Source Code
| Transaction Hash |
|
Block
|
From
|
To
|
|||||
|---|---|---|---|---|---|---|---|---|---|
View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Cross-Chain Transactions
Loading...
Loading
Contract Name:
VotingEscrowDelegationProxy
Compiler Version
v0.7.1+commit.f4a555be
Optimization Enabled:
Yes with 9999 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "@balancer-labs/v2-interfaces/contracts/liquidity-mining/IVeDelegation.sol";
import "@balancer-labs/v2-interfaces/contracts/vault/IVault.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/SingletonAuthentication.sol";
contract VotingEscrowDelegationProxy is SingletonAuthentication {
IERC20 private immutable _votingEscrow;
IVeDelegation private _delegation;
event DelegationImplementationUpdated(address indexed newImplementation);
constructor(
IVault vault,
IERC20 votingEscrow,
IVeDelegation delegation
) SingletonAuthentication(vault) {
_votingEscrow = votingEscrow;
_delegation = delegation;
}
/**
* @notice Returns the current delegation implementation contract.
*/
function getDelegationImplementation() external view returns (IVeDelegation) {
return _delegation;
}
/**
* @notice Returns the Voting Escrow (veBAL) contract.
*/
function getVotingEscrow() external view returns (IERC20) {
return _votingEscrow;
}
/**
* @notice Get the adjusted veBAL balance from the active boost delegation contract
* @param user The user to query the adjusted veBAL balance of
* @return veBAL balance
*/
function adjustedBalanceOf(address user) external view returns (uint256) {
return _adjustedBalanceOf(user);
}
/**
* @notice Get the adjusted veBAL balance from the active boost delegation contract
* @param user The user to query the adjusted veBAL balance of
* @return veBAL balance
*/
// solhint-disable-next-line func-name-mixedcase
function adjusted_balance_of(address user) external view returns (uint256) {
return _adjustedBalanceOf(user);
}
/**
* @notice Get the current veBAL total supply from the votingEscrow contract.
* @return The current veBAL total supply.
*/
function totalSupply() external view returns (uint256) {
IVeDelegation implementation = _delegation;
if (implementation == IVeDelegation(0)) {
return IERC20(_votingEscrow).totalSupply();
}
return implementation.totalSupply();
}
// Internal functions
function _adjustedBalanceOf(address user) internal view returns (uint256) {
IVeDelegation implementation = _delegation;
if (implementation == IVeDelegation(0)) {
return IERC20(_votingEscrow).balanceOf(user);
}
return implementation.adjusted_balance_of(user);
}
// Admin functions
function setDelegation(IVeDelegation delegation) external authenticate {
// call `adjusted_balance_of` to make sure it works
delegation.adjusted_balance_of(msg.sender);
_delegation = delegation;
emit DelegationImplementationUpdated(address(delegation));
}
function killDelegation() external authenticate {
_delegation = IVeDelegation(0);
emit DelegationImplementationUpdated(address(0));
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity >=0.7.0 <0.9.0;
// For compatibility, we're keeping the same function names as in the original Curve code, including the mixed-case
// naming convention.
// solhint-disable func-name-mixedcase
interface IVeDelegation {
// solhint-disable-next-line func-name-mixedcase
function adjusted_balance_of(address user) external view returns (uint256);
function totalSupply() external view returns (uint256);
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity >=0.7.0 <0.9.0;
// solhint-disable
/**
* @dev Reverts if `condition` is false, with a revert reason containing `errorCode`. Only codes up to 999 are
* supported.
* Uses the default 'BAL' prefix for the error code
*/
function _require(bool condition, uint256 errorCode) pure {
if (!condition) _revert(errorCode);
}
/**
* @dev Reverts if `condition` is false, with a revert reason containing `errorCode`. Only codes up to 999 are
* supported.
*/
function _require(
bool condition,
uint256 errorCode,
bytes3 prefix
) pure {
if (!condition) _revert(errorCode, prefix);
}
/**
* @dev Reverts with a revert reason containing `errorCode`. Only codes up to 999 are supported.
* Uses the default 'BAL' prefix for the error code
*/
function _revert(uint256 errorCode) pure {
_revert(errorCode, 0x42414c); // This is the raw byte representation of "BAL"
}
/**
* @dev Reverts with a revert reason containing `errorCode`. Only codes up to 999 are supported.
*/
function _revert(uint256 errorCode, bytes3 prefix) pure {
uint256 prefixUint = uint256(uint24(prefix));
// We're going to dynamically create a revert string based on the error code, with the following format:
// 'BAL#{errorCode}'
// where the code is left-padded with zeroes to three digits (so they range from 000 to 999).
//
// We don't have revert strings embedded in the contract to save bytecode size: it takes much less space to store a
// number (8 to 16 bits) than the individual string characters.
//
// The dynamic string creation algorithm that follows could be implemented in Solidity, but assembly allows for a
// much denser implementation, again saving bytecode size. Given this function unconditionally reverts, this is a
// safe place to rely on it without worrying about how its usage might affect e.g. memory contents.
assembly {
// First, we need to compute the ASCII representation of the error code. We assume that it is in the 0-999
// range, so we only need to convert three digits. To convert the digits to ASCII, we add 0x30, the value for
// the '0' character.
let units := add(mod(errorCode, 10), 0x30)
errorCode := div(errorCode, 10)
let tenths := add(mod(errorCode, 10), 0x30)
errorCode := div(errorCode, 10)
let hundreds := add(mod(errorCode, 10), 0x30)
// With the individual characters, we can now construct the full string.
// We first append the '#' character (0x23) to the prefix. In the case of 'BAL', it results in 0x42414c23 ('BAL#')
// Then, we shift this by 24 (to provide space for the 3 bytes of the error code), and add the
// characters to it, each shifted by a multiple of 8.
// The revert reason is then shifted left by 200 bits (256 minus the length of the string, 7 characters * 8 bits
// per character = 56) to locate it in the most significant part of the 256 slot (the beginning of a byte
// array).
let formattedPrefix := shl(24, add(0x23, shl(8, prefixUint)))
let revertReason := shl(200, add(formattedPrefix, add(add(units, shl(8, tenths)), shl(16, hundreds))))
// We can now encode the reason in memory, which can be safely overwritten as we're about to revert. The encoded
// message will have the following layout:
// [ revert reason identifier ] [ string location offset ] [ string length ] [ string contents ]
// The Solidity revert reason identifier is 0x08c739a0, the function selector of the Error(string) function. We
// also write zeroes to the next 28 bytes of memory, but those are about to be overwritten.
mstore(0x0, 0x08c379a000000000000000000000000000000000000000000000000000000000)
// Next is the offset to the location of the string, which will be placed immediately after (20 bytes away).
mstore(0x04, 0x0000000000000000000000000000000000000000000000000000000000000020)
// The string length is fixed: 7 characters.
mstore(0x24, 7)
// Finally, the string itself is stored.
mstore(0x44, revertReason)
// Even if the string is only 7 bytes long, we need to return a full 32 byte slot containing it. The length of
// the encoded message is therefore 4 + 32 + 32 + 32 = 100.
revert(0, 100)
}
}
library Errors {
// Math
uint256 internal constant ADD_OVERFLOW = 0;
uint256 internal constant SUB_OVERFLOW = 1;
uint256 internal constant SUB_UNDERFLOW = 2;
uint256 internal constant MUL_OVERFLOW = 3;
uint256 internal constant ZERO_DIVISION = 4;
uint256 internal constant DIV_INTERNAL = 5;
uint256 internal constant X_OUT_OF_BOUNDS = 6;
uint256 internal constant Y_OUT_OF_BOUNDS = 7;
uint256 internal constant PRODUCT_OUT_OF_BOUNDS = 8;
uint256 internal constant INVALID_EXPONENT = 9;
// Input
uint256 internal constant OUT_OF_BOUNDS = 100;
uint256 internal constant UNSORTED_ARRAY = 101;
uint256 internal constant UNSORTED_TOKENS = 102;
uint256 internal constant INPUT_LENGTH_MISMATCH = 103;
uint256 internal constant ZERO_TOKEN = 104;
uint256 internal constant INSUFFICIENT_DATA = 105;
// Shared pools
uint256 internal constant MIN_TOKENS = 200;
uint256 internal constant MAX_TOKENS = 201;
uint256 internal constant MAX_SWAP_FEE_PERCENTAGE = 202;
uint256 internal constant MIN_SWAP_FEE_PERCENTAGE = 203;
uint256 internal constant MINIMUM_BPT = 204;
uint256 internal constant CALLER_NOT_VAULT = 205;
uint256 internal constant UNINITIALIZED = 206;
uint256 internal constant BPT_IN_MAX_AMOUNT = 207;
uint256 internal constant BPT_OUT_MIN_AMOUNT = 208;
uint256 internal constant EXPIRED_PERMIT = 209;
uint256 internal constant NOT_TWO_TOKENS = 210;
uint256 internal constant DISABLED = 211;
// Pools
uint256 internal constant MIN_AMP = 300;
uint256 internal constant MAX_AMP = 301;
uint256 internal constant MIN_WEIGHT = 302;
uint256 internal constant MAX_STABLE_TOKENS = 303;
uint256 internal constant MAX_IN_RATIO = 304;
uint256 internal constant MAX_OUT_RATIO = 305;
uint256 internal constant MIN_BPT_IN_FOR_TOKEN_OUT = 306;
uint256 internal constant MAX_OUT_BPT_FOR_TOKEN_IN = 307;
uint256 internal constant NORMALIZED_WEIGHT_INVARIANT = 308;
uint256 internal constant INVALID_TOKEN = 309;
uint256 internal constant UNHANDLED_JOIN_KIND = 310;
uint256 internal constant ZERO_INVARIANT = 311;
uint256 internal constant ORACLE_INVALID_SECONDS_QUERY = 312;
uint256 internal constant ORACLE_NOT_INITIALIZED = 313;
uint256 internal constant ORACLE_QUERY_TOO_OLD = 314;
uint256 internal constant ORACLE_INVALID_INDEX = 315;
uint256 internal constant ORACLE_BAD_SECS = 316;
uint256 internal constant AMP_END_TIME_TOO_CLOSE = 317;
uint256 internal constant AMP_ONGOING_UPDATE = 318;
uint256 internal constant AMP_RATE_TOO_HIGH = 319;
uint256 internal constant AMP_NO_ONGOING_UPDATE = 320;
uint256 internal constant STABLE_INVARIANT_DIDNT_CONVERGE = 321;
uint256 internal constant STABLE_GET_BALANCE_DIDNT_CONVERGE = 322;
uint256 internal constant RELAYER_NOT_CONTRACT = 323;
uint256 internal constant BASE_POOL_RELAYER_NOT_CALLED = 324;
uint256 internal constant REBALANCING_RELAYER_REENTERED = 325;
uint256 internal constant GRADUAL_UPDATE_TIME_TRAVEL = 326;
uint256 internal constant SWAPS_DISABLED = 327;
uint256 internal constant CALLER_IS_NOT_LBP_OWNER = 328;
uint256 internal constant PRICE_RATE_OVERFLOW = 329;
uint256 internal constant INVALID_JOIN_EXIT_KIND_WHILE_SWAPS_DISABLED = 330;
uint256 internal constant WEIGHT_CHANGE_TOO_FAST = 331;
uint256 internal constant LOWER_GREATER_THAN_UPPER_TARGET = 332;
uint256 internal constant UPPER_TARGET_TOO_HIGH = 333;
uint256 internal constant UNHANDLED_BY_LINEAR_POOL = 334;
uint256 internal constant OUT_OF_TARGET_RANGE = 335;
uint256 internal constant UNHANDLED_EXIT_KIND = 336;
uint256 internal constant UNAUTHORIZED_EXIT = 337;
uint256 internal constant MAX_MANAGEMENT_SWAP_FEE_PERCENTAGE = 338;
uint256 internal constant UNHANDLED_BY_MANAGED_POOL = 339;
uint256 internal constant UNHANDLED_BY_PHANTOM_POOL = 340;
uint256 internal constant TOKEN_DOES_NOT_HAVE_RATE_PROVIDER = 341;
uint256 internal constant INVALID_INITIALIZATION = 342;
uint256 internal constant OUT_OF_NEW_TARGET_RANGE = 343;
uint256 internal constant FEATURE_DISABLED = 344;
uint256 internal constant UNINITIALIZED_POOL_CONTROLLER = 345;
uint256 internal constant SET_SWAP_FEE_DURING_FEE_CHANGE = 346;
uint256 internal constant SET_SWAP_FEE_PENDING_FEE_CHANGE = 347;
uint256 internal constant CHANGE_TOKENS_DURING_WEIGHT_CHANGE = 348;
uint256 internal constant CHANGE_TOKENS_PENDING_WEIGHT_CHANGE = 349;
uint256 internal constant MAX_WEIGHT = 350;
uint256 internal constant UNAUTHORIZED_JOIN = 351;
uint256 internal constant MAX_MANAGEMENT_AUM_FEE_PERCENTAGE = 352;
uint256 internal constant FRACTIONAL_TARGET = 353;
uint256 internal constant ADD_OR_REMOVE_BPT = 354;
uint256 internal constant INVALID_CIRCUIT_BREAKER_BOUNDS = 355;
uint256 internal constant CIRCUIT_BREAKER_TRIPPED = 356;
uint256 internal constant MALICIOUS_QUERY_REVERT = 357;
uint256 internal constant JOINS_EXITS_DISABLED = 358;
// Lib
uint256 internal constant REENTRANCY = 400;
uint256 internal constant SENDER_NOT_ALLOWED = 401;
uint256 internal constant PAUSED = 402;
uint256 internal constant PAUSE_WINDOW_EXPIRED = 403;
uint256 internal constant MAX_PAUSE_WINDOW_DURATION = 404;
uint256 internal constant MAX_BUFFER_PERIOD_DURATION = 405;
uint256 internal constant INSUFFICIENT_BALANCE = 406;
uint256 internal constant INSUFFICIENT_ALLOWANCE = 407;
uint256 internal constant ERC20_TRANSFER_FROM_ZERO_ADDRESS = 408;
uint256 internal constant ERC20_TRANSFER_TO_ZERO_ADDRESS = 409;
uint256 internal constant ERC20_MINT_TO_ZERO_ADDRESS = 410;
uint256 internal constant ERC20_BURN_FROM_ZERO_ADDRESS = 411;
uint256 internal constant ERC20_APPROVE_FROM_ZERO_ADDRESS = 412;
uint256 internal constant ERC20_APPROVE_TO_ZERO_ADDRESS = 413;
uint256 internal constant ERC20_TRANSFER_EXCEEDS_ALLOWANCE = 414;
uint256 internal constant ERC20_DECREASED_ALLOWANCE_BELOW_ZERO = 415;
uint256 internal constant ERC20_TRANSFER_EXCEEDS_BALANCE = 416;
uint256 internal constant ERC20_BURN_EXCEEDS_ALLOWANCE = 417;
uint256 internal constant SAFE_ERC20_CALL_FAILED = 418;
uint256 internal constant ADDRESS_INSUFFICIENT_BALANCE = 419;
uint256 internal constant ADDRESS_CANNOT_SEND_VALUE = 420;
uint256 internal constant SAFE_CAST_VALUE_CANT_FIT_INT256 = 421;
uint256 internal constant GRANT_SENDER_NOT_ADMIN = 422;
uint256 internal constant REVOKE_SENDER_NOT_ADMIN = 423;
uint256 internal constant RENOUNCE_SENDER_NOT_ALLOWED = 424;
uint256 internal constant BUFFER_PERIOD_EXPIRED = 425;
uint256 internal constant CALLER_IS_NOT_OWNER = 426;
uint256 internal constant NEW_OWNER_IS_ZERO = 427;
uint256 internal constant CODE_DEPLOYMENT_FAILED = 428;
uint256 internal constant CALL_TO_NON_CONTRACT = 429;
uint256 internal constant LOW_LEVEL_CALL_FAILED = 430;
uint256 internal constant NOT_PAUSED = 431;
uint256 internal constant ADDRESS_ALREADY_ALLOWLISTED = 432;
uint256 internal constant ADDRESS_NOT_ALLOWLISTED = 433;
uint256 internal constant ERC20_BURN_EXCEEDS_BALANCE = 434;
uint256 internal constant INVALID_OPERATION = 435;
uint256 internal constant CODEC_OVERFLOW = 436;
uint256 internal constant IN_RECOVERY_MODE = 437;
uint256 internal constant NOT_IN_RECOVERY_MODE = 438;
uint256 internal constant INDUCED_FAILURE = 439;
uint256 internal constant EXPIRED_SIGNATURE = 440;
uint256 internal constant MALFORMED_SIGNATURE = 441;
uint256 internal constant SAFE_CAST_VALUE_CANT_FIT_UINT64 = 442;
uint256 internal constant UNHANDLED_FEE_TYPE = 443;
uint256 internal constant BURN_FROM_ZERO = 444;
// Vault
uint256 internal constant INVALID_POOL_ID = 500;
uint256 internal constant CALLER_NOT_POOL = 501;
uint256 internal constant SENDER_NOT_ASSET_MANAGER = 502;
uint256 internal constant USER_DOESNT_ALLOW_RELAYER = 503;
uint256 internal constant INVALID_SIGNATURE = 504;
uint256 internal constant EXIT_BELOW_MIN = 505;
uint256 internal constant JOIN_ABOVE_MAX = 506;
uint256 internal constant SWAP_LIMIT = 507;
uint256 internal constant SWAP_DEADLINE = 508;
uint256 internal constant CANNOT_SWAP_SAME_TOKEN = 509;
uint256 internal constant UNKNOWN_AMOUNT_IN_FIRST_SWAP = 510;
uint256 internal constant MALCONSTRUCTED_MULTIHOP_SWAP = 511;
uint256 internal constant INTERNAL_BALANCE_OVERFLOW = 512;
uint256 internal constant INSUFFICIENT_INTERNAL_BALANCE = 513;
uint256 internal constant INVALID_ETH_INTERNAL_BALANCE = 514;
uint256 internal constant INVALID_POST_LOAN_BALANCE = 515;
uint256 internal constant INSUFFICIENT_ETH = 516;
uint256 internal constant UNALLOCATED_ETH = 517;
uint256 internal constant ETH_TRANSFER = 518;
uint256 internal constant CANNOT_USE_ETH_SENTINEL = 519;
uint256 internal constant TOKENS_MISMATCH = 520;
uint256 internal constant TOKEN_NOT_REGISTERED = 521;
uint256 internal constant TOKEN_ALREADY_REGISTERED = 522;
uint256 internal constant TOKENS_ALREADY_SET = 523;
uint256 internal constant TOKENS_LENGTH_MUST_BE_2 = 524;
uint256 internal constant NONZERO_TOKEN_BALANCE = 525;
uint256 internal constant BALANCE_TOTAL_OVERFLOW = 526;
uint256 internal constant POOL_NO_TOKENS = 527;
uint256 internal constant INSUFFICIENT_FLASH_LOAN_BALANCE = 528;
// Fees
uint256 internal constant SWAP_FEE_PERCENTAGE_TOO_HIGH = 600;
uint256 internal constant FLASH_LOAN_FEE_PERCENTAGE_TOO_HIGH = 601;
uint256 internal constant INSUFFICIENT_FLASH_LOAN_FEE_AMOUNT = 602;
uint256 internal constant AUM_FEE_PERCENTAGE_TOO_HIGH = 603;
// FeeSplitter
uint256 internal constant SPLITTER_FEE_PERCENTAGE_TOO_HIGH = 700;
// Misc
uint256 internal constant UNIMPLEMENTED = 998;
uint256 internal constant SHOULD_NOT_HAPPEN = 999;
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity >=0.7.0 <0.9.0;
interface IAuthentication {
/**
* @dev Returns the action identifier associated with the external function described by `selector`.
*/
function getActionId(bytes4 selector) external view returns (bytes32);
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity >=0.7.0 <0.9.0;
/**
* @dev Interface for the SignatureValidator helper, used to support meta-transactions.
*/
interface ISignaturesValidator {
/**
* @dev Returns the EIP712 domain separator.
*/
function getDomainSeparator() external view returns (bytes32);
/**
* @dev Returns the next nonce used by an address to sign messages.
*/
function getNextNonce(address user) external view returns (uint256);
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity >=0.7.0 <0.9.0;
/**
* @dev Interface for the TemporarilyPausable helper.
*/
interface ITemporarilyPausable {
/**
* @dev Emitted every time the pause state changes by `_setPaused`.
*/
event PausedStateChanged(bool paused);
/**
* @dev Returns the current paused state.
*/
function getPausedState()
external
view
returns (
bool paused,
uint256 pauseWindowEndTime,
uint256 bufferPeriodEndTime
);
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity >=0.7.0 <0.9.0;
import "../openzeppelin/IERC20.sol";
/**
* @dev Interface for WETH9.
* See https://github.com/gnosis/canonical-weth/blob/0dd1ea3e295eef916d0c6223ec63141137d22d67/contracts/WETH9.sol
*/
interface IWETH is IERC20 {
function deposit() external payable;
function withdraw(uint256 amount) external;
}// SPDX-License-Identifier: MIT
pragma solidity >=0.7.0 <0.9.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity >=0.7.0 <0.9.0;
/**
* @dev This is an empty interface used to represent either ERC20-conforming token contracts or ETH (using the zero
* address sentinel value). We're just relying on the fact that `interface` can be used to declare new address-like
* types.
*
* This concept is unrelated to a Pool's Asset Managers.
*/
interface IAsset {
// solhint-disable-previous-line no-empty-blocks
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity >=0.7.0 <0.9.0;
interface IAuthorizer {
/**
* @dev Returns true if `account` can perform the action described by `actionId` in the contract `where`.
*/
function canPerform(
bytes32 actionId,
address account,
address where
) external view returns (bool);
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity >=0.7.0 <0.9.0;
// Inspired by Aave Protocol's IFlashLoanReceiver.
import "../solidity-utils/openzeppelin/IERC20.sol";
interface IFlashLoanRecipient {
/**
* @dev When `flashLoan` is called on the Vault, it invokes the `receiveFlashLoan` hook on the recipient.
*
* At the time of the call, the Vault will have transferred `amounts` for `tokens` to the recipient. Before this
* call returns, the recipient must have transferred `amounts` plus `feeAmounts` for each token back to the
* Vault, or else the entire flash loan will revert.
*
* `userData` is the same value passed in the `IVault.flashLoan` call.
*/
function receiveFlashLoan(
IERC20[] memory tokens,
uint256[] memory amounts,
uint256[] memory feeAmounts,
bytes memory userData
) external;
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity >=0.7.0 <0.9.0;
pragma experimental ABIEncoderV2;
import "../solidity-utils/openzeppelin/IERC20.sol";
import "./IVault.sol";
import "./IAuthorizer.sol";
interface IProtocolFeesCollector {
event SwapFeePercentageChanged(uint256 newSwapFeePercentage);
event FlashLoanFeePercentageChanged(uint256 newFlashLoanFeePercentage);
function withdrawCollectedFees(
IERC20[] calldata tokens,
uint256[] calldata amounts,
address recipient
) external;
function setSwapFeePercentage(uint256 newSwapFeePercentage) external;
function setFlashLoanFeePercentage(uint256 newFlashLoanFeePercentage) external;
function getSwapFeePercentage() external view returns (uint256);
function getFlashLoanFeePercentage() external view returns (uint256);
function getCollectedFeeAmounts(IERC20[] memory tokens) external view returns (uint256[] memory feeAmounts);
function getAuthorizer() external view returns (IAuthorizer);
function vault() external view returns (IVault);
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma experimental ABIEncoderV2;
import "../solidity-utils/openzeppelin/IERC20.sol";
import "../solidity-utils/helpers/IAuthentication.sol";
import "../solidity-utils/helpers/ISignaturesValidator.sol";
import "../solidity-utils/helpers/ITemporarilyPausable.sol";
import "../solidity-utils/misc/IWETH.sol";
import "./IAsset.sol";
import "./IAuthorizer.sol";
import "./IFlashLoanRecipient.sol";
import "./IProtocolFeesCollector.sol";
pragma solidity >=0.7.0 <0.9.0;
/**
* @dev Full external interface for the Vault core contract - no external or public methods exist in the contract that
* don't override one of these declarations.
*/
interface IVault is ISignaturesValidator, ITemporarilyPausable, IAuthentication {
// Generalities about the Vault:
//
// - Whenever documentation refers to 'tokens', it strictly refers to ERC20-compliant token contracts. Tokens are
// transferred out of the Vault by calling the `IERC20.transfer` function, and transferred in by calling
// `IERC20.transferFrom`. In these cases, the sender must have previously allowed the Vault to use their tokens by
// calling `IERC20.approve`. The only deviation from the ERC20 standard that is supported is functions not returning
// a boolean value: in these scenarios, a non-reverting call is assumed to be successful.
//
// - All non-view functions in the Vault are non-reentrant: calling them while another one is mid-execution (e.g.
// while execution control is transferred to a token contract during a swap) will result in a revert. View
// functions can be called in a re-reentrant way, but doing so might cause them to return inconsistent results.
// Contracts calling view functions in the Vault must make sure the Vault has not already been entered.
//
// - View functions revert if referring to either unregistered Pools, or unregistered tokens for registered Pools.
// Authorizer
//
// Some system actions are permissioned, like setting and collecting protocol fees. This permissioning system exists
// outside of the Vault in the Authorizer contract: the Vault simply calls the Authorizer to check if the caller
// can perform a given action.
/**
* @dev Returns the Vault's Authorizer.
*/
function getAuthorizer() external view returns (IAuthorizer);
/**
* @dev Sets a new Authorizer for the Vault. The caller must be allowed by the current Authorizer to do this.
*
* Emits an `AuthorizerChanged` event.
*/
function setAuthorizer(IAuthorizer newAuthorizer) external;
/**
* @dev Emitted when a new authorizer is set by `setAuthorizer`.
*/
event AuthorizerChanged(IAuthorizer indexed newAuthorizer);
// Relayers
//
// Additionally, it is possible for an account to perform certain actions on behalf of another one, using their
// Vault ERC20 allowance and Internal Balance. These accounts are said to be 'relayers' for these Vault functions,
// and are expected to be smart contracts with sound authentication mechanisms. For an account to be able to wield
// this power, two things must occur:
// - The Authorizer must grant the account the permission to be a relayer for the relevant Vault function. This
// means that Balancer governance must approve each individual contract to act as a relayer for the intended
// functions.
// - Each user must approve the relayer to act on their behalf.
// This double protection means users cannot be tricked into approving malicious relayers (because they will not
// have been allowed by the Authorizer via governance), nor can malicious relayers approved by a compromised
// Authorizer or governance drain user funds, since they would also need to be approved by each individual user.
/**
* @dev Returns true if `user` has approved `relayer` to act as a relayer for them.
*/
function hasApprovedRelayer(address user, address relayer) external view returns (bool);
/**
* @dev Allows `relayer` to act as a relayer for `sender` if `approved` is true, and disallows it otherwise.
*
* Emits a `RelayerApprovalChanged` event.
*/
function setRelayerApproval(
address sender,
address relayer,
bool approved
) external;
/**
* @dev Emitted every time a relayer is approved or disapproved by `setRelayerApproval`.
*/
event RelayerApprovalChanged(address indexed relayer, address indexed sender, bool approved);
// Internal Balance
//
// Users can deposit tokens into the Vault, where they are allocated to their Internal Balance, and later
// transferred or withdrawn. It can also be used as a source of tokens when joining Pools, as a destination
// when exiting them, and as either when performing swaps. This usage of Internal Balance results in greatly reduced
// gas costs when compared to relying on plain ERC20 transfers, leading to large savings for frequent users.
//
// Internal Balance management features batching, which means a single contract call can be used to perform multiple
// operations of different kinds, with different senders and recipients, at once.
/**
* @dev Returns `user`'s Internal Balance for a set of tokens.
*/
function getInternalBalance(address user, IERC20[] memory tokens) external view returns (uint256[] memory);
/**
* @dev Performs a set of user balance operations, which involve Internal Balance (deposit, withdraw or transfer)
* and plain ERC20 transfers using the Vault's allowance. This last feature is particularly useful for relayers, as
* it lets integrators reuse a user's Vault allowance.
*
* For each operation, if the caller is not `sender`, it must be an authorized relayer for them.
*/
function manageUserBalance(UserBalanceOp[] memory ops) external payable;
/**
* @dev Data for `manageUserBalance` operations, which include the possibility for ETH to be sent and received
without manual WETH wrapping or unwrapping.
*/
struct UserBalanceOp {
UserBalanceOpKind kind;
IAsset asset;
uint256 amount;
address sender;
address payable recipient;
}
// There are four possible operations in `manageUserBalance`:
//
// - DEPOSIT_INTERNAL
// Increases the Internal Balance of the `recipient` account by transferring tokens from the corresponding
// `sender`. The sender must have allowed the Vault to use their tokens via `IERC20.approve()`.
//
// ETH can be used by passing the ETH sentinel value as the asset and forwarding ETH in the call: it will be wrapped
// and deposited as WETH. Any ETH amount remaining will be sent back to the caller (not the sender, which is
// relevant for relayers).
//
// Emits an `InternalBalanceChanged` event.
//
//
// - WITHDRAW_INTERNAL
// Decreases the Internal Balance of the `sender` account by transferring tokens to the `recipient`.
//
// ETH can be used by passing the ETH sentinel value as the asset. This will deduct WETH instead, unwrap it and send
// it to the recipient as ETH.
//
// Emits an `InternalBalanceChanged` event.
//
//
// - TRANSFER_INTERNAL
// Transfers tokens from the Internal Balance of the `sender` account to the Internal Balance of `recipient`.
//
// Reverts if the ETH sentinel value is passed.
//
// Emits an `InternalBalanceChanged` event.
//
//
// - TRANSFER_EXTERNAL
// Transfers tokens from `sender` to `recipient`, using the Vault's ERC20 allowance. This is typically used by
// relayers, as it lets them reuse a user's Vault allowance.
//
// Reverts if the ETH sentinel value is passed.
//
// Emits an `ExternalBalanceTransfer` event.
enum UserBalanceOpKind { DEPOSIT_INTERNAL, WITHDRAW_INTERNAL, TRANSFER_INTERNAL, TRANSFER_EXTERNAL }
/**
* @dev Emitted when a user's Internal Balance changes, either from calls to `manageUserBalance`, or through
* interacting with Pools using Internal Balance.
*
* Because Internal Balance works exclusively with ERC20 tokens, ETH deposits and withdrawals will use the WETH
* address.
*/
event InternalBalanceChanged(address indexed user, IERC20 indexed token, int256 delta);
/**
* @dev Emitted when a user's Vault ERC20 allowance is used by the Vault to transfer tokens to an external account.
*/
event ExternalBalanceTransfer(IERC20 indexed token, address indexed sender, address recipient, uint256 amount);
// Pools
//
// There are three specialization settings for Pools, which allow for cheaper swaps at the cost of reduced
// functionality:
//
// - General: no specialization, suited for all Pools. IGeneralPool is used for swap request callbacks, passing the
// balance of all tokens in the Pool. These Pools have the largest swap costs (because of the extra storage reads),
// which increase with the number of registered tokens.
//
// - Minimal Swap Info: IMinimalSwapInfoPool is used instead of IGeneralPool, which saves gas by only passing the
// balance of the two tokens involved in the swap. This is suitable for some pricing algorithms, like the weighted
// constant product one popularized by Balancer V1. Swap costs are smaller compared to general Pools, and are
// independent of the number of registered tokens.
//
// - Two Token: only allows two tokens to be registered. This achieves the lowest possible swap gas cost. Like
// minimal swap info Pools, these are called via IMinimalSwapInfoPool.
enum PoolSpecialization { GENERAL, MINIMAL_SWAP_INFO, TWO_TOKEN }
/**
* @dev Registers the caller account as a Pool with a given specialization setting. Returns the Pool's ID, which
* is used in all Pool-related functions. Pools cannot be deregistered, nor can the Pool's specialization be
* changed.
*
* The caller is expected to be a smart contract that implements either `IGeneralPool` or `IMinimalSwapInfoPool`,
* depending on the chosen specialization setting. This contract is known as the Pool's contract.
*
* Note that the same contract may register itself as multiple Pools with unique Pool IDs, or in other words,
* multiple Pools may share the same contract.
*
* Emits a `PoolRegistered` event.
*/
function registerPool(PoolSpecialization specialization) external returns (bytes32);
/**
* @dev Emitted when a Pool is registered by calling `registerPool`.
*/
event PoolRegistered(bytes32 indexed poolId, address indexed poolAddress, PoolSpecialization specialization);
/**
* @dev Returns a Pool's contract address and specialization setting.
*/
function getPool(bytes32 poolId) external view returns (address, PoolSpecialization);
/**
* @dev Registers `tokens` for the `poolId` Pool. Must be called by the Pool's contract.
*
* Pools can only interact with tokens they have registered. Users join a Pool by transferring registered tokens,
* exit by receiving registered tokens, and can only swap registered tokens.
*
* Each token can only be registered once. For Pools with the Two Token specialization, `tokens` must have a length
* of two, that is, both tokens must be registered in the same `registerTokens` call, and they must be sorted in
* ascending order.
*
* The `tokens` and `assetManagers` arrays must have the same length, and each entry in these indicates the Asset
* Manager for the corresponding token. Asset Managers can manage a Pool's tokens via `managePoolBalance`,
* depositing and withdrawing them directly, and can even set their balance to arbitrary amounts. They are therefore
* expected to be highly secured smart contracts with sound design principles, and the decision to register an
* Asset Manager should not be made lightly.
*
* Pools can choose not to assign an Asset Manager to a given token by passing in the zero address. Once an Asset
* Manager is set, it cannot be changed except by deregistering the associated token and registering again with a
* different Asset Manager.
*
* Emits a `TokensRegistered` event.
*/
function registerTokens(
bytes32 poolId,
IERC20[] memory tokens,
address[] memory assetManagers
) external;
/**
* @dev Emitted when a Pool registers tokens by calling `registerTokens`.
*/
event TokensRegistered(bytes32 indexed poolId, IERC20[] tokens, address[] assetManagers);
/**
* @dev Deregisters `tokens` for the `poolId` Pool. Must be called by the Pool's contract.
*
* Only registered tokens (via `registerTokens`) can be deregistered. Additionally, they must have zero total
* balance. For Pools with the Two Token specialization, `tokens` must have a length of two, that is, both tokens
* must be deregistered in the same `deregisterTokens` call.
*
* A deregistered token can be re-registered later on, possibly with a different Asset Manager.
*
* Emits a `TokensDeregistered` event.
*/
function deregisterTokens(bytes32 poolId, IERC20[] memory tokens) external;
/**
* @dev Emitted when a Pool deregisters tokens by calling `deregisterTokens`.
*/
event TokensDeregistered(bytes32 indexed poolId, IERC20[] tokens);
/**
* @dev Returns detailed information for a Pool's registered token.
*
* `cash` is the number of tokens the Vault currently holds for the Pool. `managed` is the number of tokens
* withdrawn and held outside the Vault by the Pool's token Asset Manager. The Pool's total balance for `token`
* equals the sum of `cash` and `managed`.
*
* Internally, `cash` and `managed` are stored using 112 bits. No action can ever cause a Pool's token `cash`,
* `managed` or `total` balance to be greater than 2^112 - 1.
*
* `lastChangeBlock` is the number of the block in which `token`'s total balance was last modified (via either a
* join, exit, swap, or Asset Manager update). This value is useful to avoid so-called 'sandwich attacks', for
* example when developing price oracles. A change of zero (e.g. caused by a swap with amount zero) is considered a
* change for this purpose, and will update `lastChangeBlock`.
*
* `assetManager` is the Pool's token Asset Manager.
*/
function getPoolTokenInfo(bytes32 poolId, IERC20 token)
external
view
returns (
uint256 cash,
uint256 managed,
uint256 lastChangeBlock,
address assetManager
);
/**
* @dev Returns a Pool's registered tokens, the total balance for each, and the latest block when *any* of
* the tokens' `balances` changed.
*
* The order of the `tokens` array is the same order that will be used in `joinPool`, `exitPool`, as well as in all
* Pool hooks (where applicable). Calls to `registerTokens` and `deregisterTokens` may change this order.
*
* If a Pool only registers tokens once, and these are sorted in ascending order, they will be stored in the same
* order as passed to `registerTokens`.
*
* Total balances include both tokens held by the Vault and those withdrawn by the Pool's Asset Managers. These are
* the amounts used by joins, exits and swaps. For a detailed breakdown of token balances, use `getPoolTokenInfo`
* instead.
*/
function getPoolTokens(bytes32 poolId)
external
view
returns (
IERC20[] memory tokens,
uint256[] memory balances,
uint256 lastChangeBlock
);
/**
* @dev Called by users to join a Pool, which transfers tokens from `sender` into the Pool's balance. This will
* trigger custom Pool behavior, which will typically grant something in return to `recipient` - often tokenized
* Pool shares.
*
* If the caller is not `sender`, it must be an authorized relayer for them.
*
* The `assets` and `maxAmountsIn` arrays must have the same length, and each entry indicates the maximum amount
* to send for each asset. The amounts to send are decided by the Pool and not the Vault: it just enforces
* these maximums.
*
* If joining a Pool that holds WETH, it is possible to send ETH directly: the Vault will do the wrapping. To enable
* this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead of the
* WETH address. Note that it is not possible to combine ETH and WETH in the same join. Any excess ETH will be sent
* back to the caller (not the sender, which is important for relayers).
*
* `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when
* interacting with Pools that register and deregister tokens frequently. If sending ETH however, the array must be
* sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the final
* `assets` array might not be sorted. Pools with no registered tokens cannot be joined.
*
* If `fromInternalBalance` is true, the caller's Internal Balance will be preferred: ERC20 transfers will only
* be made for the difference between the requested amount and Internal Balance (if any). Note that ETH cannot be
* withdrawn from Internal Balance: attempting to do so will trigger a revert.
*
* This causes the Vault to call the `IBasePool.onJoinPool` hook on the Pool's contract, where Pools implement
* their own custom logic. This typically requires additional information from the user (such as the expected number
* of Pool shares). This can be encoded in the `userData` argument, which is ignored by the Vault and passed
* directly to the Pool's contract, as is `recipient`.
*
* Emits a `PoolBalanceChanged` event.
*/
function joinPool(
bytes32 poolId,
address sender,
address recipient,
JoinPoolRequest memory request
) external payable;
struct JoinPoolRequest {
IAsset[] assets;
uint256[] maxAmountsIn;
bytes userData;
bool fromInternalBalance;
}
/**
* @dev Called by users to exit a Pool, which transfers tokens from the Pool's balance to `recipient`. This will
* trigger custom Pool behavior, which will typically ask for something in return from `sender` - often tokenized
* Pool shares. The amount of tokens that can be withdrawn is limited by the Pool's `cash` balance (see
* `getPoolTokenInfo`).
*
* If the caller is not `sender`, it must be an authorized relayer for them.
*
* The `tokens` and `minAmountsOut` arrays must have the same length, and each entry in these indicates the minimum
* token amount to receive for each token contract. The amounts to send are decided by the Pool and not the Vault:
* it just enforces these minimums.
*
* If exiting a Pool that holds WETH, it is possible to receive ETH directly: the Vault will do the unwrapping. To
* enable this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead
* of the WETH address. Note that it is not possible to combine ETH and WETH in the same exit.
*
* `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when
* interacting with Pools that register and deregister tokens frequently. If receiving ETH however, the array must
* be sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the
* final `assets` array might not be sorted. Pools with no registered tokens cannot be exited.
*
* If `toInternalBalance` is true, the tokens will be deposited to `recipient`'s Internal Balance. Otherwise,
* an ERC20 transfer will be performed. Note that ETH cannot be deposited to Internal Balance: attempting to
* do so will trigger a revert.
*
* `minAmountsOut` is the minimum amount of tokens the user expects to get out of the Pool, for each token in the
* `tokens` array. This array must match the Pool's registered tokens.
*
* This causes the Vault to call the `IBasePool.onExitPool` hook on the Pool's contract, where Pools implement
* their own custom logic. This typically requires additional information from the user (such as the expected number
* of Pool shares to return). This can be encoded in the `userData` argument, which is ignored by the Vault and
* passed directly to the Pool's contract.
*
* Emits a `PoolBalanceChanged` event.
*/
function exitPool(
bytes32 poolId,
address sender,
address payable recipient,
ExitPoolRequest memory request
) external;
struct ExitPoolRequest {
IAsset[] assets;
uint256[] minAmountsOut;
bytes userData;
bool toInternalBalance;
}
/**
* @dev Emitted when a user joins or exits a Pool by calling `joinPool` or `exitPool`, respectively.
*/
event PoolBalanceChanged(
bytes32 indexed poolId,
address indexed liquidityProvider,
IERC20[] tokens,
int256[] deltas,
uint256[] protocolFeeAmounts
);
enum PoolBalanceChangeKind { JOIN, EXIT }
// Swaps
//
// Users can swap tokens with Pools by calling the `swap` and `batchSwap` functions. To do this,
// they need not trust Pool contracts in any way: all security checks are made by the Vault. They must however be
// aware of the Pools' pricing algorithms in order to estimate the prices Pools will quote.
//
// The `swap` function executes a single swap, while `batchSwap` can perform multiple swaps in sequence.
// In each individual swap, tokens of one kind are sent from the sender to the Pool (this is the 'token in'),
// and tokens of another kind are sent from the Pool to the recipient in exchange (this is the 'token out').
// More complex swaps, such as one token in to multiple tokens out can be achieved by batching together
// individual swaps.
//
// There are two swap kinds:
// - 'given in' swaps, where the amount of tokens in (sent to the Pool) is known, and the Pool determines (via the
// `onSwap` hook) the amount of tokens out (to send to the recipient).
// - 'given out' swaps, where the amount of tokens out (received from the Pool) is known, and the Pool determines
// (via the `onSwap` hook) the amount of tokens in (to receive from the sender).
//
// Additionally, it is possible to chain swaps using a placeholder input amount, which the Vault replaces with
// the calculated output of the previous swap. If the previous swap was 'given in', this will be the calculated
// tokenOut amount. If the previous swap was 'given out', it will use the calculated tokenIn amount. These extended
// swaps are known as 'multihop' swaps, since they 'hop' through a number of intermediate tokens before arriving at
// the final intended token.
//
// In all cases, tokens are only transferred in and out of the Vault (or withdrawn from and deposited into Internal
// Balance) after all individual swaps have been completed, and the net token balance change computed. This makes
// certain swap patterns, such as multihops, or swaps that interact with the same token pair in multiple Pools, cost
// much less gas than they would otherwise.
//
// It also means that under certain conditions it is possible to perform arbitrage by swapping with multiple
// Pools in a way that results in net token movement out of the Vault (profit), with no tokens being sent in (only
// updating the Pool's internal accounting).
//
// To protect users from front-running or the market changing rapidly, they supply a list of 'limits' for each token
// involved in the swap, where either the maximum number of tokens to send (by passing a positive value) or the
// minimum amount of tokens to receive (by passing a negative value) is specified.
//
// Additionally, a 'deadline' timestamp can also be provided, forcing the swap to fail if it occurs after
// this point in time (e.g. if the transaction failed to be included in a block promptly).
//
// If interacting with Pools that hold WETH, it is possible to both send and receive ETH directly: the Vault will do
// the wrapping and unwrapping. To enable this mechanism, the IAsset sentinel value (the zero address) must be
// passed in the `assets` array instead of the WETH address. Note that it is possible to combine ETH and WETH in the
// same swap. Any excess ETH will be sent back to the caller (not the sender, which is relevant for relayers).
//
// Finally, Internal Balance can be used when either sending or receiving tokens.
enum SwapKind { GIVEN_IN, GIVEN_OUT }
/**
* @dev Performs a swap with a single Pool.
*
* If the swap is 'given in' (the number of tokens to send to the Pool is known), it returns the amount of tokens
* taken from the Pool, which must be greater than or equal to `limit`.
*
* If the swap is 'given out' (the number of tokens to take from the Pool is known), it returns the amount of tokens
* sent to the Pool, which must be less than or equal to `limit`.
*
* Internal Balance usage and the recipient are determined by the `funds` struct.
*
* Emits a `Swap` event.
*/
function swap(
SingleSwap memory singleSwap,
FundManagement memory funds,
uint256 limit,
uint256 deadline
) external payable returns (uint256);
/**
* @dev Data for a single swap executed by `swap`. `amount` is either `amountIn` or `amountOut` depending on
* the `kind` value.
*
* `assetIn` and `assetOut` are either token addresses, or the IAsset sentinel value for ETH (the zero address).
* Note that Pools never interact with ETH directly: it will be wrapped to or unwrapped from WETH by the Vault.
*
* The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be
* used to extend swap behavior.
*/
struct SingleSwap {
bytes32 poolId;
SwapKind kind;
IAsset assetIn;
IAsset assetOut;
uint256 amount;
bytes userData;
}
/**
* @dev Performs a series of swaps with one or multiple Pools. In each individual swap, the caller determines either
* the amount of tokens sent to or received from the Pool, depending on the `kind` value.
*
* Returns an array with the net Vault asset balance deltas. Positive amounts represent tokens (or ETH) sent to the
* Vault, and negative amounts represent tokens (or ETH) sent by the Vault. Each delta corresponds to the asset at
* the same index in the `assets` array.
*
* Swaps are executed sequentially, in the order specified by the `swaps` array. Each array element describes a
* Pool, the token to be sent to this Pool, the token to receive from it, and an amount that is either `amountIn` or
* `amountOut` depending on the swap kind.
*
* Multihop swaps can be executed by passing an `amount` value of zero for a swap. This will cause the amount in/out
* of the previous swap to be used as the amount in for the current one. In a 'given in' swap, 'tokenIn' must equal
* the previous swap's `tokenOut`. For a 'given out' swap, `tokenOut` must equal the previous swap's `tokenIn`.
*
* The `assets` array contains the addresses of all assets involved in the swaps. These are either token addresses,
* or the IAsset sentinel value for ETH (the zero address). Each entry in the `swaps` array specifies tokens in and
* out by referencing an index in `assets`. Note that Pools never interact with ETH directly: it will be wrapped to
* or unwrapped from WETH by the Vault.
*
* Internal Balance usage, sender, and recipient are determined by the `funds` struct. The `limits` array specifies
* the minimum or maximum amount of each token the vault is allowed to transfer.
*
* `batchSwap` can be used to make a single swap, like `swap` does, but doing so requires more gas than the
* equivalent `swap` call.
*
* Emits `Swap` events.
*/
function batchSwap(
SwapKind kind,
BatchSwapStep[] memory swaps,
IAsset[] memory assets,
FundManagement memory funds,
int256[] memory limits,
uint256 deadline
) external payable returns (int256[] memory);
/**
* @dev Data for each individual swap executed by `batchSwap`. The asset in and out fields are indexes into the
* `assets` array passed to that function, and ETH assets are converted to WETH.
*
* If `amount` is zero, the multihop mechanism is used to determine the actual amount based on the amount in/out
* from the previous swap, depending on the swap kind.
*
* The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be
* used to extend swap behavior.
*/
struct BatchSwapStep {
bytes32 poolId;
uint256 assetInIndex;
uint256 assetOutIndex;
uint256 amount;
bytes userData;
}
/**
* @dev Emitted for each individual swap performed by `swap` or `batchSwap`.
*/
event Swap(
bytes32 indexed poolId,
IERC20 indexed tokenIn,
IERC20 indexed tokenOut,
uint256 amountIn,
uint256 amountOut
);
/**
* @dev All tokens in a swap are either sent from the `sender` account to the Vault, or from the Vault to the
* `recipient` account.
*
* If the caller is not `sender`, it must be an authorized relayer for them.
*
* If `fromInternalBalance` is true, the `sender`'s Internal Balance will be preferred, performing an ERC20
* transfer for the difference between the requested amount and the User's Internal Balance (if any). The `sender`
* must have allowed the Vault to use their tokens via `IERC20.approve()`. This matches the behavior of
* `joinPool`.
*
* If `toInternalBalance` is true, tokens will be deposited to `recipient`'s internal balance instead of
* transferred. This matches the behavior of `exitPool`.
*
* Note that ETH cannot be deposited to or withdrawn from Internal Balance: attempting to do so will trigger a
* revert.
*/
struct FundManagement {
address sender;
bool fromInternalBalance;
address payable recipient;
bool toInternalBalance;
}
/**
* @dev Simulates a call to `batchSwap`, returning an array of Vault asset deltas. Calls to `swap` cannot be
* simulated directly, but an equivalent `batchSwap` call can and will yield the exact same result.
*
* Each element in the array corresponds to the asset at the same index, and indicates the number of tokens (or ETH)
* the Vault would take from the sender (if positive) or send to the recipient (if negative). The arguments it
* receives are the same that an equivalent `batchSwap` call would receive.
*
* Unlike `batchSwap`, this function performs no checks on the sender or recipient field in the `funds` struct.
* This makes it suitable to be called by off-chain applications via eth_call without needing to hold tokens,
* approve them for the Vault, or even know a user's address.
*
* Note that this function is not 'view' (due to implementation details): the client code must explicitly execute
* eth_call instead of eth_sendTransaction.
*/
function queryBatchSwap(
SwapKind kind,
BatchSwapStep[] memory swaps,
IAsset[] memory assets,
FundManagement memory funds
) external returns (int256[] memory assetDeltas);
// Flash Loans
/**
* @dev Performs a 'flash loan', sending tokens to `recipient`, executing the `receiveFlashLoan` hook on it,
* and then reverting unless the tokens plus a proportional protocol fee have been returned.
*
* The `tokens` and `amounts` arrays must have the same length, and each entry in these indicates the loan amount
* for each token contract. `tokens` must be sorted in ascending order.
*
* The 'userData' field is ignored by the Vault, and forwarded as-is to `recipient` as part of the
* `receiveFlashLoan` call.
*
* Emits `FlashLoan` events.
*/
function flashLoan(
IFlashLoanRecipient recipient,
IERC20[] memory tokens,
uint256[] memory amounts,
bytes memory userData
) external;
/**
* @dev Emitted for each individual flash loan performed by `flashLoan`.
*/
event FlashLoan(IFlashLoanRecipient indexed recipient, IERC20 indexed token, uint256 amount, uint256 feeAmount);
// Asset Management
//
// Each token registered for a Pool can be assigned an Asset Manager, which is able to freely withdraw the Pool's
// tokens from the Vault, deposit them, or assign arbitrary values to its `managed` balance (see
// `getPoolTokenInfo`). This makes them extremely powerful and dangerous. Even if an Asset Manager only directly
// controls one of the tokens in a Pool, a malicious manager could set that token's balance to manipulate the
// prices of the other tokens, and then drain the Pool with swaps. The risk of using Asset Managers is therefore
// not constrained to the tokens they are managing, but extends to the entire Pool's holdings.
//
// However, a properly designed Asset Manager smart contract can be safely used for the Pool's benefit,
// for example by lending unused tokens out for interest, or using them to participate in voting protocols.
//
// This concept is unrelated to the IAsset interface.
/**
* @dev Performs a set of Pool balance operations, which may be either withdrawals, deposits or updates.
*
* Pool Balance management features batching, which means a single contract call can be used to perform multiple
* operations of different kinds, with different Pools and tokens, at once.
*
* For each operation, the caller must be registered as the Asset Manager for `token` in `poolId`.
*/
function managePoolBalance(PoolBalanceOp[] memory ops) external;
struct PoolBalanceOp {
PoolBalanceOpKind kind;
bytes32 poolId;
IERC20 token;
uint256 amount;
}
/**
* Withdrawals decrease the Pool's cash, but increase its managed balance, leaving the total balance unchanged.
*
* Deposits increase the Pool's cash, but decrease its managed balance, leaving the total balance unchanged.
*
* Updates don't affect the Pool's cash balance, but because the managed balance changes, it does alter the total.
* The external amount can be either increased or decreased by this call (i.e., reporting a gain or a loss).
*/
enum PoolBalanceOpKind { WITHDRAW, DEPOSIT, UPDATE }
/**
* @dev Emitted when a Pool's token Asset Manager alters its balance via `managePoolBalance`.
*/
event PoolBalanceManaged(
bytes32 indexed poolId,
address indexed assetManager,
IERC20 indexed token,
int256 cashDelta,
int256 managedDelta
);
// Protocol Fees
//
// Some operations cause the Vault to collect tokens in the form of protocol fees, which can then be withdrawn by
// permissioned accounts.
//
// There are two kinds of protocol fees:
//
// - flash loan fees: charged on all flash loans, as a percentage of the amounts lent.
//
// - swap fees: a percentage of the fees charged by Pools when performing swaps. For a number of reasons, including
// swap gas costs and interface simplicity, protocol swap fees are not charged on each individual swap. Rather,
// Pools are expected to keep track of how much they have charged in swap fees, and pay any outstanding debts to the
// Vault when they are joined or exited. This prevents users from joining a Pool with unpaid debt, as well as
// exiting a Pool in debt without first paying their share.
/**
* @dev Returns the current protocol fee module.
*/
function getProtocolFeesCollector() external view returns (IProtocolFeesCollector);
/**
* @dev Safety mechanism to pause most Vault operations in the event of an emergency - typically detection of an
* error in some part of the system.
*
* The Vault can only be paused during an initial time period, after which pausing is forever disabled.
*
* While the contract is paused, the following features are disabled:
* - depositing and transferring internal balance
* - transferring external balance (using the Vault's allowance)
* - swaps
* - joining Pools
* - Asset Manager interactions
*
* Internal Balance can still be withdrawn, and Pools exited.
*/
function setPaused(bool paused) external;
/**
* @dev Returns the Vault's WETH instance.
*/
function WETH() external view returns (IWETH);
// solhint-disable-previous-line func-name-mixedcase
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/IAuthentication.sol";
/**
* @dev Building block for performing access control on external functions.
*
* This contract is used via the `authenticate` modifier (or the `_authenticateCaller` function), which can be applied
* to external functions to only make them callable by authorized accounts.
*
* Derived contracts must implement the `_canPerform` function, which holds the actual access control logic.
*/
abstract contract Authentication is IAuthentication {
bytes32 private immutable _actionIdDisambiguator;
/**
* @dev The main purpose of the `actionIdDisambiguator` is to prevent accidental function selector collisions in
* multi contract systems.
*
* There are two main uses for it:
* - if the contract is a singleton, any unique identifier can be used to make the associated action identifiers
* unique. The contract's own address is a good option.
* - if the contract belongs to a family that shares action identifiers for the same functions, an identifier
* shared by the entire family (and no other contract) should be used instead.
*/
constructor(bytes32 actionIdDisambiguator) {
_actionIdDisambiguator = actionIdDisambiguator;
}
/**
* @dev Reverts unless the caller is allowed to call this function. Should only be applied to external functions.
*/
modifier authenticate() {
_authenticateCaller();
_;
}
/**
* @dev Reverts unless the caller is allowed to call the entry point function.
*/
function _authenticateCaller() internal view {
bytes32 actionId = getActionId(msg.sig);
_require(_canPerform(actionId, msg.sender), Errors.SENDER_NOT_ALLOWED);
}
function getActionId(bytes4 selector) public view override returns (bytes32) {
// Each external function is dynamically assigned an action identifier as the hash of the disambiguator and the
// function selector. Disambiguation is necessary to avoid potential collisions in the function selectors of
// multiple contracts.
return keccak256(abi.encodePacked(_actionIdDisambiguator, selector));
}
function _canPerform(bytes32 actionId, address user) internal view virtual returns (bool);
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "@balancer-labs/v2-interfaces/contracts/vault/IVault.sol";
import "./Authentication.sol";
abstract contract SingletonAuthentication is Authentication {
IVault private immutable _vault;
// Use the contract's own address to disambiguate action identifiers
constructor(IVault vault) Authentication(bytes32(uint256(address(this)))) {
_vault = vault;
}
/**
* @notice Returns the Balancer Vault
*/
function getVault() public view returns (IVault) {
return _vault;
}
/**
* @notice Returns the Authorizer
*/
function getAuthorizer() public view returns (IAuthorizer) {
return getVault().getAuthorizer();
}
function _canPerform(bytes32 actionId, address account) internal view override returns (bool) {
return getAuthorizer().canPerform(actionId, account, address(this));
}
function _canPerform(
bytes32 actionId,
address account,
address where
) internal view returns (bool) {
return getAuthorizer().canPerform(actionId, account, where);
}
}{
"optimizer": {
"enabled": true,
"runs": 9999
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"libraries": {}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"contract IVault","name":"vault","type":"address"},{"internalType":"contract IERC20","name":"votingEscrow","type":"address"},{"internalType":"contract IVeDelegation","name":"delegation","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"newImplementation","type":"address"}],"name":"DelegationImplementationUpdated","type":"event"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"adjustedBalanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"adjusted_balance_of","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes4","name":"selector","type":"bytes4"}],"name":"getActionId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAuthorizer","outputs":[{"internalType":"contract IAuthorizer","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getDelegationImplementation","outputs":[{"internalType":"contract IVeDelegation","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getVault","outputs":[{"internalType":"contract IVault","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getVotingEscrow","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"killDelegation","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IVeDelegation","name":"delegation","type":"address"}],"name":"setDelegation","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"}]Contract Creation Code
60e060405234801561001057600080fd5b506040516109b93803806109b98339818101604052606081101561003357600080fd5b5080516020820151604090920151306080819052606083811b6001600160601b031990811660a0529085901b1660c052600080546001600160a01b0319166001600160a01b039384161781559093928216929190911690610902906100b79039806101d7528061021b52806105f85250806104285250806103bb52506109026000f3fe608060405234801561001057600080fd5b50600436106100be5760003560e01c8063851c1bb311610076578063aaabadc51161005b578063aaabadc51461019a578063bbf7408a1461010e578063e6b3e704146101a2576100be565b8063851c1bb3146101535780638d928af814610192576100be565b806325798418116100a7578063257984181461010e57806363408a90146101415780636448a3ab14610149576100be565b806308b0308a146100c357806318160ddd146100f4575b600080fd5b6100cb6101d5565b6040805173ffffffffffffffffffffffffffffffffffffffff9092168252519081900360200190f35b6100fc6101fa565b60408051918252519081900360200190f35b6100fc6004803603602081101561012457600080fd5b503573ffffffffffffffffffffffffffffffffffffffff1661032c565b6100cb61033f565b61015161035b565b005b6100fc6004803603602081101561016957600080fd5b50357fffffffff00000000000000000000000000000000000000000000000000000000166103b5565b6100cb610426565b6100cb61044a565b610151600480360360208110156101b857600080fd5b503573ffffffffffffffffffffffffffffffffffffffff166104ca565b7f00000000000000000000000000000000000000000000000000000000000000005b90565b6000805473ffffffffffffffffffffffffffffffffffffffff16806102b4577f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff166318160ddd6040518163ffffffff1660e01b815260040160206040518083038186803b15801561027f57600080fd5b505afa158015610293573d6000803e3d6000fd5b505050506040513d60208110156102a957600080fd5b505191506101f79050565b8073ffffffffffffffffffffffffffffffffffffffff166318160ddd6040518163ffffffff1660e01b815260040160206040518083038186803b1580156102fa57600080fd5b505afa15801561030e573d6000803e3d6000fd5b505050506040513d602081101561032457600080fd5b505191505090565b6000610337826105d7565b90505b919050565b60005473ffffffffffffffffffffffffffffffffffffffff1690565b61036361074c565b600080547fffffffffffffffffffffffff00000000000000000000000000000000000000001681556040517fb2f6d9cc189e4fc02519ab5ba6d9455bedc32091e375e8a6383ed45f40653e74908290a2565b604080517f00000000000000000000000000000000000000000000000000000000000000006020808301919091527fffffffff000000000000000000000000000000000000000000000000000000008416828401528251602481840301815260449092019092528051910120919050565b7f000000000000000000000000000000000000000000000000000000000000000090565b6000610454610426565b73ffffffffffffffffffffffffffffffffffffffff1663aaabadc56040518163ffffffff1660e01b815260040160206040518083038186803b15801561049957600080fd5b505afa1580156104ad573d6000803e3d6000fd5b505050506040513d60208110156104c357600080fd5b5051905090565b6104d261074c565b604080517fbbf7408a000000000000000000000000000000000000000000000000000000008152336004820152905173ffffffffffffffffffffffffffffffffffffffff83169163bbf7408a916024808301926020929190829003018186803b15801561053e57600080fd5b505afa158015610552573d6000803e3d6000fd5b505050506040513d602081101561056857600080fd5b5050600080547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff8316908117825560405190917fb2f6d9cc189e4fc02519ab5ba6d9455bedc32091e375e8a6383ed45f40653e7491a250565b6000805473ffffffffffffffffffffffffffffffffffffffff16806106b2577f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff166370a08231846040518263ffffffff1660e01b8152600401808273ffffffffffffffffffffffffffffffffffffffff16815260200191505060206040518083038186803b15801561067d57600080fd5b505afa158015610691573d6000803e3d6000fd5b505050506040513d60208110156106a757600080fd5b5051915061033a9050565b8073ffffffffffffffffffffffffffffffffffffffff1663bbf7408a846040518263ffffffff1660e01b8152600401808273ffffffffffffffffffffffffffffffffffffffff16815260200191505060206040518083038186803b15801561071957600080fd5b505afa15801561072d573d6000803e3d6000fd5b505050506040513d602081101561074357600080fd5b50519392505050565b600061077b6000357fffffffff00000000000000000000000000000000000000000000000000000000166103b5565b905061079261078a8233610795565b61019161082b565b50565b600061079f61044a565b73ffffffffffffffffffffffffffffffffffffffff16639be2a8848484306040518463ffffffff1660e01b8152600401808481526020018373ffffffffffffffffffffffffffffffffffffffff1681526020018273ffffffffffffffffffffffffffffffffffffffff168152602001935050505060206040518083038186803b15801561071957600080fd5b81610839576108398161083d565b5050565b7f08c379a000000000000000000000000000000000000000000000000000000000600090815260206004526007602452600a808304818106603090810160081b83860601918390049283060160101b016642414c230000300160c81b604452610792917f42414c0000000000000000000000000000000000000000000000000000000000906242414c90606490fdfea26469706673582212202696e52709185624608e22c9a4f2233bc805a0e9f7d9aecefe8d72ca0c2b0ac164736f6c63430007010033000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c80000000000000000000000005cf4928a3205728bd12830e1840f7db85c62a4b90000000000000000000000000000000000000000000000000000000000000000
Deployed Bytecode
0x608060405234801561001057600080fd5b50600436106100be5760003560e01c8063851c1bb311610076578063aaabadc51161005b578063aaabadc51461019a578063bbf7408a1461010e578063e6b3e704146101a2576100be565b8063851c1bb3146101535780638d928af814610192576100be565b806325798418116100a7578063257984181461010e57806363408a90146101415780636448a3ab14610149576100be565b806308b0308a146100c357806318160ddd146100f4575b600080fd5b6100cb6101d5565b6040805173ffffffffffffffffffffffffffffffffffffffff9092168252519081900360200190f35b6100fc6101fa565b60408051918252519081900360200190f35b6100fc6004803603602081101561012457600080fd5b503573ffffffffffffffffffffffffffffffffffffffff1661032c565b6100cb61033f565b61015161035b565b005b6100fc6004803603602081101561016957600080fd5b50357fffffffff00000000000000000000000000000000000000000000000000000000166103b5565b6100cb610426565b6100cb61044a565b610151600480360360208110156101b857600080fd5b503573ffffffffffffffffffffffffffffffffffffffff166104ca565b7f0000000000000000000000005cf4928a3205728bd12830e1840f7db85c62a4b95b90565b6000805473ffffffffffffffffffffffffffffffffffffffff16806102b4577f0000000000000000000000005cf4928a3205728bd12830e1840f7db85c62a4b973ffffffffffffffffffffffffffffffffffffffff166318160ddd6040518163ffffffff1660e01b815260040160206040518083038186803b15801561027f57600080fd5b505afa158015610293573d6000803e3d6000fd5b505050506040513d60208110156102a957600080fd5b505191506101f79050565b8073ffffffffffffffffffffffffffffffffffffffff166318160ddd6040518163ffffffff1660e01b815260040160206040518083038186803b1580156102fa57600080fd5b505afa15801561030e573d6000803e3d6000fd5b505050506040513d602081101561032457600080fd5b505191505090565b6000610337826105d7565b90505b919050565b60005473ffffffffffffffffffffffffffffffffffffffff1690565b61036361074c565b600080547fffffffffffffffffffffffff00000000000000000000000000000000000000001681556040517fb2f6d9cc189e4fc02519ab5ba6d9455bedc32091e375e8a6383ed45f40653e74908290a2565b604080517f000000000000000000000000e3881627b8deebccf9c23b291430a549fc0be5f76020808301919091527fffffffff000000000000000000000000000000000000000000000000000000008416828401528251602481840301815260449092019092528051910120919050565b7f000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c890565b6000610454610426565b73ffffffffffffffffffffffffffffffffffffffff1663aaabadc56040518163ffffffff1660e01b815260040160206040518083038186803b15801561049957600080fd5b505afa1580156104ad573d6000803e3d6000fd5b505050506040513d60208110156104c357600080fd5b5051905090565b6104d261074c565b604080517fbbf7408a000000000000000000000000000000000000000000000000000000008152336004820152905173ffffffffffffffffffffffffffffffffffffffff83169163bbf7408a916024808301926020929190829003018186803b15801561053e57600080fd5b505afa158015610552573d6000803e3d6000fd5b505050506040513d602081101561056857600080fd5b5050600080547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff8316908117825560405190917fb2f6d9cc189e4fc02519ab5ba6d9455bedc32091e375e8a6383ed45f40653e7491a250565b6000805473ffffffffffffffffffffffffffffffffffffffff16806106b2577f0000000000000000000000005cf4928a3205728bd12830e1840f7db85c62a4b973ffffffffffffffffffffffffffffffffffffffff166370a08231846040518263ffffffff1660e01b8152600401808273ffffffffffffffffffffffffffffffffffffffff16815260200191505060206040518083038186803b15801561067d57600080fd5b505afa158015610691573d6000803e3d6000fd5b505050506040513d60208110156106a757600080fd5b5051915061033a9050565b8073ffffffffffffffffffffffffffffffffffffffff1663bbf7408a846040518263ffffffff1660e01b8152600401808273ffffffffffffffffffffffffffffffffffffffff16815260200191505060206040518083038186803b15801561071957600080fd5b505afa15801561072d573d6000803e3d6000fd5b505050506040513d602081101561074357600080fd5b50519392505050565b600061077b6000357fffffffff00000000000000000000000000000000000000000000000000000000166103b5565b905061079261078a8233610795565b61019161082b565b50565b600061079f61044a565b73ffffffffffffffffffffffffffffffffffffffff16639be2a8848484306040518463ffffffff1660e01b8152600401808481526020018373ffffffffffffffffffffffffffffffffffffffff1681526020018273ffffffffffffffffffffffffffffffffffffffff168152602001935050505060206040518083038186803b15801561071957600080fd5b81610839576108398161083d565b5050565b7f08c379a000000000000000000000000000000000000000000000000000000000600090815260206004526007602452600a808304818106603090810160081b83860601918390049283060160101b016642414c230000300160c81b604452610792917f42414c0000000000000000000000000000000000000000000000000000000000906242414c90606490fdfea26469706673582212202696e52709185624608e22c9a4f2233bc805a0e9f7d9aecefe8d72ca0c2b0ac164736f6c63430007010033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c80000000000000000000000005cf4928a3205728bd12830e1840f7db85c62a4b90000000000000000000000000000000000000000000000000000000000000000
-----Decoded View---------------
Arg [0] : vault (address): 0xBA12222222228d8Ba445958a75a0704d566BF2C8
Arg [1] : votingEscrow (address): 0x5cF4928a3205728bd12830E1840F7DB85c62a4B9
Arg [2] : delegation (address): 0x0000000000000000000000000000000000000000
-----Encoded View---------------
3 Constructor Arguments found :
Arg [0] : 000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8
Arg [1] : 0000000000000000000000005cf4928a3205728bd12830e1840f7db85c62a4b9
Arg [2] : 0000000000000000000000000000000000000000000000000000000000000000
Loading...
Loading
Loading...
Loading
Loading...
Loading
Net Worth in USD
$0.00
Net Worth in FRAX
0
Multichain Portfolio | 35 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.