legacy
/// @title CrossDomainMessengerLegacySpacer0
/// @notice Contract only exists to add a spacer to the CrossDomainMessenger where the
/// libAddressManager variable used to exist. Must be the first contract in the inheritance
/// tree of the CrossDomainMessenger.
contract CrossDomainMessengerLegacySpacer0 {
/// @custom:legacy
/// @custom:spacer libAddressManager
/// @notice Spacer for backwards compatibility.
address private spacer_0_0_20;
}
/// @custom:legacy
/// @title CrossDomainMessengerLegacySpacer1
/// @notice Contract only exists to add a spacer to the CrossDomainMessenger where the
/// PausableUpgradable and OwnableUpgradeable variables used to exist. Must be
/// the third contract in the inheritance tree of the CrossDomainMessenger.
contract CrossDomainMessengerLegacySpacer1 {
/// @custom:legacy
/// @custom:spacer ContextUpgradable's __gap
/// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
/// ContextUpgradable.
uint256[50] private spacer_1_0_1600;
/// @custom:legacy
/// @custom:spacer OwnableUpgradeable's _owner
/// @notice Spacer for backwards compatibility.
/// Come from OpenZeppelin OwnableUpgradeable.
address private spacer_51_0_20;
/// @custom:legacy
/// @custom:spacer OwnableUpgradeable's __gap
/// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
/// OwnableUpgradeable.
uint256[49] private spacer_52_0_1568;
/// @custom:legacy
/// @custom:spacer PausableUpgradable's _paused
/// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
/// PausableUpgradable.
bool private spacer_101_0_1;
/// @custom:legacy
/// @custom:spacer PausableUpgradable's __gap
/// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
/// PausableUpgradable.
uint256[49] private spacer_102_0_1568;
/// @custom:legacy
/// @custom:spacer ReentrancyGuardUpgradeable's `_status` field.
/// @notice Spacer for backwards compatibility.
uint256 private spacer_151_0_32;
/// @custom:legacy
/// @custom:spacer ReentrancyGuardUpgradeable's __gap
/// @notice Spacer for backwards compatibility.
uint256[49] private spacer_152_0_1568;
/// @custom:legacy
/// @custom:spacer blockedMessages
/// @notice Spacer for backwards compatibility.
mapping(bytes32 => bool) private spacer_201_0_32;
/// @custom:legacy
/// @custom:spacer relayedMessages
/// @notice Spacer for backwards compatibility.
mapping(bytes32 => bool) private spacer_202_0_32;
}
/// @custom:upgradeable
/// @title CrossDomainMessenger
/// @notice CrossDomainMessenger is a base contract that provides the core logic for the L1 and L2
/// cross-chain messenger contracts. It's designed to be a universal interface that only
/// needs to be extended slightly to provide low-level message passing functionality on each
/// chain it's deployed on. Currently only designed for message passing between two paired
/// chains and does not support one-to-many interactions.
/// Any changes to this contract MUST result in a semver bump for contracts that inherit it.
abstract contract CrossDomainMessenger is
CrossDomainMessengerLegacySpacer0,
Initializable,
CrossDomainMessengerLegacySpacer1
{
/// @notice Current message version identifier.
uint16 public constant MESSAGE_VERSION = 1;
/// @notice Constant overhead added to the base gas for a message.
uint64 public constant RELAY_CONSTANT_OVERHEAD = 200_000;
/// @notice Numerator for dynamic overhead added to the base gas for a message.
uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR = 64;
/// @notice Denominator for dynamic overhead added to the base gas for a message.
uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR = 63;
/// @notice Extra gas added to base gas for each byte of calldata in a message.
uint64 public constant MIN_GAS_CALLDATA_OVERHEAD = 16;
/// @notice Gas reserved for performing the external call in `relayMessage`.
uint64 public constant RELAY_CALL_OVERHEAD = 40_000;
/// @notice Gas reserved for finalizing the execution of `relayMessage` after the safe call.
uint64 public constant RELAY_RESERVED_GAS = 40_000;
/// @notice Gas reserved for the execution between the `hasMinGas` check and the external
/// call in `relayMessage`.
uint64 public constant RELAY_GAS_CHECK_BUFFER = 5_000;
/// @notice Address of the paired CrossDomainMessenger contract on the other chain.
address public immutable OTHER_MESSENGER;
/// @notice Mapping of message hashes to boolean receipt values. Note that a message will only
/// be present in this mapping if it has successfully been relayed on this chain, and
/// can therefore not be relayed again.
mapping(bytes32 => bool) public successfulMessages;
/// @notice Address of the sender of the currently executing message on the other chain. If the
/// value of this variable is the default value (0x00000000...dead) then no message is
/// currently being executed. Use the xDomainMessageSender getter which will throw an
/// error if this is the case.
address internal xDomainMsgSender;
/// @notice Nonce for the next message to be sent, without the message version applied. Use the
/// messageNonce getter which will insert the message version into the nonce to give you
/// the actual nonce to be used for the message.
uint240 internal msgNonce;
/// @notice Mapping of message hashes to a boolean if and only if the message has failed to be
/// executed at least once. A message will not be present in this mapping if it
/// successfully executed on the first attempt.
mapping(bytes32 => bool) public failedMessages;
/// @notice Reserve extra slots in the storage layout for future upgrades.
/// A gap size of 44 was chosen here, so that the first slot used in a child contract
/// would be 1 plus a multiple of 50.
uint256[44] private __gap;
/// @notice Emitted whenever a message is sent to the other chain.
/// @param target Address of the recipient of the message.
/// @param sender Address of the sender of the message.
/// @param message Message to trigger the recipient address with.
/// @param messageNonce Unique nonce attached to the message.
/// @param gasLimit Minimum gas limit that the message can be executed with.
event SentMessage(address indexed target, address sender, bytes message, uint256 messageNonce, uint256 gasLimit);
/// @notice Additional event data to emit, required as of Bedrock. Cannot be merged with the
/// SentMessage event without breaking the ABI of this contract, this is good enough.
/// @param sender Address of the sender of the message.
/// @param value ETH value sent along with the message to the recipient.
event SentMessageExtension1(address indexed sender, uint256 value);
/// @notice Emitted whenever a message is successfully relayed on this chain.
/// @param msgHash Hash of the message that was relayed.
event RelayedMessage(bytes32 indexed msgHash);
/// @notice Emitted whenever a message fails to be relayed on this chain.
/// @param msgHash Hash of the message that failed to be relayed.
event FailedRelayedMessage(bytes32 indexed msgHash);
/// @param _otherMessenger Address of the messenger on the paired chain.
constructor(address _otherMessenger) {
OTHER_MESSENGER = _otherMessenger;
}
/// @notice Sends a message to some target address on the other chain. Note that if the call
/// always reverts, then the message will be unrelayable, and any ETH sent will be
/// permanently locked. The same will occur if the target on the other chain is
/// considered unsafe (see the _isUnsafeTarget() function).
/// @param _target Target contract or wallet address.
/// @param _message Message to trigger the target address with.
/// @param _minGasLimit Minimum gas limit that the message can be executed with.
function sendMessage(address _target, bytes calldata _message, uint32 _minGasLimit) external payable {
// Triggers a message to the other messenger. Note that the amount of gas provided to the
// message is the amount of gas requested by the user PLUS the base gas value. We want to
// guarantee the property that the call to the target contract will always have at least
// the minimum gas limit specified by the user.
_sendMessage(
OTHER_MESSENGER,
baseGas(_message, _minGasLimit),
msg.value,
abi.encodeWithSelector(
this.relayMessage.selector, messageNonce(), msg.sender, _target, msg.value, _minGasLimit, _message
)
);
emit SentMessage(_target, msg.sender, _message, messageNonce(), _minGasLimit);
emit SentMessageExtension1(msg.sender, msg.value);
unchecked {
++msgNonce;
}
}
/// @notice Relays a message that was sent by the other CrossDomainMessenger contract. Can only
/// be executed via cross-chain call from the other messenger OR if the message was
/// already received once and is currently being replayed.
/// @param _nonce Nonce of the message being relayed.
/// @param _sender Address of the user who sent the message.
/// @param _target Address that the message is targeted at.
/// @param _value ETH value to send with the message.
/// @param _minGasLimit Minimum amount of gas that the message can be executed with.
/// @param _message Message to send to the target.
function relayMessage(
uint256 _nonce,
address _sender,
address _target,
uint256 _value,
uint256 _minGasLimit,
bytes calldata _message
)
external
payable
{
// On L1 this function will check the Portal for its paused status.
// On L2 this function should be a no-op, because paused will always return false.
require(paused() == false, "CrossDomainMessenger: paused");
(, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
require(version < 2, "CrossDomainMessenger: only version 0 or 1 messages are supported at this time");
// If the message is version 0, then it's a migrated legacy withdrawal. We therefore need
// to check that the legacy version of the message has not already been relayed.
if (version == 0) {
bytes32 oldHash = Hashing.hashCrossDomainMessageV0(_target, _sender, _message, _nonce);
require(successfulMessages[oldHash] == false, "CrossDomainMessenger: legacy withdrawal already relayed");
}
// We use the v1 message hash as the unique identifier for the message because it commits
// to the value and minimum gas limit of the message.
bytes32 versionedHash =
Hashing.hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _minGasLimit, _message);
if (_isOtherMessenger()) {
// These properties should always hold when the message is first submitted (as
// opposed to being replayed).
assert(msg.value == _value);
assert(!failedMessages[versionedHash]);
} else {
require(msg.value == 0, "CrossDomainMessenger: value must be zero unless message is from a system address");
require(failedMessages[versionedHash], "CrossDomainMessenger: message cannot be replayed");
}
require(
_isUnsafeTarget(_target) == false, "CrossDomainMessenger: cannot send message to blocked system address"
);
require(successfulMessages[versionedHash] == false, "CrossDomainMessenger: message has already been relayed");
// If there is not enough gas left to perform the external call and finish the execution,
// return early and assign the message to the failedMessages mapping.
// We are asserting that we have enough gas to:
// 1. Call the target contract (_minGasLimit + RELAY_CALL_OVERHEAD + RELAY_GAS_CHECK_BUFFER)
// 1.a. The RELAY_CALL_OVERHEAD is included in `hasMinGas`.
// 2. Finish the execution after the external call (RELAY_RESERVED_GAS).
//
// If `xDomainMsgSender` is not the default L2 sender, this function
// is being re-entered. This marks the message as failed to allow it to be replayed.
if (
!SafeCall.hasMinGas(_minGasLimit, RELAY_RESERVED_GAS + RELAY_GAS_CHECK_BUFFER)
|| xDomainMsgSender != Constants.DEFAULT_L2_SENDER
) {
failedMessages[versionedHash] = true;
emit FailedRelayedMessage(versionedHash);
// Revert in this case if the transaction was triggered by the estimation address. This
// should only be possible during gas estimation or we have bigger problems. Reverting
// here will make the behavior of gas estimation change such that the gas limit
// computed will be the amount required to relay the message, even if that amount is
// greater than the minimum gas limit specified by the user.
if (tx.origin == Constants.ESTIMATION_ADDRESS) {
revert("CrossDomainMessenger: failed to relay message");
}
return;
}
xDomainMsgSender = _sender;
bool success = SafeCall.call(_target, gasleft() - RELAY_RESERVED_GAS, _value, _message);
xDomainMsgSender = Constants.DEFAULT_L2_SENDER;
if (success) {
// This check is identical to one above, but it ensures that the same message cannot be relayed
// twice, and adds a layer of protection against rentrancy.
assert(successfulMessages[versionedHash] == false);
successfulMessages[versionedHash] = true;
emit RelayedMessage(versionedHash);
} else {
failedMessages[versionedHash] = true;
emit FailedRelayedMessage(versionedHash);
// Revert in this case if the transaction was triggered by the estimation address. This
// should only be possible during gas estimation or we have bigger problems. Reverting
// here will make the behavior of gas estimation change such that the gas limit
// computed will be the amount required to relay the message, even if that amount is
// greater than the minimum gas limit specified by the user.
if (tx.origin == Constants.ESTIMATION_ADDRESS) {
revert("CrossDomainMessenger: failed to relay message");
}
}
}
/// @notice Retrieves the address of the contract or wallet that initiated the currently
/// executing message on the other chain. Will throw an error if there is no message
/// currently being executed. Allows the recipient of a call to see who triggered it.
/// @return Address of the sender of the currently executing message on the other chain.
function xDomainMessageSender() external view returns (address) {
require(
xDomainMsgSender != Constants.DEFAULT_L2_SENDER, "CrossDomainMessenger: xDomainMessageSender is not set"
);
return xDomainMsgSender;
}
/// @notice Retrieves the next message nonce. Message version will be added to the upper two
/// bytes of the message nonce. Message version allows us to treat messages as having
/// different structures.
/// @return Nonce of the next message to be sent, with added message version.
function messageNonce() public view returns (uint256) {
return Encoding.encodeVersionedNonce(msgNonce, MESSAGE_VERSION);
}
/// @notice Computes the amount of gas required to guarantee that a given message will be
/// received on the other chain without running out of gas. Guaranteeing that a message
/// will not run out of gas is important because this ensures that a message can always
/// be replayed on the other chain if it fails to execute completely.
/// @param _message Message to compute the amount of required gas for.
/// @param _minGasLimit Minimum desired gas limit when message goes to target.
/// @return Amount of gas required to guarantee message receipt.
function baseGas(bytes calldata _message, uint32 _minGasLimit) public pure returns (uint64) {
return
// Constant overhead
RELAY_CONSTANT_OVERHEAD
// Calldata overhead
+ (uint64(_message.length) * MIN_GAS_CALLDATA_OVERHEAD)
// Dynamic overhead (EIP-150)
+ ((_minGasLimit * MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR) / MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR)
// Gas reserved for the worst-case cost of 3/5 of the `CALL` opcode's dynamic gas
// factors. (Conservative)
+ RELAY_CALL_OVERHEAD
// Relay reserved gas (to ensure execution of `relayMessage` completes after the
// subcontext finishes executing) (Conservative)
+ RELAY_RESERVED_GAS
// Gas reserved for the execution between the `hasMinGas` check and the `CALL`
// opcode. (Conservative)
+ RELAY_GAS_CHECK_BUFFER;
}
/// @notice Initializer.
// solhint-disable-next-line func-name-mixedcase
function __CrossDomainMessenger_init() internal onlyInitializing {
// We only want to set the xDomainMsgSender to the default value if it hasn't been initialized yet,
// meaning that this is a fresh contract deployment.
// This prevents resetting the xDomainMsgSender to the default value during an upgrade, which would enable
// a reentrant withdrawal to sandwhich the upgrade replay a withdrawal twice.
if (xDomainMsgSender == address(0)) {
xDomainMsgSender = Constants.DEFAULT_L2_SENDER;
}
}
/// @notice Sends a low-level message to the other messenger. Needs to be implemented by child
/// contracts because the logic for this depends on the network where the messenger is
/// being deployed.
/// @param _to Recipient of the message on the other chain.
/// @param _gasLimit Minimum gas limit the message can be executed with.
/// @param _value Amount of ETH to send with the message.
/// @param _data Message data.
function _sendMessage(address _to, uint64 _gasLimit, uint256 _value, bytes memory _data) internal virtual;
/// @notice Checks whether the message is coming from the other messenger. Implemented by child
/// contracts because the logic for this depends on the network where the messenger is
/// being deployed.
/// @return Whether the message is coming from the other messenger.
function _isOtherMessenger() internal view virtual returns (bool);
/// @notice Checks whether a given call target is a system address that could cause the
/// messenger to peform an unsafe action. This is NOT a mechanism for blocking user
/// addresses. This is ONLY used to prevent the execution of messages to specific
/// system addresses that could cause security issues, e.g., having the
/// CrossDomainMessenger send messages to itself.
/// @param _target Address of the contract to check.
/// @return Whether or not the address is an unsafe system address.
function _isUnsafeTarget(address _target) internal view virtual returns (bool);
/// @notice This function should return true if the contract is paused.
/// On L1 this function will check the SuperchainConfig for its paused status.
/// On L2 this function should be a no-op.
/// @return Whether or not the contract is paused.
function paused() public view virtual returns (bool) {
return false;
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @title ISemver
/// @notice ISemver is a simple contract for ensuring that contracts are
/// versioned using semantic versioning.
interface ISemver {
/// @notice Getter for the semantic version of the contract. This is not
/// meant to be used onchain but instead meant to be used by offchain
/// tooling.
/// @return Semver contract version as a string.
function version() external view returns (string memory);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { ResourceMetering } from "src/L1/ResourceMetering.sol";
/// @title Constants
/// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
/// the stuff used in multiple contracts. Constants that only apply to a single contract
/// should be defined in that contract instead.
library Constants {
/// @notice Special address to be used as the tx origin for gas estimation calls in the
/// OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
/// the minimum gas limit specified by the user is not actually enough to execute the
/// given message and you're attempting to estimate the actual necessary gas limit. We
/// use address(1) because it's the ecrecover precompile and therefore guaranteed to
/// never have any code on any EVM chain.
address internal constant ESTIMATION_ADDRESS = address(1);
/// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
/// CrossDomainMessenger contracts before an actual sender is set. This value is
/// non-zero to reduce the gas cost of message passing transactions.
address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
/// @notice The storage slot that holds the address of a proxy implementation.
/// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
/// @notice The storage slot that holds the address of the owner.
/// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
/// @notice Returns the default values for the ResourceConfig. These are the recommended values
/// for a production network.
function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) {
ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
maxResourceLimit: 20_000_000,
elasticityMultiplier: 10,
baseFeeMaxChangeDenominator: 8,
minimumBaseFee: 1 gwei,
systemTxMaxGas: 1_000_000,
maximumBaseFee: type(uint128).max
});
return config;
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @title Predeploys
/// @notice Contains constant addresses for contracts that are pre-deployed to the L2 system.
library Predeploys {
/// @notice Address of the L2ToL1MessagePasser predeploy.
address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000016;
/// @notice Address of the L2CrossDomainMessenger predeploy.
address internal constant L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000007;
/// @notice Address of the L2StandardBridge predeploy.
address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010;
/// @notice Address of the L2ERC721Bridge predeploy.
address internal constant L2_ERC721_BRIDGE = 0x4200000000000000000000000000000000000014;
//// @notice Address of the SequencerFeeWallet predeploy.
address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011;
/// @notice Address of the OptimismMintableERC20Factory predeploy.
address internal constant OPTIMISM_MINTABLE_ERC20_FACTORY = 0x4200000000000000000000000000000000000012;
/// @notice Address of the OptimismMintableERC721Factory predeploy.
address internal constant OPTIMISM_MINTABLE_ERC721_FACTORY = 0x4200000000000000000000000000000000000017;
/// @notice Address of the L1Block predeploy.
address internal constant L1_BLOCK_ATTRIBUTES = 0x4200000000000000000000000000000000000015;
/// @notice Address of the GasPriceOracle predeploy. Includes fee information
/// and helpers for computing the L1 portion of the transaction fee.
address internal constant GAS_PRICE_ORACLE = 0x420000000000000000000000000000000000000F;
/// @custom:legacy
/// @notice Address of the L1MessageSender predeploy. Deprecated. Use L2CrossDomainMessenger
/// or access tx.origin (or msg.sender) in a L1 to L2 transaction instead.
address internal constant L1_MESSAGE_SENDER = 0x4200000000000000000000000000000000000001;
/// @custom:legacy
/// @notice Address of the DeployerWhitelist predeploy. No longer active.
address internal constant DEPLOYER_WHITELIST = 0x4200000000000000000000000000000000000002;
/// @notice Address of the canonical WETH9 contract.
address internal constant WETH9 = 0x4200000000000000000000000000000000000006;
/// @custom:legacy
/// @notice Address of the LegacyERC20ETH predeploy. Deprecated. Balances are migrated to the
/// state trie as of the Bedrock upgrade. Contract has been locked and write functions
/// can no longer be accessed.
address internal constant LEGACY_ERC20_ETH = 0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000;
/// @custom:legacy
/// @notice Address of the L1BlockNumber predeploy. Deprecated. Use the L1Block predeploy
/// instead, which exposes more information about the L1 state.
address internal constant L1_BLOCK_NUMBER = 0x4200000000000000000000000000000000000013;
/// @custom:legacy
/// @notice Address of the LegacyMessagePasser predeploy. Deprecate. Use the updated
/// L2ToL1MessagePasser contract instead.
address internal constant LEGACY_MESSAGE_PASSER = 0x4200000000000000000000000000000000000000;
/// @notice Address of the ProxyAdmin predeploy.
address internal constant PROXY_ADMIN = 0x4200000000000000000000000000000000000018;
/// @notice Address of the BaseFeeVault predeploy.
address internal constant BASE_FEE_VAULT = 0x4200000000000000000000000000000000000019;
/// @notice Address of the L1FeeVault predeploy.
address internal constant L1_FEE_VAULT = 0x420000000000000000000000000000000000001A;
/// @notice Address of the GovernanceToken predeploy.
address internal constant GOVERNANCE_TOKEN = 0x4200000000000000000000000000000000000042;
/// @notice Address of the SchemaRegistry predeploy.
address internal constant SCHEMA_REGISTRY = 0x4200000000000000000000000000000000000020;
/// @notice Address of the EAS predeploy.
address internal constant EAS = 0x4200000000000000000000000000000000000021;
/// @notice Address of the MultiCall3 predeploy.
address internal constant MultiCall3 = 0xcA11bde05977b3631167028862bE2a173976CA11;
/// @notice Address of the Create2Deployer predeploy.
address internal constant Create2Deployer = 0x13b0D85CcB8bf860b6b79AF3029fCA081AE9beF2;
/// @notice Address of the Safe_v130 predeploy.
address internal constant Safe_v130 = 0x69f4D1788e39c87893C980c06EdF4b7f686e2938;
/// @notice Address of the SafeL2_v130 predeploy.
address internal constant SafeL2_v130 = 0xfb1bffC9d739B8D520DaF37dF666da4C687191EA;
/// @notice Address of the MultiSendCallOnly_v130 predeploy.
address internal constant MultiSendCallOnly_v130 = 0xA1dabEF33b3B82c7814B6D82A79e50F4AC44102B;
/// @notice Address of the SafeSingletonFactory predeploy.
address internal constant SafeSingletonFactory = 0x914d7Fec6aaC8cd542e72Bca78B30650d45643d7;
/// @notice Address of the DeterministicDeploymentProxy predeploy.
address internal constant DeterministicDeploymentProxy = 0x4e59b44847b379578588920cA78FbF26c0B4956C;
/// @notice Address of the MultiSend_v130 predeploy.
address internal constant MultiSend_v130 = 0x998739BFdAAdde7C933B942a68053933098f9EDa;
/// @notice Address of the Permit2 predeploy.
address internal constant Permit2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3;
/// @notice Address of the SenderCreator predeploy.
address internal constant SenderCreator = 0x7fc98430eAEdbb6070B35B39D798725049088348;
/// @notice Address of the EntryPoint predeploy.
address internal constant EntryPoint = 0x5FF137D4b0FDCD49DcA30c7CF57E578a026d2789;
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
import { ISemver } from "src/universal/ISemver.sol";
import { Storage } from "src/libraries/Storage.sol";
/// @custom:audit none This contracts is not yet audited.
/// @title SuperchainConfig
/// @notice The SuperchainConfig contract is used to manage configuration of global superchain values.
contract SuperchainConfig is Initializable, ISemver {
/// @notice Enum representing different types of updates.
/// @custom:value GUARDIAN Represents an update to the guardian.
enum UpdateType {
GUARDIAN
}
/// @notice Whether or not the Superchain is paused.
bytes32 public constant PAUSED_SLOT = bytes32(uint256(keccak256("superchainConfig.paused")) - 1);
/// @notice The address of the guardian, which can pause withdrawals from the System.
/// It can only be modified by an upgrade.
bytes32 public constant GUARDIAN_SLOT = bytes32(uint256(keccak256("superchainConfig.guardian")) - 1);
/// @notice Emitted when the pause is triggered.
/// @param identifier A string helping to identify provenance of the pause transaction.
event Paused(string identifier);
/// @notice Emitted when the pause is lifted.
event Unpaused();
/// @notice Emitted when configuration is updated.
/// @param updateType Type of update.
/// @param data Encoded update data.
event ConfigUpdate(UpdateType indexed updateType, bytes data);
/// @notice Semantic version.
/// @custom:semver 1.1.0
string public constant version = "1.1.0";
/// @notice Constructs the SuperchainConfig contract.
constructor() {
initialize({ _guardian: address(0), _paused: false });
}
/// @notice Initializer.
/// @param _guardian Address of the guardian, can pause the OptimismPortal.
/// @param _paused Initial paused status.
function initialize(address _guardian, bool _paused) public initializer {
_setGuardian(_guardian);
if (_paused) {
_pause("Initializer paused");
}
}
/// @notice Getter for the guardian address.
function guardian() public view returns (address guardian_) {
guardian_ = Storage.getAddress(GUARDIAN_SLOT);
}
/// @notice Getter for the current paused status.
function paused() public view returns (bool paused_) {
paused_ = Storage.getBool(PAUSED_SLOT);
}
/// @notice Pauses withdrawals.
/// @param _identifier (Optional) A string to identify provenance of the pause transaction.
function pause(string memory _identifier) external {
require(msg.sender == guardian(), "SuperchainConfig: only guardian can pause");
_pause(_identifier);
}
/// @notice Pauses withdrawals.
/// @param _identifier (Optional) A string to identify provenance of the pause transaction.
function _pause(string memory _identifier) internal {
Storage.setBool(PAUSED_SLOT, true);
emit Paused(_identifier);
}
/// @notice Unpauses withdrawals.
function unpause() external {
require(msg.sender == guardian(), "SuperchainConfig: only guardian can unpause");
Storage.setBool(PAUSED_SLOT, false);
emit Unpaused();
}
/// @notice Sets the guardian address. This is only callable during initialization, so an upgrade
/// will be required to change the guardian.
/// @param _guardian The new guardian address.
function _setGuardian(address _guardian) internal {
Storage.setAddress(GUARDIAN_SLOT, _guardian);
emit ConfigUpdate(UpdateType.GUARDIAN, abi.encode(_guardian));
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
require(isContract(target), "Address: delegate call to non-contract");
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.2;
import "../../utils/Address.sol";
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Indicates that the contract has been initialized.
* @custom:oz-retyped-from bool
*/
uint8 private _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool private _initializing;
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint8 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
*/
modifier initializer() {
bool isTopLevelCall = !_initializing;
require(
(isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
"Initializable: contract is already initialized"
);
_initialized = 1;
if (isTopLevelCall) {
_initializing = true;
}
_;
if (isTopLevelCall) {
_initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
* initialization step. This is essential to configure modules that are added through upgrades and that require
* initialization.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*/
modifier reinitializer(uint8 version) {
require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
_initialized = version;
_initializing = true;
_;
_initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
require(_initializing, "Initializable: contract is not initializing");
_;
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*/
function _disableInitializers() internal virtual {
require(!_initializing, "Initializable: contract is initializing");
if (_initialized < type(uint8).max) {
_initialized = type(uint8).max;
emit Initialized(type(uint8).max);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.0;
import "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes calldata data
) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool _approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (token/ERC721/extensions/IERC721Enumerable.sol)
pragma solidity ^0.8.0;
import "../IERC721.sol";
/**
* @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
*/
interface IERC721Enumerable is IERC721 {
/**
* @dev Returns the total amount of tokens stored by the contract.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns a token ID owned by `owner` at a given `index` of its token list.
* Use along with {balanceOf} to enumerate all of ``owner``'s tokens.
*/
function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256);
/**
* @dev Returns a token ID at a given `index` of all the tokens stored by the contract.
* Use along with {totalSupply} to enumerate all tokens.
*/
function tokenByIndex(uint256 index) external view returns (uint256);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.2;
import "../../utils/AddressUpgradeable.sol";
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Indicates that the contract has been initialized.
* @custom:oz-retyped-from bool
*/
uint8 private _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool private _initializing;
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint8 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
*/
modifier initializer() {
bool isTopLevelCall = !_initializing;
require(
(isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
"Initializable: contract is already initialized"
);
_initialized = 1;
if (isTopLevelCall) {
_initializing = true;
}
_;
if (isTopLevelCall) {
_initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
* initialization step. This is essential to configure modules that are added through upgrades and that require
* initialization.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*/
modifier reinitializer(uint8 version) {
require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
_initialized = version;
_initializing = true;
_;
_initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
require(_initializing, "Initializable: contract is not initializing");
_;
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*/
function _disableInitializers() internal virtual {
require(!_initializing, "Initializable: contract is initializing");
if (_initialized < type(uint8).max) {
_initialized = type(uint8).max;
emit Initialized(type(uint8).max);
}
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
/// @title SafeCall
/// @notice Perform low level safe calls
library SafeCall {
/// @notice Performs a low level call without copying any returndata.
/// @dev Passes no calldata to the call context.
/// @param _target Address to call
/// @param _gas Amount of gas to pass to the call
/// @param _value Amount of value to pass to the call
function send(address _target, uint256 _gas, uint256 _value) internal returns (bool) {
bool _success;
assembly {
_success :=
call(
_gas, // gas
_target, // recipient
_value, // ether value
0, // inloc
0, // inlen
0, // outloc
0 // outlen
)
}
return _success;
}
/// @notice Perform a low level call without copying any returndata
/// @param _target Address to call
/// @param _gas Amount of gas to pass to the call
/// @param _value Amount of value to pass to the call
/// @param _calldata Calldata to pass to the call
function call(address _target, uint256 _gas, uint256 _value, bytes memory _calldata) internal returns (bool) {
bool _success;
assembly {
_success :=
call(
_gas, // gas
_target, // recipient
_value, // ether value
add(_calldata, 32), // inloc
mload(_calldata), // inlen
0, // outloc
0 // outlen
)
}
return _success;
}
/// @notice Helper function to determine if there is sufficient gas remaining within the context
/// to guarantee that the minimum gas requirement for a call will be met as well as
/// optionally reserving a specified amount of gas for after the call has concluded.
/// @param _minGas The minimum amount of gas that may be passed to the target context.
/// @param _reservedGas Optional amount of gas to reserve for the caller after the execution
/// of the target context.
/// @return `true` if there is enough gas remaining to safely supply `_minGas` to the target
/// context as well as reserve `_reservedGas` for the caller after the execution of
/// the target context.
/// @dev !!!!! FOOTGUN ALERT !!!!!
/// 1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the
/// `CALL` opcode's `address_access_cost`, `positive_value_cost`, and
/// `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is
/// still possible to self-rekt by initiating a withdrawal with a minimum gas limit
/// that does not account for the `memory_expansion_cost` & `code_execution_cost`
/// factors of the dynamic cost of the `CALL` opcode.
/// 2.) This function should *directly* precede the external call if possible. There is an
/// added buffer to account for gas consumed between this check and the call, but it
/// is only 5,700 gas.
/// 3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call
/// frame may be passed to a subcontext, we need to ensure that the gas will not be
/// truncated.
/// 4.) Use wisely. This function is not a silver bullet.
function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) {
bool _hasMinGas;
assembly {
// Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas)
_hasMinGas := iszero(lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63))))
}
return _hasMinGas;
}
/// @notice Perform a low level call without copying any returndata. This function
/// will revert if the call cannot be performed with the specified minimum
/// gas.
/// @param _target Address to call
/// @param _minGas The minimum amount of gas that may be passed to the call
/// @param _value Amount of value to pass to the call
/// @param _calldata Calldata to pass to the call
function callWithMinGas(
address _target,
uint256 _minGas,
uint256 _value,
bytes memory _calldata
)
internal
returns (bool)
{
bool _success;
bool _hasMinGas = hasMinGas(_minGas, 0);
assembly {
// Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000
if iszero(_hasMinGas) {
// Store the "Error(string)" selector in scratch space.
mstore(0, 0x08c379a0)
// Store the pointer to the string length in scratch space.
mstore(32, 32)
// Store the string.
//
// SAFETY:
// - We pad the beginning of the string with two zero bytes as well as the
// length (24) to ensure that we override the free memory pointer at offset
// 0x40. This is necessary because the free memory pointer is likely to
// be greater than 1 byte when this function is called, but it is incredibly
// unlikely that it will be greater than 3 bytes. As for the data within
// 0x60, it is ensured that it is 0 due to 0x60 being the zero offset.
// - It's fine to clobber the free memory pointer, we're reverting.
mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173)
// Revert with 'Error("SafeCall: Not enough gas")'
revert(28, 100)
}
// The call will be supplied at least ((_minGas * 64) / 63) gas due to the
// above assertion. This ensures that, in all circumstances (except for when the
// `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost`
// factors of the dynamic cost of the `CALL` opcode), the call will receive at least
// the minimum amount of gas specified.
_success :=
call(
gas(), // gas
_target, // recipient
_value, // ether value
add(_calldata, 32), // inloc
mload(_calldata), // inlen
0x00, // outloc
0x00 // outlen
)
}
return _success;
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { Types } from "src/libraries/Types.sol";
import { Encoding } from "src/libraries/Encoding.sol";
/// @title Hashing
/// @notice Hashing handles Optimism's various different hashing schemes.
library Hashing {
/// @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a
/// given deposit is sent to the L2 system. Useful for searching for a deposit in the L2
/// system.
/// @param _tx User deposit transaction to hash.
/// @return Hash of the RLP encoded L2 deposit transaction.
function hashDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes32) {
return keccak256(Encoding.encodeDepositTransaction(_tx));
}
/// @notice Computes the deposit transaction's "source hash", a value that guarantees the hash
/// of the L2 transaction that corresponds to a deposit is unique and is
/// deterministically generated from L1 transaction data.
/// @param _l1BlockHash Hash of the L1 block where the deposit was included.
/// @param _logIndex The index of the log that created the deposit transaction.
/// @return Hash of the deposit transaction's "source hash".
function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex) internal pure returns (bytes32) {
bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex));
return keccak256(abi.encode(bytes32(0), depositId));
}
/// @notice Hashes the cross domain message based on the version that is encoded into the
/// message nonce.
/// @param _nonce Message nonce with version encoded into the first two bytes.
/// @param _sender Address of the sender of the message.
/// @param _target Address of the target of the message.
/// @param _value ETH value to send to the target.
/// @param _gasLimit Gas limit to use for the message.
/// @param _data Data to send with the message.
/// @return Hashed cross domain message.
function hashCrossDomainMessage(
uint256 _nonce,
address _sender,
address _target,
uint256 _value,
uint256 _gasLimit,
bytes memory _data
)
internal
pure
returns (bytes32)
{
(, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
if (version == 0) {
return hashCrossDomainMessageV0(_target, _sender, _data, _nonce);
} else if (version == 1) {
return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
} else {
revert("Hashing: unknown cross domain message version");
}
}
/// @notice Hashes a cross domain message based on the V0 (legacy) encoding.
/// @param _target Address of the target of the message.
/// @param _sender Address of the sender of the message.
/// @param _data Data to send with the message.
/// @param _nonce Message nonce.
/// @return Hashed cross domain message.
function hashCrossDomainMessageV0(
address _target,
address _sender,
bytes memory _data,
uint256 _nonce
)
internal
pure
returns (bytes32)
{
return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce));
}
/// @notice Hashes a cross domain message based on the V1 (current) encoding.
/// @param _nonce Message nonce.
/// @param _sender Address of the sender of the message.
/// @param _target Address of the target of the message.
/// @param _value ETH value to send to the target.
/// @param _gasLimit Gas limit to use for the message.
/// @param _data Data to send with the message.
/// @return Hashed cross domain message.
function hashCrossDomainMessageV1(
uint256 _nonce,
address _sender,
address _target,
uint256 _value,
uint256 _gasLimit,
bytes memory _data
)
internal
pure
returns (bytes32)
{
return keccak256(Encoding.encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data));
}
/// @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract
/// @param _tx Withdrawal transaction to hash.
/// @return Hashed withdrawal transaction.
function hashWithdrawal(Types.WithdrawalTransaction memory _tx) internal pure returns (bytes32) {
return keccak256(abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data));
}
/// @notice Hashes the various elements of an output root proof into an output root hash which
/// can be used to check if the proof is valid.
/// @param _outputRootProof Output root proof which should hash to an output root.
/// @return Hashed output root proof.
function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) {
return keccak256(
abi.encode(
_outputRootProof.version,
_outputRootProof.stateRoot,
_outputRootProof.messagePasserStorageRoot,
_outputRootProof.latestBlockhash
)
);
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { Types } from "src/libraries/Types.sol";
import { Hashing } from "src/libraries/Hashing.sol";
import { RLPWriter } from "src/libraries/rlp/RLPWriter.sol";
/// @title Encoding
/// @notice Encoding handles Optimism's various different encoding schemes.
library Encoding {
/// @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent
/// to the L2 system. Useful for searching for a deposit in the L2 system. The
/// transaction is prefixed with 0x7e to identify its EIP-2718 type.
/// @param _tx User deposit transaction to encode.
/// @return RLP encoded L2 deposit transaction.
function encodeDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes memory) {
bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex);
bytes[] memory raw = new bytes[](8);
raw[0] = RLPWriter.writeBytes(abi.encodePacked(source));
raw[1] = RLPWriter.writeAddress(_tx.from);
raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to);
raw[3] = RLPWriter.writeUint(_tx.mint);
raw[4] = RLPWriter.writeUint(_tx.value);
raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit));
raw[6] = RLPWriter.writeBool(false);
raw[7] = RLPWriter.writeBytes(_tx.data);
return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw));
}
/// @notice Encodes the cross domain message based on the version that is encoded into the
/// message nonce.
/// @param _nonce Message nonce with version encoded into the first two bytes.
/// @param _sender Address of the sender of the message.
/// @param _target Address of the target of the message.
/// @param _value ETH value to send to the target.
/// @param _gasLimit Gas limit to use for the message.
/// @param _data Data to send with the message.
/// @return Encoded cross domain message.
function encodeCrossDomainMessage(
uint256 _nonce,
address _sender,
address _target,
uint256 _value,
uint256 _gasLimit,
bytes memory _data
)
internal
pure
returns (bytes memory)
{
(, uint16 version) = decodeVersionedNonce(_nonce);
if (version == 0) {
return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce);
} else if (version == 1) {
return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
} else {
revert("Encoding: unknown cross domain message version");
}
}
/// @notice Encodes a cross domain message based on the V0 (legacy) encoding.
/// @param _target Address of the target of the message.
/// @param _sender Address of the sender of the message.
/// @param _data Data to send with the message.
/// @param _nonce Message nonce.
/// @return Encoded cross domain message.
function encodeCrossDomainMessageV0(
address _target,
address _sender,
bytes memory _data,
uint256 _nonce
)
internal
pure
returns (bytes memory)
{
return abi.encodeWithSignature("relayMessage(address,address,bytes,uint256)", _target, _sender, _data, _nonce);
}
/// @notice Encodes a cross domain message based on the V1 (current) encoding.
/// @param _nonce Message nonce.
/// @param _sender Address of the sender of the message.
/// @param _target Address of the target of the message.
/// @param _value ETH value to send to the target.
/// @param _gasLimit Gas limit to use for the message.
/// @param _data Data to send with the message.
/// @return Encoded cross domain message.
function encodeCrossDomainMessageV1(
uint256 _nonce,
address _sender,
address _target,
uint256 _value,
uint256 _gasLimit,
bytes memory _data
)
internal
pure
returns (bytes memory)
{
return abi.encodeWithSignature(
"relayMessage(uint256,address,address,uint256,uint256,bytes)",
_nonce,
_sender,
_target,
_value,
_gasLimit,
_data
);
}
/// @notice Adds a version number into the first two bytes of a message nonce.
/// @param _nonce Message nonce to encode into.
/// @param _version Version number to encode into the message nonce.
/// @return Message nonce with version encoded into the first two bytes.
function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) {
uint256 nonce;
assembly {
nonce := or(shl(240, _version), _nonce)
}
return nonce;
}
/// @notice Pulls the version out of a version-encoded nonce.
/// @param _nonce Message nonce with version encoded into the first two bytes.
/// @return Nonce without encoded version.
/// @return Version of the message.
function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) {
uint240 nonce;
uint16 version;
assembly {
nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
version := shr(240, _nonce)
}
return (nonce, version);
}
/// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesEcotone
/// @param baseFeeScalar L1 base fee Scalar
/// @param blobBaseFeeScalar L1 blob base fee Scalar
/// @param sequenceNumber Number of L2 blocks since epoch start.
/// @param timestamp L1 timestamp.
/// @param number L1 blocknumber.
/// @param baseFee L1 base fee.
/// @param blobBaseFee L1 blob base fee.
/// @param hash L1 blockhash.
/// @param batcherHash Versioned hash to authenticate batcher by.
function encodeSetL1BlockValuesEcotone(
uint32 baseFeeScalar,
uint32 blobBaseFeeScalar,
uint64 sequenceNumber,
uint64 timestamp,
uint64 number,
uint256 baseFee,
uint256 blobBaseFee,
bytes32 hash,
bytes32 batcherHash
)
internal
pure
returns (bytes memory)
{
bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesEcotone()"));
return abi.encodePacked(
functionSignature,
baseFeeScalar,
blobBaseFeeScalar,
sequenceNumber,
timestamp,
number,
baseFee,
blobBaseFee,
hash,
batcherHash
);
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
import { Burn } from "src/libraries/Burn.sol";
import { Arithmetic } from "src/libraries/Arithmetic.sol";
/// @custom:upgradeable
/// @title ResourceMetering
/// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
/// updates automatically based on current demand.
abstract contract ResourceMetering is Initializable {
/// @notice Represents the various parameters that control the way in which resources are
/// metered. Corresponds to the EIP-1559 resource metering system.
/// @custom:field prevBaseFee Base fee from the previous block(s).
/// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
/// @custom:field prevBlockNum Last block number that the base fee was updated.
struct ResourceParams {
uint128 prevBaseFee;
uint64 prevBoughtGas;
uint64 prevBlockNum;
}
/// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
/// market. These values should be set with care as it is possible to set them in
/// a way that breaks the deposit gas market. The target resource limit is defined as
/// maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
/// single word. There is additional space for additions in the future.
/// @custom:field maxResourceLimit Represents the maximum amount of deposit gas that
/// can be purchased per block.
/// @custom:field elasticityMultiplier Determines the target resource limit along with
/// the resource limit.
/// @custom:field baseFeeMaxChangeDenominator Determines max change on fee per block.
/// @custom:field minimumBaseFee The min deposit base fee, it is clamped to this
/// value.
/// @custom:field systemTxMaxGas The amount of gas supplied to the system
/// transaction. This should be set to the same
/// number that the op-node sets as the gas limit
/// for the system transaction.
/// @custom:field maximumBaseFee The max deposit base fee, it is clamped to this
/// value.
struct ResourceConfig {
uint32 maxResourceLimit;
uint8 elasticityMultiplier;
uint8 baseFeeMaxChangeDenominator;
uint32 minimumBaseFee;
uint32 systemTxMaxGas;
uint128 maximumBaseFee;
}
/// @notice EIP-1559 style gas parameters.
ResourceParams public params;
/// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
uint256[48] private __gap;
/// @notice Meters access to a function based an amount of a requested resource.
/// @param _amount Amount of the resource requested.
modifier metered(uint64 _amount) {
// Record initial gas amount so we can refund for it later.
uint256 initialGas = gasleft();
// Run the underlying function.
_;
// Run the metering function.
_metered(_amount, initialGas);
}
/// @notice An internal function that holds all of the logic for metering a resource.
/// @param _amount Amount of the resource requested.
/// @param _initialGas The amount of gas before any modifier execution.
function _metered(uint64 _amount, uint256 _initialGas) internal {
// Update block number and base fee if necessary.
uint256 blockDiff = block.number - params.prevBlockNum;
ResourceConfig memory config = _resourceConfig();
int256 targetResourceLimit =
int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
if (blockDiff > 0) {
// Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
// at which deposits can be created and therefore limit the potential for deposits to
// spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
/ (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
// Update base fee by adding the base fee delta and clamp the resulting value between
// min and max.
int256 newBaseFee = Arithmetic.clamp({
_value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
_min: int256(uint256(config.minimumBaseFee)),
_max: int256(uint256(config.maximumBaseFee))
});
// If we skipped more than one block, we also need to account for every empty block.
// Empty block means there was no demand for deposits in that block, so we should
// reflect this lack of demand in the fee.
if (blockDiff > 1) {
// Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
// blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
// between min and max.
newBaseFee = Arithmetic.clamp({
_value: Arithmetic.cdexp({
_coefficient: newBaseFee,
_denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
_exponent: int256(blockDiff - 1)
}),
_min: int256(uint256(config.minimumBaseFee)),
_max: int256(uint256(config.maximumBaseFee))
});
}
// Update new base fee, reset bought gas, and update block number.
params.prevBaseFee = uint128(uint256(newBaseFee));
params.prevBoughtGas = 0;
params.prevBlockNum = uint64(block.number);
}
// Make sure we can actually buy the resource amount requested by the user.
params.prevBoughtGas += _amount;
require(
int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
"ResourceMetering: cannot buy more gas than available gas limit"
);
// Determine the amount of ETH to be paid.
uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
// We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
// into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
// division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
// periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
// during any 1 day period in the last 5 years, so should be fine.
uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
// Give the user a refund based on the amount of gas they used to do all of the work up to
// this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
// effectively like a dynamic stipend (with a minimum value).
uint256 usedGas = _initialGas - gasleft();
if (gasCost > usedGas) {
Burn.gas(gasCost - usedGas);
}
}
/// @notice Virtual function that returns the resource config.
/// Contracts that inherit this contract must implement this function.
/// @return ResourceConfig
function _resourceConfig() internal virtual returns (ResourceConfig memory);
/// @notice Sets initial resource parameter values.
/// This function must either be called by the initializer function of an upgradeable
/// child contract.
// solhint-disable-next-line func-name-mixedcase
function __ResourceMetering_init() internal onlyInitializing {
if (params.prevBlockNum == 0) {
params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
}
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @title Storage
/// @notice Storage handles reading and writing to arbitary storage locations
library Storage {
/// @notice Returns an address stored in an arbitrary storage slot.
/// These storage slots decouple the storage layout from
/// solc's automation.
/// @param _slot The storage slot to retrieve the address from.
function getAddress(bytes32 _slot) internal view returns (address addr_) {
assembly {
addr_ := sload(_slot)
}
}
/// @notice Stores an address in an arbitrary storage slot, `_slot`.
/// @param _slot The storage slot to store the address in.
/// @param _address The protocol version to store
/// @dev WARNING! This function must be used cautiously, as it allows for overwriting addresses
/// in arbitrary storage slots.
function setAddress(bytes32 _slot, address _address) internal {
assembly {
sstore(_slot, _address)
}
}
/// @notice Returns a uint256 stored in an arbitrary storage slot.
/// These storage slots decouple the storage layout from
/// solc's automation.
/// @param _slot The storage slot to retrieve the address from.
function getUint(bytes32 _slot) internal view returns (uint256 value_) {
assembly {
value_ := sload(_slot)
}
}
/// @notice Stores a value in an arbitrary storage slot, `_slot`.
/// @param _slot The storage slot to store the address in.
/// @param _value The protocol version to store
/// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
/// in arbitrary storage slots.
function setUint(bytes32 _slot, uint256 _value) internal {
assembly {
sstore(_slot, _value)
}
}
/// @notice Returns a bytes32 stored in an arbitrary storage slot.
/// These storage slots decouple the storage layout from
/// solc's automation.
/// @param _slot The storage slot to retrieve the address from.
function getBytes32(bytes32 _slot) internal view returns (bytes32 value_) {
assembly {
value_ := sload(_slot)
}
}
/// @notice Stores a bytes32 value in an arbitrary storage slot, `_slot`.
/// @param _slot The storage slot to store the address in.
/// @param _value The bytes32 value to store.
/// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
/// in arbitrary storage slots.
function setBytes32(bytes32 _slot, bytes32 _value) internal {
assembly {
sstore(_slot, _value)
}
}
/// @notice Stores a bool value in an arbitrary storage slot, `_slot`.
/// @param _slot The storage slot to store the bool in.
/// @param _value The bool value to store
/// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
/// in arbitrary storage slots.
function setBool(bytes32 _slot, bool _value) internal {
assembly {
sstore(_slot, _value)
}
}
/// @notice Returns a bool stored in an arbitrary storage slot.
/// @param _slot The storage slot to retrieve the bool from.
function getBool(bytes32 _slot) internal view returns (bool value_) {
assembly {
value_ := sload(_slot)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library AddressUpgradeable {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @title Types
/// @notice Contains various types used throughout the Optimism contract system.
library Types {
/// @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1
/// timestamp that the output root is posted. This timestamp is used to verify that the
/// finalization period has passed since the output root was submitted.
/// @custom:field outputRoot Hash of the L2 output.
/// @custom:field timestamp Timestamp of the L1 block that the output root was submitted in.
/// @custom:field l2BlockNumber L2 block number that the output corresponds to.
struct OutputProposal {
bytes32 outputRoot;
uint128 timestamp;
uint128 l2BlockNumber;
}
/// @notice Struct representing the elements that are hashed together to generate an output root
/// which itself represents a snapshot of the L2 state.
/// @custom:field version Version of the output root.
/// @custom:field stateRoot Root of the state trie at the block of this output.
/// @custom:field messagePasserStorageRoot Root of the message passer storage trie.
/// @custom:field latestBlockhash Hash of the block this output was generated from.
struct OutputRootProof {
bytes32 version;
bytes32 stateRoot;
bytes32 messagePasserStorageRoot;
bytes32 latestBlockhash;
}
/// @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end
/// user (as opposed to a system deposit transaction generated by the system).
/// @custom:field from Address of the sender of the transaction.
/// @custom:field to Address of the recipient of the transaction.
/// @custom:field isCreation True if the transaction is a contract creation.
/// @custom:field value Value to send to the recipient.
/// @custom:field mint Amount of ETH to mint.
/// @custom:field gasLimit Gas limit of the transaction.
/// @custom:field data Data of the transaction.
/// @custom:field l1BlockHash Hash of the block the transaction was submitted in.
/// @custom:field logIndex Index of the log in the block the transaction was submitted in.
struct UserDepositTransaction {
address from;
address to;
bool isCreation;
uint256 value;
uint256 mint;
uint64 gasLimit;
bytes data;
bytes32 l1BlockHash;
uint256 logIndex;
}
/// @notice Struct representing a withdrawal transaction.
/// @custom:field nonce Nonce of the withdrawal transaction
/// @custom:field sender Address of the sender of the transaction.
/// @custom:field target Address of the recipient of the transaction.
/// @custom:field value Value to send to the recipient.
/// @custom:field gasLimit Gas limit of the transaction.
/// @custom:field data Data of the transaction.
struct WithdrawalTransaction {
uint256 nonce;
address sender;
address target;
uint256 value;
uint256 gasLimit;
bytes data;
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @custom:attribution https://github.com/bakaoh/solidity-rlp-encode
/// @title RLPWriter
/// @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's
/// RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor
/// modifications to improve legibility.
library RLPWriter {
/// @notice RLP encodes a byte string.
/// @param _in The byte string to encode.
/// @return out_ The RLP encoded string in bytes.
function writeBytes(bytes memory _in) internal pure returns (bytes memory out_) {
if (_in.length == 1 && uint8(_in[0]) < 128) {
out_ = _in;
} else {
out_ = abi.encodePacked(_writeLength(_in.length, 128), _in);
}
}
/// @notice RLP encodes a list of RLP encoded byte byte strings.
/// @param _in The list of RLP encoded byte strings.
/// @return list_ The RLP encoded list of items in bytes.
function writeList(bytes[] memory _in) internal pure returns (bytes memory list_) {
list_ = _flatten(_in);
list_ = abi.encodePacked(_writeLength(list_.length, 192), list_);
}
/// @notice RLP encodes a string.
/// @param _in The string to encode.
/// @return out_ The RLP encoded string in bytes.
function writeString(string memory _in) internal pure returns (bytes memory out_) {
out_ = writeBytes(bytes(_in));
}
/// @notice RLP encodes an address.
/// @param _in The address to encode.
/// @return out_ The RLP encoded address in bytes.
function writeAddress(address _in) internal pure returns (bytes memory out_) {
out_ = writeBytes(abi.encodePacked(_in));
}
/// @notice RLP encodes a uint.
/// @param _in The uint256 to encode.
/// @return out_ The RLP encoded uint256 in bytes.
function writeUint(uint256 _in) internal pure returns (bytes memory out_) {
out_ = writeBytes(_toBinary(_in));
}
/// @notice RLP encodes a bool.
/// @param _in The bool to encode.
/// @return out_ The RLP encoded bool in bytes.
function writeBool(bool _in) internal pure returns (bytes memory out_) {
out_ = new bytes(1);
out_[0] = (_in ? bytes1(0x01) : bytes1(0x80));
}
/// @notice Encode the first byte and then the `len` in binary form if `length` is more than 55.
/// @param _len The length of the string or the payload.
/// @param _offset 128 if item is string, 192 if item is list.
/// @return out_ RLP encoded bytes.
function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory out_) {
if (_len < 56) {
out_ = new bytes(1);
out_[0] = bytes1(uint8(_len) + uint8(_offset));
} else {
uint256 lenLen;
uint256 i = 1;
while (_len / i != 0) {
lenLen++;
i *= 256;
}
out_ = new bytes(lenLen + 1);
out_[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55);
for (i = 1; i <= lenLen; i++) {
out_[i] = bytes1(uint8((_len / (256 ** (lenLen - i))) % 256));
}
}
}
/// @notice Encode integer in big endian binary form with no leading zeroes.
/// @param _x The integer to encode.
/// @return out_ RLP encoded bytes.
function _toBinary(uint256 _x) private pure returns (bytes memory out_) {
bytes memory b = abi.encodePacked(_x);
uint256 i = 0;
for (; i < 32; i++) {
if (b[i] != 0) {
break;
}
}
out_ = new bytes(32 - i);
for (uint256 j = 0; j < out_.length; j++) {
out_[j] = b[i++];
}
}
/// @custom:attribution https://github.com/Arachnid/solidity-stringutils
/// @notice Copies a piece of memory to another location.
/// @param _dest Destination location.
/// @param _src Source location.
/// @param _len Length of memory to copy.
function _memcpy(uint256 _dest, uint256 _src, uint256 _len) private pure {
uint256 dest = _dest;
uint256 src = _src;
uint256 len = _len;
for (; len >= 32; len -= 32) {
assembly {
mstore(dest, mload(src))
}
dest += 32;
src += 32;
}
uint256 mask;
unchecked {
mask = 256 ** (32 - len) - 1;
}
assembly {
let srcpart := and(mload(src), not(mask))
let destpart := and(mload(dest), mask)
mstore(dest, or(destpart, srcpart))
}
}
/// @custom:attribution https://github.com/sammayo/solidity-rlp-encoder
/// @notice Flattens a list of byte strings into one byte string.
/// @param _list List of byte strings to flatten.
/// @return out_ The flattened byte string.
function _flatten(bytes[] memory _list) private pure returns (bytes memory out_) {
if (_list.length == 0) {
return new bytes(0);
}
uint256 len;
uint256 i = 0;
for (; i < _list.length; i++) {
len += _list[i].length;
}
out_ = new bytes(len);
uint256 flattenedPtr;
assembly {
flattenedPtr := add(out_, 0x20)
}
for (i = 0; i < _list.length; i++) {
bytes memory item = _list[i];
uint256 listPtr;
assembly {
listPtr := add(item, 0x20)
}
_memcpy(flattenedPtr, listPtr, item.length);
flattenedPtr += _list[i].length;
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a >= b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`.
// We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
// This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
// Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
// good first aproximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1;
uint256 x = a;
if (x >> 128 > 0) {
x >>= 128;
result <<= 64;
}
if (x >> 64 > 0) {
x >>= 64;
result <<= 32;
}
if (x >> 32 > 0) {
x >>= 32;
result <<= 16;
}
if (x >> 16 > 0) {
x >>= 16;
result <<= 8;
}
if (x >> 8 > 0) {
x >>= 8;
result <<= 4;
}
if (x >> 4 > 0) {
x >>= 4;
result <<= 2;
}
if (x >> 2 > 0) {
result <<= 1;
}
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
uint256 result = sqrt(a);
if (rounding == Rounding.Up && result * result < a) {
result += 1;
}
return result;
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
/// @title Burn
/// @notice Utilities for burning stuff.
library Burn {
/// @notice Burns a given amount of ETH.
/// @param _amount Amount of ETH to burn.
function eth(uint256 _amount) internal {
new Burner{ value: _amount }();
}
/// @notice Burns a given amount of gas.
/// @param _amount Amount of gas to burn.
function gas(uint256 _amount) internal view {
uint256 i = 0;
uint256 initialGas = gasleft();
while (initialGas - gasleft() < _amount) {
++i;
}
}
}
/// @title Burner
/// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
/// the contract from the circulating supply. Self-destructing is the only way to remove ETH
/// from the circulating supply.
contract Burner {
constructor() payable {
selfdestruct(payable(address(this)));
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
/// @title Arithmetic
/// @notice Even more math than before.
library Arithmetic {
/// @notice Clamps a value between a minimum and maximum.
/// @param _value The value to clamp.
/// @param _min The minimum value.
/// @param _max The maximum value.
/// @return The clamped value.
function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
return SignedMath.min(SignedMath.max(_value, _min), _max);
}
/// @notice (c)oefficient (d)enominator (exp)onentiation function.
/// Returns the result of: c * (1 - 1/d)^exp.
/// @param _coefficient Coefficient of the function.
/// @param _denominator Fractional denominator.
/// @param _exponent Power function exponent.
/// @return Result of c * (1 - 1/d)^exp.
function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a >= b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;
/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
library FixedPointMathLib {
/*//////////////////////////////////////////////////////////////
SIMPLIFIED FIXED POINT OPERATIONS
//////////////////////////////////////////////////////////////*/
uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
}
function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
}
function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
}
function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
}
function powWad(int256 x, int256 y) internal pure returns (int256) {
// Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
}
function expWad(int256 x) internal pure returns (int256 r) {
unchecked {
// When the result is < 0.5 we return zero. This happens when
// x <= floor(log(0.5e18) * 1e18) ~ -42e18
if (x <= -42139678854452767551) return 0;
// When the result is > (2**255 - 1) / 1e18 we can not represent it as an
// int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
// x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
// for more intermediate precision and a binary basis. This base conversion
// is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
x = (x << 78) / 5**18;
// Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
// of two such that exp(x) = exp(x') * 2**k, where k is an integer.
// Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
x = x - k * 54916777467707473351141471128;
// k is in the range [-61, 195].
// Evaluate using a (6, 7)-term rational approximation.
// p is made monic, we'll multiply by a scale factor later.
int256 y = x + 1346386616545796478920950773328;
y = ((y * x) >> 96) + 57155421227552351082224309758442;
int256 p = y + x - 94201549194550492254356042504812;
p = ((p * y) >> 96) + 28719021644029726153956944680412240;
p = p * x + (4385272521454847904659076985693276 << 96);
// We leave p in 2**192 basis so we don't need to scale it back up for the division.
int256 q = x - 2855989394907223263936484059900;
q = ((q * x) >> 96) + 50020603652535783019961831881945;
q = ((q * x) >> 96) - 533845033583426703283633433725380;
q = ((q * x) >> 96) + 3604857256930695427073651918091429;
q = ((q * x) >> 96) - 14423608567350463180887372962807573;
q = ((q * x) >> 96) + 26449188498355588339934803723976023;
assembly {
// Div in assembly because solidity adds a zero check despite the unchecked.
// The q polynomial won't have zeros in the domain as all its roots are complex.
// No scaling is necessary because p is already 2**96 too large.
r := sdiv(p, q)
}
// r should be in the range (0.09, 0.25) * 2**96.
// We now need to multiply r by:
// * the scale factor s = ~6.031367120.
// * the 2**k factor from the range reduction.
// * the 1e18 / 2**96 factor for base conversion.
// We do this all at once, with an intermediate result in 2**213
// basis, so the final right shift is always by a positive amount.
r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
}
}
function lnWad(int256 x) internal pure returns (int256 r) {
unchecked {
require(x > 0, "UNDEFINED");
// We want to convert x from 10**18 fixed point to 2**96 fixed point.
// We do this by multiplying by 2**96 / 10**18. But since
// ln(x * C) = ln(x) + ln(C), we can simply do nothing here
// and add ln(2**96 / 10**18) at the end.
// Reduce range of x to (1, 2) * 2**96
// ln(2^k * x) = k * ln(2) + ln(x)
int256 k = int256(log2(uint256(x))) - 96;
x <<= uint256(159 - k);
x = int256(uint256(x) >> 159);
// Evaluate using a (8, 8)-term rational approximation.
// p is made monic, we will multiply by a scale factor later.
int256 p = x + 3273285459638523848632254066296;
p = ((p * x) >> 96) + 24828157081833163892658089445524;
p = ((p * x) >> 96) + 43456485725739037958740375743393;
p = ((p * x) >> 96) - 11111509109440967052023855526967;
p = ((p * x) >> 96) - 45023709667254063763336534515857;
p = ((p * x) >> 96) - 14706773417378608786704636184526;
p = p * x - (795164235651350426258249787498 << 96);
// We leave p in 2**192 basis so we don't need to scale it back up for the division.
// q is monic by convention.
int256 q = x + 5573035233440673466300451813936;
q = ((q * x) >> 96) + 71694874799317883764090561454958;
q = ((q * x) >> 96) + 283447036172924575727196451306956;
q = ((q * x) >> 96) + 401686690394027663651624208769553;
q = ((q * x) >> 96) + 204048457590392012362485061816622;
q = ((q * x) >> 96) + 31853899698501571402653359427138;
q = ((q * x) >> 96) + 909429971244387300277376558375;
assembly {
// Div in assembly because solidity adds a zero check despite the unchecked.
// The q polynomial is known not to have zeros in the domain.
// No scaling required because p is already 2**96 too large.
r := sdiv(p, q)
}
// r is in the range (0, 0.125) * 2**96
// Finalization, we need to:
// * multiply by the scale factor s = 5.549…
// * add ln(2**96 / 10**18)
// * add k * ln(2)
// * multiply by 10**18 / 2**96 = 5**18 >> 78
// mul s * 5e18 * 2**96, base is now 5**18 * 2**192
r *= 1677202110996718588342820967067443963516166;
// add ln(2) * k * 5e18 * 2**192
r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
// add ln(2**96 / 10**18) * 5e18 * 2**192
r += 600920179829731861736702779321621459595472258049074101567377883020018308;
// base conversion: mul 2**18 / 2**192
r >>= 174;
}
}
/*//////////////////////////////////////////////////////////////
LOW LEVEL FIXED POINT OPERATIONS
//////////////////////////////////////////////////////////////*/
function mulDivDown(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 z) {
assembly {
// Store x * y in z for now.
z := mul(x, y)
// Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
revert(0, 0)
}
// Divide z by the denominator.
z := div(z, denominator)
}
}
function mulDivUp(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 z) {
assembly {
// Store x * y in z for now.
z := mul(x, y)
// Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
revert(0, 0)
}
// First, divide z - 1 by the denominator and add 1.
// We allow z - 1 to underflow if z is 0, because we multiply the
// end result by 0 if z is zero, ensuring we return 0 if z is zero.
z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
}
}
function rpow(
uint256 x,
uint256 n,
uint256 scalar
) internal pure returns (uint256 z) {
assembly {
switch x
case 0 {
switch n
case 0 {
// 0 ** 0 = 1
z := scalar
}
default {
// 0 ** n = 0
z := 0
}
}
default {
switch mod(n, 2)
case 0 {
// If n is even, store scalar in z for now.
z := scalar
}
default {
// If n is odd, store x in z for now.
z := x
}
// Shifting right by 1 is like dividing by 2.
let half := shr(1, scalar)
for {
// Shift n right by 1 before looping to halve it.
n := shr(1, n)
} n {
// Shift n right by 1 each iteration to halve it.
n := shr(1, n)
} {
// Revert immediately if x ** 2 would overflow.
// Equivalent to iszero(eq(div(xx, x), x)) here.
if shr(128, x) {
revert(0, 0)
}
// Store x squared.
let xx := mul(x, x)
// Round to the nearest number.
let xxRound := add(xx, half)
// Revert if xx + half overflowed.
if lt(xxRound, xx) {
revert(0, 0)
}
// Set x to scaled xxRound.
x := div(xxRound, scalar)
// If n is even:
if mod(n, 2) {
// Compute z * x.
let zx := mul(z, x)
// If z * x overflowed:
if iszero(eq(div(zx, x), z)) {
// Revert if x is non-zero.
if iszero(iszero(x)) {
revert(0, 0)
}
}
// Round to the nearest number.
let zxRound := add(zx, half)
// Revert if zx + half overflowed.
if lt(zxRound, zx) {
revert(0, 0)
}
// Return properly scaled zxRound.
z := div(zxRound, scalar)
}
}
}
}
}
/*//////////////////////////////////////////////////////////////
GENERAL NUMBER UTILITIES
//////////////////////////////////////////////////////////////*/
function sqrt(uint256 x) internal pure returns (uint256 z) {
assembly {
let y := x // We start y at x, which will help us make our initial estimate.
z := 181 // The "correct" value is 1, but this saves a multiplication later.
// This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
// start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
// We check y >= 2^(k + 8) but shift right by k bits
// each branch to ensure that if x >= 256, then y >= 256.
if iszero(lt(y, 0x10000000000000000000000000000000000)) {
y := shr(128, y)
z := shl(64, z)
}
if iszero(lt(y, 0x1000000000000000000)) {
y := shr(64, y)
z := shl(32, z)
}
if iszero(lt(y, 0x10000000000)) {
y := shr(32, y)
z := shl(16, z)
}
if iszero(lt(y, 0x1000000)) {
y := shr(16, y)
z := shl(8, z)
}
// Goal was to get z*z*y within a small factor of x. More iterations could
// get y in a tighter range. Currently, we will have y in [256, 256*2^16).
// We ensured y >= 256 so that the relative difference between y and y+1 is small.
// That's not possible if x < 256 but we can just verify those cases exhaustively.
// Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
// Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
// Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
// For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
// (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
// Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
// sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
// There is no overflow risk here since y < 2^136 after the first branch above.
z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
// Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
// If x+1 is a perfect square, the Babylonian method cycles between
// floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
// See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
// Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
// If you don't care whether the floor or ceil square root is returned, you can remove this statement.
z := sub(z, lt(div(x, z), z))
}
}
function log2(uint256 x) internal pure returns (uint256 r) {
require(x > 0, "UNDEFINED");
assembly {
r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffff, shr(r, x))))
r := or(r, shl(3, lt(0xff, shr(r, x))))
r := or(r, shl(2, lt(0xf, shr(r, x))))
r := or(r, shl(1, lt(0x3, shr(r, x))))
r := or(r, lt(0x1, shr(r, x)))
}
}
}{
"remappings": [
"@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
"@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
"@rari-capital/solmate/=lib/solmate/",
"@cwia/=lib/clones-with-immutable-args/src/",
"@lib-keccak/=lib/lib-keccak/contracts/lib/",
"forge-std/=lib/forge-std/src/",
"ds-test/=lib/forge-std/lib/ds-test/src/",
"safe-contracts/=lib/safe-contracts/contracts/",
"kontrol-cheatcodes/=lib/kontrol-cheatcodes/src/",
"solady/=lib/solady/src/",
"clones-with-immutable-args/=lib/clones-with-immutable-args/src/",
"lib-keccak/=lib/lib-keccak/contracts/",
"openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
"openzeppelin-contracts/=lib/openzeppelin-contracts/",
"solmate/=lib/solmate/src/"
],
"optimizer": {
"enabled": true,
"runs": 999999
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "none"
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"abi"
]
}
},
"evmVersion": "london",
"viaIR": false,
"libraries": {}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"address","name":"_otherBridge","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"localToken","type":"address"},{"indexed":true,"internalType":"address","name":"remoteToken","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":false,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"bytes","name":"extraData","type":"bytes"}],"name":"ERC721BridgeFinalized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"localToken","type":"address"},{"indexed":true,"internalType":"address","name":"remoteToken","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":false,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"bytes","name":"extraData","type":"bytes"}],"name":"ERC721BridgeInitiated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"version","type":"uint8"}],"name":"Initialized","type":"event"},{"inputs":[],"name":"MESSENGER","outputs":[{"internalType":"contract CrossDomainMessenger","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"OTHER_BRIDGE","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_localToken","type":"address"},{"internalType":"address","name":"_remoteToken","type":"address"},{"internalType":"uint256","name":"_tokenId","type":"uint256"},{"internalType":"uint32","name":"_minGasLimit","type":"uint32"},{"internalType":"bytes","name":"_extraData","type":"bytes"}],"name":"bridgeERC721","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_localToken","type":"address"},{"internalType":"address","name":"_remoteToken","type":"address"},{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_tokenId","type":"uint256"},{"internalType":"uint32","name":"_minGasLimit","type":"uint32"},{"internalType":"bytes","name":"_extraData","type":"bytes"}],"name":"bridgeERC721To","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_localToken","type":"address"},{"internalType":"address","name":"_remoteToken","type":"address"},{"internalType":"address","name":"_from","type":"address"},{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_tokenId","type":"uint256"},{"internalType":"bytes","name":"_extraData","type":"bytes"}],"name":"finalizeBridgeERC721","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"messenger","outputs":[{"internalType":"contract CrossDomainMessenger","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"otherBridge","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"version","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"}]Contract Creation Code
608060405234801561001057600080fd5b50600436106100be5760003560e01c80637f46ddb211610076578063927ede2d1161005b578063927ede2d146101be578063aa557452146101e5578063c89701a2146101f857600080fd5b80637f46ddb21461018f5780638129fc1c146101b657600080fd5b806354fd4d50116100a757806354fd4d50146101245780635c975abb1461016d578063761f44931461017c57600080fd5b80633687011a146100c35780633cb747bf146100d8575b600080fd5b6100d66100d136600461120c565b61021e565b005b7f00000000000000000000000042000000000000000000000000000000000000075b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020015b60405180910390f35b6101606040518060400160405280600581526020017f312e362e3000000000000000000000000000000000000000000000000000000081525081565b60405161011b91906112fa565b6040516000815260200161011b565b6100d661018a36600461130d565b6102ca565b6100fa7f000000000000000000000000a9b5fb84b7aeaf0d51c95db04a76b1d4738d0ec581565b6100d6610831565b6100fa7f000000000000000000000000420000000000000000000000000000000000000781565b6100d66101f33660046113a5565b6109bb565b7f000000000000000000000000a9b5fb84b7aeaf0d51c95db04a76b1d4738d0ec56100fa565b333b156102b2576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602d60248201527f4552433732314272696467653a206163636f756e74206973206e6f742065787460448201527f65726e616c6c79206f776e65640000000000000000000000000000000000000060648201526084015b60405180910390fd5b6102c28686333388888888610a93565b505050505050565b3373ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000004200000000000000000000000000000000000007161480156103e857507f000000000000000000000000a9b5fb84b7aeaf0d51c95db04a76b1d4738d0ec573ffffffffffffffffffffffffffffffffffffffff167f000000000000000000000000420000000000000000000000000000000000000773ffffffffffffffffffffffffffffffffffffffff16636e296e456040518163ffffffff1660e01b8152600401602060405180830381865afa1580156103ac573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906103d0919061141c565b73ffffffffffffffffffffffffffffffffffffffff16145b610474576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603f60248201527f4552433732314272696467653a2066756e6374696f6e2063616e206f6e6c792060448201527f62652063616c6c65642066726f6d20746865206f74686572206272696467650060648201526084016102a9565b3073ffffffffffffffffffffffffffffffffffffffff881603610519576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602a60248201527f4c324552433732314272696467653a206c6f63616c20746f6b656e2063616e6e60448201527f6f742062652073656c660000000000000000000000000000000000000000000060648201526084016102a9565b610543877f74259ebf00000000000000000000000000000000000000000000000000000000611031565b6105cf576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603660248201527f4c324552433732314272696467653a206c6f63616c20746f6b656e20696e746560448201527f7266616365206973206e6f7420636f6d706c69616e740000000000000000000060648201526084016102a9565b8673ffffffffffffffffffffffffffffffffffffffff1663d6c0b2c46040518163ffffffff1660e01b8152600401602060405180830381865afa15801561061a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061063e919061141c565b73ffffffffffffffffffffffffffffffffffffffff168673ffffffffffffffffffffffffffffffffffffffff161461071e576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152604b60248201527f4c324552433732314272696467653a2077726f6e672072656d6f746520746f6b60448201527f656e20666f72204f7074696d69736d204d696e7461626c65204552433732312060648201527f6c6f63616c20746f6b656e000000000000000000000000000000000000000000608482015260a4016102a9565b6040517fa144819400000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff85811660048301526024820185905288169063a144819490604401600060405180830381600087803b15801561078e57600080fd5b505af11580156107a2573d6000803e3d6000fd5b505050508473ffffffffffffffffffffffffffffffffffffffff168673ffffffffffffffffffffffffffffffffffffffff168873ffffffffffffffffffffffffffffffffffffffff167f1f39bf6707b5d608453e0ae4c067b562bcc4c85c0f562ef5d2c774d2e7f131ac878787876040516108209493929190611482565b60405180910390a450505050505050565b600054610100900460ff16158080156108515750600054600160ff909116105b8061086b5750303b15801561086b575060005460ff166001145b6108f7576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201527f647920696e697469616c697a656400000000000000000000000000000000000060648201526084016102a9565b600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00166001179055801561095557600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ff166101001790555b80156109b857600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ff169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a15b50565b73ffffffffffffffffffffffffffffffffffffffff8516610a5e576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603060248201527f4552433732314272696467653a206e667420726563697069656e742063616e6e60448201527f6f7420626520616464726573732830290000000000000000000000000000000060648201526084016102a9565b610a6e8787338888888888610a93565b50505050505050565b73ffffffffffffffffffffffffffffffffffffffff163b151590565b73ffffffffffffffffffffffffffffffffffffffff8716610b36576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603160248201527f4c324552433732314272696467653a2072656d6f746520746f6b656e2063616e60448201527f6e6f74206265206164647265737328302900000000000000000000000000000060648201526084016102a9565b6040517f6352211e0000000000000000000000000000000000000000000000000000000081526004810185905273ffffffffffffffffffffffffffffffffffffffff891690636352211e90602401602060405180830381865afa158015610ba1573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610bc5919061141c565b73ffffffffffffffffffffffffffffffffffffffff168673ffffffffffffffffffffffffffffffffffffffff1614610c7f576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603e60248201527f4c324552433732314272696467653a205769746864726177616c206973206e6f60448201527f74206265696e6720696e69746961746564206279204e4654206f776e6572000060648201526084016102a9565b60008873ffffffffffffffffffffffffffffffffffffffff1663d6c0b2c46040518163ffffffff1660e01b8152600401602060405180830381865afa158015610ccc573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610cf0919061141c565b90508773ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1614610dad576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603760248201527f4c324552433732314272696467653a2072656d6f746520746f6b656e20646f6560448201527f73206e6f74206d6174636820676976656e2076616c756500000000000000000060648201526084016102a9565b6040517f9dc29fac00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8881166004830152602482018790528a1690639dc29fac90604401600060405180830381600087803b158015610e1d57600080fd5b505af1158015610e31573d6000803e3d6000fd5b50505050600063761f449360e01b828b8a8a8a8989604051602401610e5c97969594939291906114c2565b604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08184030181529181526020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff000000000000000000000000000000000000000000000000000000009094169390931790925290517f3dbb202b00000000000000000000000000000000000000000000000000000000815290915073ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000042000000000000000000000000000000000000071690633dbb202b90610f71907f000000000000000000000000a9b5fb84b7aeaf0d51c95db04a76b1d4738d0ec59085908a9060040161151f565b600060405180830381600087803b158015610f8b57600080fd5b505af1158015610f9f573d6000803e3d6000fd5b505050508773ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff168b73ffffffffffffffffffffffffffffffffffffffff167fb7460e2a880f256ebef3406116ff3eee0cee51ebccdc2a40698f87ebb2e9c1a58a8a898960405161101d9493929190611482565b60405180910390a450505050505050505050565b600061103c83611054565b801561104d575061104d83836110b9565b9392505050565b6000611080827f01ffc9a7000000000000000000000000000000000000000000000000000000006110b9565b80156110b357506110b1827fffffffff000000000000000000000000000000000000000000000000000000006110b9565b155b92915050565b604080517fffffffff000000000000000000000000000000000000000000000000000000008316602480830191909152825180830390910181526044909101909152602080820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167f01ffc9a700000000000000000000000000000000000000000000000000000000178152825160009392849283928392918391908a617530fa92503d91506000519050828015611171575060208210155b801561117d5750600081115b979650505050505050565b73ffffffffffffffffffffffffffffffffffffffff811681146109b857600080fd5b803563ffffffff811681146111be57600080fd5b919050565b60008083601f8401126111d557600080fd5b50813567ffffffffffffffff8111156111ed57600080fd5b60208301915083602082850101111561120557600080fd5b9250929050565b60008060008060008060a0878903121561122557600080fd5b863561123081611188565b9550602087013561124081611188565b945060408701359350611255606088016111aa565b9250608087013567ffffffffffffffff81111561127157600080fd5b61127d89828a016111c3565b979a9699509497509295939492505050565b6000815180845260005b818110156112b557602081850181015186830182015201611299565b818111156112c7576000602083870101525b50601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169290920160200192915050565b60208152600061104d602083018461128f565b600080600080600080600060c0888a03121561132857600080fd5b873561133381611188565b9650602088013561134381611188565b9550604088013561135381611188565b9450606088013561136381611188565b93506080880135925060a088013567ffffffffffffffff81111561138657600080fd5b6113928a828b016111c3565b989b979a50959850939692959293505050565b600080600080600080600060c0888a0312156113c057600080fd5b87356113cb81611188565b965060208801356113db81611188565b955060408801356113eb81611188565b945060608801359350611400608089016111aa565b925060a088013567ffffffffffffffff81111561138657600080fd5b60006020828403121561142e57600080fd5b815161104d81611188565b8183528181602085013750600060208284010152600060207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f840116840101905092915050565b73ffffffffffffffffffffffffffffffffffffffff851681528360208201526060604082015260006114b8606083018486611439565b9695505050505050565b600073ffffffffffffffffffffffffffffffffffffffff808a1683528089166020840152808816604084015280871660608401525084608083015260c060a083015261151260c083018486611439565b9998505050505050505050565b73ffffffffffffffffffffffffffffffffffffffff8416815260606020820152600061154e606083018561128f565b905063ffffffff8316604083015294935050505056fea164736f6c634300080f000a
Deployed Bytecode
0x608060405234801561001057600080fd5b50600436106100be5760003560e01c80637f46ddb211610076578063927ede2d1161005b578063927ede2d146101be578063aa557452146101e5578063c89701a2146101f857600080fd5b80637f46ddb21461018f5780638129fc1c146101b657600080fd5b806354fd4d50116100a757806354fd4d50146101245780635c975abb1461016d578063761f44931461017c57600080fd5b80633687011a146100c35780633cb747bf146100d8575b600080fd5b6100d66100d136600461120c565b61021e565b005b7f00000000000000000000000042000000000000000000000000000000000000075b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020015b60405180910390f35b6101606040518060400160405280600581526020017f312e362e3000000000000000000000000000000000000000000000000000000081525081565b60405161011b91906112fa565b6040516000815260200161011b565b6100d661018a36600461130d565b6102ca565b6100fa7f000000000000000000000000a9b5fb84b7aeaf0d51c95db04a76b1d4738d0ec581565b6100d6610831565b6100fa7f000000000000000000000000420000000000000000000000000000000000000781565b6100d66101f33660046113a5565b6109bb565b7f000000000000000000000000a9b5fb84b7aeaf0d51c95db04a76b1d4738d0ec56100fa565b333b156102b2576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602d60248201527f4552433732314272696467653a206163636f756e74206973206e6f742065787460448201527f65726e616c6c79206f776e65640000000000000000000000000000000000000060648201526084015b60405180910390fd5b6102c28686333388888888610a93565b505050505050565b3373ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000004200000000000000000000000000000000000007161480156103e857507f000000000000000000000000a9b5fb84b7aeaf0d51c95db04a76b1d4738d0ec573ffffffffffffffffffffffffffffffffffffffff167f000000000000000000000000420000000000000000000000000000000000000773ffffffffffffffffffffffffffffffffffffffff16636e296e456040518163ffffffff1660e01b8152600401602060405180830381865afa1580156103ac573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906103d0919061141c565b73ffffffffffffffffffffffffffffffffffffffff16145b610474576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603f60248201527f4552433732314272696467653a2066756e6374696f6e2063616e206f6e6c792060448201527f62652063616c6c65642066726f6d20746865206f74686572206272696467650060648201526084016102a9565b3073ffffffffffffffffffffffffffffffffffffffff881603610519576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602a60248201527f4c324552433732314272696467653a206c6f63616c20746f6b656e2063616e6e60448201527f6f742062652073656c660000000000000000000000000000000000000000000060648201526084016102a9565b610543877f74259ebf00000000000000000000000000000000000000000000000000000000611031565b6105cf576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603660248201527f4c324552433732314272696467653a206c6f63616c20746f6b656e20696e746560448201527f7266616365206973206e6f7420636f6d706c69616e740000000000000000000060648201526084016102a9565b8673ffffffffffffffffffffffffffffffffffffffff1663d6c0b2c46040518163ffffffff1660e01b8152600401602060405180830381865afa15801561061a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061063e919061141c565b73ffffffffffffffffffffffffffffffffffffffff168673ffffffffffffffffffffffffffffffffffffffff161461071e576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152604b60248201527f4c324552433732314272696467653a2077726f6e672072656d6f746520746f6b60448201527f656e20666f72204f7074696d69736d204d696e7461626c65204552433732312060648201527f6c6f63616c20746f6b656e000000000000000000000000000000000000000000608482015260a4016102a9565b6040517fa144819400000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff85811660048301526024820185905288169063a144819490604401600060405180830381600087803b15801561078e57600080fd5b505af11580156107a2573d6000803e3d6000fd5b505050508473ffffffffffffffffffffffffffffffffffffffff168673ffffffffffffffffffffffffffffffffffffffff168873ffffffffffffffffffffffffffffffffffffffff167f1f39bf6707b5d608453e0ae4c067b562bcc4c85c0f562ef5d2c774d2e7f131ac878787876040516108209493929190611482565b60405180910390a450505050505050565b600054610100900460ff16158080156108515750600054600160ff909116105b8061086b5750303b15801561086b575060005460ff166001145b6108f7576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201527f647920696e697469616c697a656400000000000000000000000000000000000060648201526084016102a9565b600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00166001179055801561095557600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ff166101001790555b80156109b857600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ff169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a15b50565b73ffffffffffffffffffffffffffffffffffffffff8516610a5e576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603060248201527f4552433732314272696467653a206e667420726563697069656e742063616e6e60448201527f6f7420626520616464726573732830290000000000000000000000000000000060648201526084016102a9565b610a6e8787338888888888610a93565b50505050505050565b73ffffffffffffffffffffffffffffffffffffffff163b151590565b73ffffffffffffffffffffffffffffffffffffffff8716610b36576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603160248201527f4c324552433732314272696467653a2072656d6f746520746f6b656e2063616e60448201527f6e6f74206265206164647265737328302900000000000000000000000000000060648201526084016102a9565b6040517f6352211e0000000000000000000000000000000000000000000000000000000081526004810185905273ffffffffffffffffffffffffffffffffffffffff891690636352211e90602401602060405180830381865afa158015610ba1573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610bc5919061141c565b73ffffffffffffffffffffffffffffffffffffffff168673ffffffffffffffffffffffffffffffffffffffff1614610c7f576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603e60248201527f4c324552433732314272696467653a205769746864726177616c206973206e6f60448201527f74206265696e6720696e69746961746564206279204e4654206f776e6572000060648201526084016102a9565b60008873ffffffffffffffffffffffffffffffffffffffff1663d6c0b2c46040518163ffffffff1660e01b8152600401602060405180830381865afa158015610ccc573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610cf0919061141c565b90508773ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1614610dad576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603760248201527f4c324552433732314272696467653a2072656d6f746520746f6b656e20646f6560448201527f73206e6f74206d6174636820676976656e2076616c756500000000000000000060648201526084016102a9565b6040517f9dc29fac00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8881166004830152602482018790528a1690639dc29fac90604401600060405180830381600087803b158015610e1d57600080fd5b505af1158015610e31573d6000803e3d6000fd5b50505050600063761f449360e01b828b8a8a8a8989604051602401610e5c97969594939291906114c2565b604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08184030181529181526020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff000000000000000000000000000000000000000000000000000000009094169390931790925290517f3dbb202b00000000000000000000000000000000000000000000000000000000815290915073ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000042000000000000000000000000000000000000071690633dbb202b90610f71907f000000000000000000000000a9b5fb84b7aeaf0d51c95db04a76b1d4738d0ec59085908a9060040161151f565b600060405180830381600087803b158015610f8b57600080fd5b505af1158015610f9f573d6000803e3d6000fd5b505050508773ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff168b73ffffffffffffffffffffffffffffffffffffffff167fb7460e2a880f256ebef3406116ff3eee0cee51ebccdc2a40698f87ebb2e9c1a58a8a898960405161101d9493929190611482565b60405180910390a450505050505050505050565b600061103c83611054565b801561104d575061104d83836110b9565b9392505050565b6000611080827f01ffc9a7000000000000000000000000000000000000000000000000000000006110b9565b80156110b357506110b1827fffffffff000000000000000000000000000000000000000000000000000000006110b9565b155b92915050565b604080517fffffffff000000000000000000000000000000000000000000000000000000008316602480830191909152825180830390910181526044909101909152602080820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167f01ffc9a700000000000000000000000000000000000000000000000000000000178152825160009392849283928392918391908a617530fa92503d91506000519050828015611171575060208210155b801561117d5750600081115b979650505050505050565b73ffffffffffffffffffffffffffffffffffffffff811681146109b857600080fd5b803563ffffffff811681146111be57600080fd5b919050565b60008083601f8401126111d557600080fd5b50813567ffffffffffffffff8111156111ed57600080fd5b60208301915083602082850101111561120557600080fd5b9250929050565b60008060008060008060a0878903121561122557600080fd5b863561123081611188565b9550602087013561124081611188565b945060408701359350611255606088016111aa565b9250608087013567ffffffffffffffff81111561127157600080fd5b61127d89828a016111c3565b979a9699509497509295939492505050565b6000815180845260005b818110156112b557602081850181015186830182015201611299565b818111156112c7576000602083870101525b50601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169290920160200192915050565b60208152600061104d602083018461128f565b600080600080600080600060c0888a03121561132857600080fd5b873561133381611188565b9650602088013561134381611188565b9550604088013561135381611188565b9450606088013561136381611188565b93506080880135925060a088013567ffffffffffffffff81111561138657600080fd5b6113928a828b016111c3565b989b979a50959850939692959293505050565b600080600080600080600060c0888a0312156113c057600080fd5b87356113cb81611188565b965060208801356113db81611188565b955060408801356113eb81611188565b945060608801359350611400608089016111aa565b925060a088013567ffffffffffffffff81111561138657600080fd5b60006020828403121561142e57600080fd5b815161104d81611188565b8183528181602085013750600060208284010152600060207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f840116840101905092915050565b73ffffffffffffffffffffffffffffffffffffffff851681528360208201526060604082015260006114b8606083018486611439565b9695505050505050565b600073ffffffffffffffffffffffffffffffffffffffff808a1683528089166020840152808816604084015280871660608401525084608083015260c060a083015261151260c083018486611439565b9998505050505050505050565b73ffffffffffffffffffffffffffffffffffffffff8416815260606020820152600061154e606083018561128f565b905063ffffffff8316604083015294935050505056fea164736f6c634300080f000a
Deployed Bytecode Sourcemap
1322:4392:14:-:0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;5416:971:26;;;;;;:::i;:::-;;:::i;:::-;;3372:99;3455:9;3372:99;;;1730:42:29;1718:55;;;1700:74;;1688:2;1673:18;3372:99:26;;;;;;;;1406:40:14;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;3967:82:26:-;;;4014:4;2686:41:29;;2674:2;2659:18;3967:82:26;2546:187:29;2706:1275:14;;;;;;:::i;:::-;;:::i;880:37:26:-;;;;;1895:44:14;;;:::i;664:47:26:-;;;;;7613:428;;;;;;:::i;:::-;;:::i;3593:91::-;3665:12;3593:91;;5416:971;6200:10;1465:19:5;:23;6172:89:26;;;;;;;5188:2:29;6172:89:26;;;5170:21:29;5227:2;5207:18;;;5200:30;5266:34;5246:18;;;5239:62;5337:15;5317:18;;;5310:43;5370:19;;6172:89:26;;;;;;;;;6272:108;6294:11;6307:12;6321:10;6333;6345:8;6355:12;6369:10;;6272:21;:108::i;:::-;5416:971;;;;;;:::o;2706:1275:14:-;2564:10:26;:32;2586:9;2564:32;;:84;;;;;2636:12;2600:48;;:9;:30;;;:32;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;:48;;;2564:84;2543:194;;;;;;;5858:2:29;2543:194:26;;;5840:21:29;5897:2;5877:18;;;5870:30;5936:34;5916:18;;;5909:62;6007:33;5987:18;;;5980:61;6058:19;;2543:194:26;5656:427:29;2543:194:26;2992:4:14::1;2969:28;::::0;::::1;::::0;2961:83:::1;;;::::0;::::1;::::0;;6290:2:29;2961:83:14::1;::::0;::::1;6272:21:29::0;6329:2;6309:18;;;6302:30;6368:34;6348:18;;;6341:62;6439:12;6419:18;;;6412:40;6469:19;;2961:83:14::1;6088:406:29::0;2961:83:14::1;3194:87;3226:11;3239:41;3194:31;:87::i;:::-;3173:188;;;::::0;::::1;::::0;;6701:2:29;3173:188:14::1;::::0;::::1;6683:21:29::0;6740:2;6720:18;;;6713:30;6779:34;6759:18;;;6752:62;6850:24;6830:18;;;6823:52;6892:19;;3173:188:14::1;6499:418:29::0;3173:188:14::1;3433:11;3409:48;;;:50;;;;;;;;;;;;;;;;;;;;;;;;;;;;::::0;::::1;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;3393:66;;:12;:66;;;3372:188;;;::::0;::::1;::::0;;7124:2:29;3372:188:14::1;::::0;::::1;7106:21:29::0;7163:2;7143:18;;;7136:30;7202:34;7182:18;;;7175:62;7273:34;7253:18;;;7246:62;7345:13;7324:19;;;7317:42;7376:19;;3372:188:14::1;6922:479:29::0;3372:188:14::1;3761:60;::::0;;;;:45:::1;7598:55:29::0;;;3761:60:14::1;::::0;::::1;7580:74:29::0;7670:18;;;7663:34;;;3761:45:14;::::1;::::0;::::1;::::0;7553:18:29;;3761:60:14::1;;;;;;;;;;;;;;;;;::::0;::::1;;;;;;;;;;;;::::0;::::1;;;;;;;;;3941:5;3892:82;;3927:12;3892:82;;3914:11;3892:82;;;3948:3;3953:8;3963:10;;3892:82;;;;;;;;;:::i;:::-;;;;;;;;2706:1275:::0;;;;;;;:::o;1895:44::-;3100:19:2;3123:13;;;;;;3122:14;;3168:34;;;;-1:-1:-1;3186:12:2;;3201:1;3186:12;;;;:16;3168:34;3167:97;;;-1:-1:-1;3236:4:2;1465:19:5;:23;;;3208:55:2;;-1:-1:-1;3246:12:2;;;;;:17;3208:55;3146:190;;;;;;;8680:2:29;3146:190:2;;;8662:21:29;8719:2;8699:18;;;8692:30;8758:34;8738:18;;;8731:62;8829:16;8809:18;;;8802:44;8863:19;;3146:190:2;8478:410:29;3146:190:2;3346:12;:16;;;;3361:1;3346:16;;;3372:65;;;;3406:13;:20;;;;;;;;3372:65;3461:14;3457:99;;;3507:5;3491:21;;;;;;3531:14;;-1:-1:-1;9045:36:29;;3531:14:2;;9033:2:29;9018:18;3531:14:2;;;;;;;3457:99;3090:472;1895:44:14:o;7613:428:26:-;7852:17;;;7844:78;;;;;;;9294:2:29;7844:78:26;;;9276:21:29;9333:2;9313:18;;;9306:30;9372:34;9352:18;;;9345:62;9443:18;9423;;;9416:46;9479:19;;7844:78:26;9092:412:29;7844:78:26;7933:101;7955:11;7968:12;7982:10;7994:3;7999:8;8009:12;8023:10;;7933:21;:101::i;:::-;7613:428;;;;;;;:::o;1175:320:5:-;1465:19;;;:23;;;1175:320::o;4020:1692:14:-;4306:26;;;4298:88;;;;;;;9711:2:29;4298:88:14;;;9693:21:29;9750:2;9730:18;;;9723:30;9789:34;9769:18;;;9762:62;9860:19;9840:18;;;9833:47;9897:19;;4298:88:14;9509:413:29;4298:88:14;4500:54;;;;;;;;10073:25:29;;;4500:44:14;;;;;;10046:18:29;;4500:54:14;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;4491:63;;:5;:63;;;4470:172;;;;;;;10311:2:29;4470:172:14;;;10293:21:29;10350:2;10330:18;;;10323:30;10389:34;10369:18;;;10362:62;10460:32;10440:18;;;10433:60;10510:19;;4470:172:14;10109:426:29;4470:172:14;4793:19;4839:11;4815:48;;;:50;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;4793:72;;4898:12;4883:27;;:11;:27;;;4875:95;;;;;;;10742:2:29;4875:95:14;;;10724:21:29;10781:2;10761:18;;;10754:30;10820:34;10800:18;;;10793:62;10891:25;10871:18;;;10864:53;10934:19;;4875:95:14;10540:419:29;4875:95:14;5150:58;;;;;:41;7598:55:29;;;5150:58:14;;;7580:74:29;7670:18;;;7663:34;;;5150:41:14;;;;;7553:18:29;;5150:58:14;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;5219:20;5278:44;;;5324:11;5337;5350:5;5357:3;5362:8;5372:10;;5242:150;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;5495:58;;;;;5242:150;;-1:-1:-1;5495:21:14;:9;:21;;;;:58;;5517:12;;5242:150;;5540:12;;5495:58;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;5672:5;5624:81;;5659:11;5624:81;;5646:11;5624:81;;;5679:3;5684:8;5694:10;;5624:81;;;;;;;;;:::i;:::-;;;;;;;;4288:1424;;4020:1692;;;;;;;;:::o;1333:274:6:-;1420:4;1527:23;1542:7;1527:14;:23::i;:::-;:73;;;;;1554:46;1579:7;1588:11;1554:24;:46::i;:::-;1520:80;1333:274;-1:-1:-1;;;1333:274:6:o;704:411::-;768:4;975:60;1000:7;1009:25;975:24;:60::i;:::-;:133;;;;-1:-1:-1;1052:56:6;1077:7;1086:21;1052:24;:56::i;:::-;1051:57;975:133;956:152;704:411;-1:-1:-1;;704:411:6:o;4223:638::-;4385:71;;;12272:66:29;12260:79;;4385:71:6;;;;12242:98:29;;;;4385:71:6;;;;;;;;;;12215:18:29;;;;4385:71:6;;;;;;;;;;;4408:34;4385:71;;;4664:20;;4316:4;;4385:71;4316:4;;;;;;4385:71;4316:4;;4664:20;4629:7;4622:5;4611:86;4600:97;;4724:16;4710:30;;4774:4;4768:11;4753:26;;4806:7;:29;;;;;4831:4;4817:10;:18;;4806:29;:48;;;;;4853:1;4839:11;:15;4806:48;4799:55;4223:638;-1:-1:-1;;;;;;;4223:638:6:o;14:154:29:-;100:42;93:5;89:54;82:5;79:65;69:93;;158:1;155;148:12;173:163;240:20;;300:10;289:22;;279:33;;269:61;;326:1;323;316:12;269:61;173:163;;;:::o;341:347::-;392:8;402:6;456:3;449:4;441:6;437:17;433:27;423:55;;474:1;471;464:12;423:55;-1:-1:-1;497:20:29;;540:18;529:30;;526:50;;;572:1;569;562:12;526:50;609:4;601:6;597:17;585:29;;661:3;654:4;645:6;637;633:19;629:30;626:39;623:59;;;678:1;675;668:12;623:59;341:347;;;;;:::o;693:827::-;798:6;806;814;822;830;838;891:3;879:9;870:7;866:23;862:33;859:53;;;908:1;905;898:12;859:53;947:9;934:23;966:31;991:5;966:31;:::i;:::-;1016:5;-1:-1:-1;1073:2:29;1058:18;;1045:32;1086:33;1045:32;1086:33;:::i;:::-;1138:7;-1:-1:-1;1192:2:29;1177:18;;1164:32;;-1:-1:-1;1215:37:29;1248:2;1233:18;;1215:37;:::i;:::-;1205:47;;1303:3;1292:9;1288:19;1275:33;1331:18;1323:6;1320:30;1317:50;;;1363:1;1360;1353:12;1317:50;1402:58;1452:7;1443:6;1432:9;1428:22;1402:58;:::i;:::-;693:827;;;;-1:-1:-1;693:827:29;;-1:-1:-1;693:827:29;;1479:8;;693:827;-1:-1:-1;;;693:827:29:o;1785:531::-;1827:3;1865:5;1859:12;1892:6;1887:3;1880:19;1917:1;1927:162;1941:6;1938:1;1935:13;1927:162;;;2003:4;2059:13;;;2055:22;;2049:29;2031:11;;;2027:20;;2020:59;1956:12;1927:162;;;2107:6;2104:1;2101:13;2098:87;;;2173:1;2166:4;2157:6;2152:3;2148:16;2144:27;2137:38;2098:87;-1:-1:-1;2230:2:29;2218:15;2235:66;2214:88;2205:98;;;;2305:4;2201:109;;1785:531;-1:-1:-1;;1785:531:29:o;2321:220::-;2470:2;2459:9;2452:21;2433:4;2490:45;2531:2;2520:9;2516:18;2508:6;2490:45;:::i;2738:1038::-;2853:6;2861;2869;2877;2885;2893;2901;2954:3;2942:9;2933:7;2929:23;2925:33;2922:53;;;2971:1;2968;2961:12;2922:53;3010:9;2997:23;3029:31;3054:5;3029:31;:::i;:::-;3079:5;-1:-1:-1;3136:2:29;3121:18;;3108:32;3149:33;3108:32;3149:33;:::i;:::-;3201:7;-1:-1:-1;3260:2:29;3245:18;;3232:32;3273:33;3232:32;3273:33;:::i;:::-;3325:7;-1:-1:-1;3384:2:29;3369:18;;3356:32;3397:33;3356:32;3397:33;:::i;:::-;3449:7;-1:-1:-1;3503:3:29;3488:19;;3475:33;;-1:-1:-1;3559:3:29;3544:19;;3531:33;3587:18;3576:30;;3573:50;;;3619:1;3616;3609:12;3573:50;3658:58;3708:7;3699:6;3688:9;3684:22;3658:58;:::i;:::-;2738:1038;;;;-1:-1:-1;2738:1038:29;;-1:-1:-1;2738:1038:29;;;;3632:84;;-1:-1:-1;;;2738:1038:29:o;4012:969::-;4126:6;4134;4142;4150;4158;4166;4174;4227:3;4215:9;4206:7;4202:23;4198:33;4195:53;;;4244:1;4241;4234:12;4195:53;4283:9;4270:23;4302:31;4327:5;4302:31;:::i;:::-;4352:5;-1:-1:-1;4409:2:29;4394:18;;4381:32;4422:33;4381:32;4422:33;:::i;:::-;4474:7;-1:-1:-1;4533:2:29;4518:18;;4505:32;4546:33;4505:32;4546:33;:::i;:::-;4598:7;-1:-1:-1;4652:2:29;4637:18;;4624:32;;-1:-1:-1;4675:38:29;4708:3;4693:19;;4675:38;:::i;:::-;4665:48;;4764:3;4753:9;4749:19;4736:33;4792:18;4784:6;4781:30;4778:50;;;4824:1;4821;4814:12;5400:251;5470:6;5523:2;5511:9;5502:7;5498:23;5494:32;5491:52;;;5539:1;5536;5529:12;5491:52;5571:9;5565:16;5590:31;5615:5;5590:31;:::i;7708:325::-;7796:6;7791:3;7784:19;7848:6;7841:5;7834:4;7829:3;7825:14;7812:43;;7900:1;7893:4;7884:6;7879:3;7875:16;7871:27;7864:38;7766:3;8022:4;7952:66;7947:2;7939:6;7935:15;7931:88;7926:3;7922:98;7918:109;7911:116;;7708:325;;;;:::o;8038:435::-;8263:42;8255:6;8251:55;8240:9;8233:74;8343:6;8338:2;8327:9;8323:18;8316:34;8386:2;8381;8370:9;8366:18;8359:30;8214:4;8406:61;8463:2;8452:9;8448:18;8440:6;8432;8406:61;:::i;:::-;8398:69;8038:435;-1:-1:-1;;;;;;8038:435:29:o;10964:700::-;11224:4;11253:42;11334:2;11326:6;11322:15;11311:9;11304:34;11386:2;11378:6;11374:15;11369:2;11358:9;11354:18;11347:43;11438:2;11430:6;11426:15;11421:2;11410:9;11406:18;11399:43;11490:2;11482:6;11478:15;11473:2;11462:9;11458:18;11451:43;;11531:6;11525:3;11514:9;11510:19;11503:35;11575:3;11569;11558:9;11554:19;11547:32;11596:62;11653:3;11642:9;11638:19;11630:6;11622;11596:62;:::i;:::-;11588:70;10964:700;-1:-1:-1;;;;;;;;;10964:700:29:o;11669:424::-;11882:42;11874:6;11870:55;11859:9;11852:74;11962:2;11957;11946:9;11942:18;11935:30;11833:4;11982:45;12023:2;12012:9;12008:18;12000:6;11982:45;:::i;:::-;11974:53;;12075:10;12067:6;12063:23;12058:2;12047:9;12043:18;12036:51;11669:424;;;;;;:::o
Swarm Source
none
Loading...
Loading
Loading...
Loading
Loading...
Loading
Net Worth in USD
$0.00
Net Worth in FRAX
0
Multichain Portfolio | 35 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.