Source Code
| Transaction Hash |
|
Block
|
From
|
To
|
|||||
|---|---|---|---|---|---|---|---|---|---|
Cross-Chain Transactions
Loading...
Loading
Contract Name:
TokenRouter
Compiler Version
v0.8.25+commit.b61c2a91
Optimization Enabled:
Yes with 832 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: ISC
pragma solidity 0.8.25;
import { AgentRouter } from "./AgentRouter.sol";
import { IERC20 } from "@openzeppelin/contracts/interfaces/IERC20.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { AgentFactory } from "./AgentFactory.sol";
import { IFraxswapPair } from "dev-fraxswap/src/contracts/core/interfaces/IFraxswapPair.sol";
import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
import { LiquidityManager } from "./LiquidityManager.sol";
import { BootstrapPool } from "./BootstrapPool.sol";
interface IWETH {
function deposit() external payable;
function withdraw(uint256) external;
}
contract TokenRouter is AgentRouter, Ownable {
using SafeERC20 for IERC20;
address public immutable WRAPPED_NATIVE_TOKEN;
address[] public allowedTokensArray;
mapping(address => bool) public allowedTokens;
error TokenNotAllowed();
error WrappedNativeTokenNotSet();
error InvalidTokenInput();
event TokenWhitelisted(address indexed token, bool allowed);
event BuyWithToken(address indexed user, address indexed inputToken, address indexed agentToken, uint256 amountIn, uint256 amountOut);
constructor(AgentFactory _factory, address _wrappedNativeToken) AgentRouter(_factory) Ownable(msg.sender) {
WRAPPED_NATIVE_TOKEN = _wrappedNativeToken;
allowedTokens[address(_factory.currencyToken())] = true;
allowedTokensArray.push(address(_factory.currencyToken()));
allowedTokens[_wrappedNativeToken] = true;
allowedTokensArray.push(_wrappedNativeToken);
}
function addAllowedToken(address _token) external onlyOwner {
if (!allowedTokens[_token]) {
allowedTokens[_token] = true;
allowedTokensArray.push(_token);
emit TokenWhitelisted(_token, true);
}
}
function removeAllowedToken(address _token) external onlyOwner {
if (allowedTokens[_token]) {
allowedTokens[_token] = false;
emit TokenWhitelisted(_token, false);
}
}
function getAllowedTokens() external view returns (address[] memory) {
return allowedTokensArray;
}
function buyWithToken(
address _inputToken,
address _agentToken,
uint256 _amountIn,
uint256 _minAmountOut
) external payable returns (uint256 _amountOut) {
return buyWithToken(_inputToken, _agentToken, _amountIn, _minAmountOut, msg.sender);
}
function buyWithToken(
address _inputToken,
address _agentToken,
uint256 _amountIn,
uint256 _minAmountOut,
address _recipient
) public payable returns (uint256 _amountOut) {
if (factory.tokenAgent(_agentToken) == address(0)) revert AgentNotFound();
address actualInputToken;
uint256 actualAmountIn;
if (msg.value > 0) {
if (WRAPPED_NATIVE_TOKEN == address(0)) revert WrappedNativeTokenNotSet();
IWETH(WRAPPED_NATIVE_TOKEN).deposit{value: msg.value}();
actualInputToken = WRAPPED_NATIVE_TOKEN;
actualAmountIn = msg.value;
} else {
if (_amountIn == 0) revert InvalidTokenInput();
if (!allowedTokens[_inputToken]) revert TokenNotAllowed();
IERC20(_inputToken).safeTransferFrom(msg.sender, address(this), _amountIn);
actualInputToken = _inputToken;
actualAmountIn = _amountIn;
}
uint256 currencyAmount;
if (actualInputToken == address(currencyToken)) {
currencyAmount = actualAmountIn;
} else {
currencyAmount = _swapOnFraxswap(actualInputToken, address(currencyToken), actualAmountIn, address(this));
}
_amountOut = _buyAgentToken(_agentToken, currencyAmount, _recipient);
if (_amountOut < _minAmountOut) revert InsufficientAmountOut();
emit BuyWithToken(msg.sender, actualInputToken, _agentToken, actualAmountIn, _amountOut);
}
function getAmountOutForBuy(
address _inputToken,
address _agentToken,
uint256 _amountIn
) external returns (uint256 _amountOut) {
if (factory.tokenAgent(_agentToken) == address(0)) revert AgentNotFound();
address actualInputToken = _inputToken == address(0) ? WRAPPED_NATIVE_TOKEN : _inputToken;
if (!allowedTokens[actualInputToken]) revert TokenNotAllowed();
uint256 currencyAmount;
if (actualInputToken == address(currencyToken)) {
currencyAmount = _amountIn;
} else {
currencyAmount = _getAmountOutFraxswap(actualInputToken, address(currencyToken), _amountIn);
}
return this.getAmountOut(address(currencyToken), _agentToken, currencyAmount);
}
function _swapOnFraxswap(
address _tokenIn,
address _tokenOut,
uint256 _amountIn,
address _recipient
) internal returns (uint256 _amountOut) {
IFraxswapPair pair = IFraxswapPair(fraxswapFactory.getPair(_tokenIn, _tokenOut));
pair.sync();
_amountOut = pair.getAmountOut(_amountIn, _tokenIn);
IERC20(_tokenIn).safeTransfer(address(pair), _amountIn);
if (pair.token0() == _tokenIn) {
pair.swap(0, _amountOut, _recipient, "");
} else {
pair.swap(_amountOut, 0, _recipient, "");
}
}
function _getAmountOutFraxswap(
address _tokenIn,
address _tokenOut,
uint256 _amountIn
) internal returns (uint256) {
IFraxswapPair pair = IFraxswapPair(fraxswapFactory.getPair(_tokenIn, _tokenOut));
pair.sync();
return pair.getAmountOut(_amountIn, _tokenIn);
}
function _buyAgentToken(
address _agentToken,
uint256 _amountIn,
address _recipient
) internal returns (uint256 _amountOut) {
address agent = factory.tokenAgent(_agentToken);
if (agent == address(0)) revert AgentNotFound();
LiquidityManager liquidityManager = LiquidityManager(factory.agentManager(agent));
BootstrapPool bootstrapPool = liquidityManager.bootstrapPool();
if (!bootstrapPool.killed()) {
currencyToken.forceApprove(address(bootstrapPool), _amountIn);
_amountOut = bootstrapPool.buy(_amountIn, _recipient);
} else {
_amountOut = _swapOnFraxswap(address(currencyToken), _agentToken, _amountIn, _recipient);
}
}
receive() external payable {}
}// SPDX-License-Identifier: ISC
pragma solidity >=0.8.25;
import { IERC20 } from "@openzeppelin/contracts/interfaces/IERC20.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { AgentFactory } from "./AgentFactory.sol";
import { LiquidityManager } from "./LiquidityManager.sol";
import { BootstrapPool } from "./BootstrapPool.sol";
import { IFraxswapPair } from "dev-fraxswap/src/contracts/core/interfaces/IFraxswapPair.sol";
import { IFraxswapFactory } from "dev-fraxswap/src/contracts/core/interfaces/IFraxswapFactory.sol";
//////////////////////////////////////////////////////////////////////////////
// //
// 888 e88 88e e Y8b d8 //
// 888 d888 888b d8b Y8b e88 888 ,e e, 888 8e d88 dP"Y //
// 888 C8888 8888D d888b Y8b d888 888 d88 88b 888 88b d88888 C88b //
// 888 Y888 888P d888888888b Y888 888 888 , 888 888 888 Y88D //
// 888 "88 88" d8888888b Y8b "88 888 "YeeP" 888 888 888 d,dP //
// b , 88P //
// 8b, "8",P" //
//////////////////////////////////////////////////////////////////////////////
/**
* @title AgentRouter
* @dev AgentRouter contract
*/
contract AgentRouter {
using SafeERC20 for IERC20;
// The AgentFactory contract
AgentFactory public factory;
// The currency token
IERC20 public currencyToken;
// The Fraxswap factory
IFraxswapFactory public constant fraxswapFactory = IFraxswapFactory(0xE30521fe7f3bEB6Ad556887b50739d6C7CA667E6);
/// #### Errors
error AgentNotFound();
error NoCurrencyToken();
error InsufficientAmountOut();
/// @dev Constructor
/// @param _factory The address of the AgentFactory contract
constructor(AgentFactory _factory) {
factory = _factory;
currencyToken = _factory.currencyToken();
}
/// @dev Buy agent token
/// @param _agentToken The address of the agent token to buy
/// @param _amountIn The amount of currency token to spend
function buy(address _agentToken, uint256 _amountIn, uint256 _minAmountOut) external returns (uint256 _amountOut) {
_amountOut = buy(_agentToken, _amountIn, _minAmountOut, msg.sender);
}
/// @dev Buy agent token
/// @param _agentToken The address of the agent token to buy
/// @param _amountIn The amount of currency token to spend
/// @param _recipient The recipient of the agent token
function buy(
address _agentToken,
uint256 _amountIn,
uint256 _minAmountOut,
address _recipient
)
public
returns (uint256 _amountOut)
{
// Find the bootstrap pool of the agent token
address agent = factory.tokenAgent(_agentToken);
if (agent == address(0)) revert AgentNotFound();
LiquidityManager liquidityManager = LiquidityManager(factory.agentManager(agent));
BootstrapPool bootstrapPool = liquidityManager.bootstrapPool();
// If the bootstrap pool is not killed, buy the agent token from the bootstrap pool
if (!bootstrapPool.killed()) {
currencyToken.safeTransferFrom(msg.sender, address(this), _amountIn);
currencyToken.forceApprove(address(bootstrapPool), _amountIn);
_amountOut = bootstrapPool.buy(_amountIn, _recipient);
} else {
// Otherwise, buy the agent token from Fraxswap
IFraxswapPair fraxswapPair = IFraxswapPair(fraxswapFactory.getPair(address(currencyToken), _agentToken));
fraxswapPair.sync();
_amountOut = fraxswapPair.getAmountOut(_amountIn, address(currencyToken));
currencyToken.safeTransferFrom(msg.sender, address(fraxswapPair), _amountIn);
if (fraxswapPair.token0() == address(currencyToken)) {
fraxswapPair.swap(0, _amountOut, _recipient, "");
} else {
fraxswapPair.swap(_amountOut, 0, _recipient, "");
}
}
if (_amountOut < _minAmountOut) revert InsufficientAmountOut();
}
/// @dev Sell agent token
/// @param _agentToken The address of the agent token to sell
/// @param _amountIn The amount of agent token to sell
function sell(
address _agentToken,
uint256 _amountIn,
uint256 _minAmountOut
)
external
returns (uint256 _amountOut)
{
_amountOut = sell(_agentToken, _amountIn, _minAmountOut, msg.sender);
}
/// @dev Sell agent token
/// @param _agentToken The address of the agent token to sell
/// @param _amountIn The amount of agent token to sell
function sell(
address _agentToken,
uint256 _amountIn,
uint256 _minAmountOut,
address _recipient
)
public
returns (uint256 _amountOut)
{
// Find the bootstrap pool of the agent token
address agent = factory.tokenAgent(_agentToken);
if (agent == address(0)) revert AgentNotFound();
LiquidityManager liquidityManager = LiquidityManager(factory.agentManager(agent));
BootstrapPool bootstrapPool = liquidityManager.bootstrapPool();
// If the bootstrap pool is not killed, sell the agent token to the bootstrap pool
if (!bootstrapPool.killed()) {
IERC20(_agentToken).safeTransferFrom(msg.sender, address(this), _amountIn);
IERC20(_agentToken).forceApprove(address(bootstrapPool), _amountIn);
_amountOut = bootstrapPool.sell(_amountIn, _recipient);
} else {
// Otherwise, sell the agent token to Fraxswap
IFraxswapPair fraxswapPair = IFraxswapPair(fraxswapFactory.getPair(address(currencyToken), _agentToken));
fraxswapPair.sync();
_amountOut = fraxswapPair.getAmountOut(_amountIn, _agentToken);
IERC20(_agentToken).safeTransferFrom(msg.sender, address(fraxswapPair), _amountIn);
if (fraxswapPair.token0() == address(_agentToken)) {
fraxswapPair.swap(0, _amountOut, _recipient, "");
} else {
fraxswapPair.swap(_amountOut, 0, _recipient, "");
}
}
if (_amountOut < _minAmountOut) revert InsufficientAmountOut();
}
/// @dev Get the amount of token you get given the amount of token you spend
/// @dev Must be called via a static call, because it calls sync in the Fraxswap pair.
/// @param _tokenIn The address of the token you spend
/// @param _tokenOut The address of the token you get
/// @param _amountIn The amount of token you spend
function getAmountOut(address _tokenIn, address _tokenOut, uint256 _amountIn) external returns (uint256) {
// If the token you spend is the currency token
if (_tokenIn == address(currencyToken)) {
/// find the bootstrap pool of the token you get
address agent = factory.tokenAgent(_tokenOut);
if (agent == address(0)) revert AgentNotFound();
LiquidityManager liquidityManager = LiquidityManager(factory.agentManager(agent));
BootstrapPool bootstrapPool = liquidityManager.bootstrapPool();
// If the bootstrap pool is not killed, get the amount of token you get from the bootstrap pool
if (!bootstrapPool.killed()) {
return bootstrapPool.getAmountOut(_amountIn, _tokenIn);
} else {
// Otherwise, get the amount of token you get from Fraxswap
IFraxswapPair fraxswapPair = IFraxswapPair(fraxswapFactory.getPair(_tokenIn, _tokenOut));
fraxswapPair.sync();
return fraxswapPair.getAmountOut(_amountIn, _tokenIn);
}
} else if (_tokenOut == address(currencyToken)) {
// If the token you get is the currency token
// Find the bootstrap pool of the token you spend
address agent = factory.tokenAgent(_tokenIn);
if (agent == address(0)) revert AgentNotFound();
LiquidityManager liquidityManager = LiquidityManager(factory.agentManager(agent));
BootstrapPool bootstrapPool = liquidityManager.bootstrapPool();
// If the bootstrap pool is not killed, get the amount of token you get from the bootstrap pool
if (!bootstrapPool.killed()) {
return bootstrapPool.getAmountOut(_amountIn, _tokenIn);
} else {
// Otherwise, get the amount of token you get from Fraxswap
IFraxswapPair fraxswapPair = IFraxswapPair(fraxswapFactory.getPair(_tokenIn, _tokenOut));
fraxswapPair.sync();
return fraxswapPair.getAmountOut(_amountIn, _tokenIn);
}
} else {
revert NoCurrencyToken();
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC20.sol)
pragma solidity >=0.4.16;
import { IERC20 } from "../token/ERC20/IERC20.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import { IERC20 } from "../IERC20.sol";
import { IERC1363 } from "../../../interfaces/IERC1363.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC-20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
/**
* @dev An operation with an ERC-20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Variant of {safeTransfer} that returns a bool instead of reverting if the operation is not successful.
*/
function trySafeTransfer(IERC20 token, address to, uint256 value) internal returns (bool) {
return _callOptionalReturnBool(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Variant of {safeTransferFrom} that returns a bool instead of reverting if the operation is not successful.
*/
function trySafeTransferFrom(IERC20 token, address from, address to, uint256 value) internal returns (bool) {
return _callOptionalReturnBool(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*
* NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
* only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
* set here.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
safeTransfer(token, to, value);
} else if (!token.transferAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
* has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferFromAndCallRelaxed(
IERC1363 token,
address from,
address to,
uint256 value,
bytes memory data
)
internal
{
if (to.code.length == 0) {
safeTransferFrom(token, from, to, value);
} else if (!token.transferFromAndCall(from, to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
* Opposedly, when the recipient address (`to`) has code, this function only attempts to call
* {ERC1363-approveAndCall}
* once without retrying, and relies on the returned value to be true.
*
* Reverts if the returned value is other than `true`.
*/
function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
forceApprove(token, to, value);
} else if (!token.approveAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
// bubble errors
if iszero(success) {
let ptr := mload(0x40)
returndatacopy(ptr, 0, returndatasize())
revert(ptr, returndatasize())
}
returnSize := returndatasize()
returnValue := mload(0)
}
if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
bool success;
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
returnSize := returndatasize()
returnValue := mload(0)
}
return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
}
}// SPDX-License-Identifier: ISC
pragma solidity >=0.8.25;
import { IERC20 } from "@openzeppelin/contracts/interfaces/IERC20.sol";
import { IERC20Metadata } from "@openzeppelin/contracts/interfaces/IERC20Metadata.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
import { Ownable2Step } from "@openzeppelin/contracts/access/Ownable2Step.sol";
import { Agent } from "./Agent.sol";
import { AIToken } from "./AIToken.sol";
import { LiquidityManager } from "./LiquidityManager.sol";
//////////////////////////////////////////////////////////////////////////////
// //
// 888 e88 88e e Y8b d8 //
// 888 d888 888b d8b Y8b e88 888 ,e e, 888 8e d88 dP"Y //
// 888 C8888 8888D d888b Y8b d888 888 d88 88b 888 88b d88888 C88b //
// 888 Y888 888P d888888888b Y888 888 888 , 888 888 888 Y88D //
// 888 "88 88" d8888888b Y8b "88 888 "YeeP" 888 888 888 d,dP //
// b , 88P //
// 8b, "8",P" //
//////////////////////////////////////////////////////////////////////////////
/**
* @title AgentFactory
* @notice The AgentFactory contract is used to deploy new agents
*/
contract AgentFactory is Ownable2Step {
using SafeERC20 for IERC20;
using SafeERC20 for AIToken;
/// #### Globals
/// @notice Token to be paired w/ Agent Token
IERC20 public currencyToken;
/// @notice Fee, denominated in `currencyToken`, associated with creating an Agent
uint256 public creationFee;
/// @notice Fee to be set w/n `BootstrapPool` contract
uint256 public tradingFee = 100; // 1%
/// @notice The initial price set w/n `BootstrapPool` contract
uint256 public initialPrice;
// The target CCY liquidity
uint256 public targetCCYLiquidity;
// The share to Bamm on liquidity Migration
uint256 public shareToBamm;
/// @notice %, in 1e4, agent tokens to mint to `DAO`
uint256 public mintToDAO;
/// @notice %, in 1e4, agent tokens to mint to `Agent`
uint256 public mintToAgent;
/// @notice List of agents
Agent[] public agents;
/// @notice Agent to Agent Manager mapping
mapping(address => address) public agentManager;
/// @notice Token to Agent mapping
mapping(address => address) public tokenAgent;
/// @notice Agent Contract Creation code
bytes public agentBytecode;
/// @notice Gov Contract Creation code
bytes public governorBytecode;
/// @notice Liquidity Manager Creation code
bytes public liquidityManagerBytecode;
/// @notice Address of default impl for Agent Contract
address public defaultProxyImplementation;
/// @notice Mapping to check if a given implementation address is allowed
mapping(address => bool) public allowedProxyImplementation;
/// #### Constructor
/// @param _currencyToken The currency token to use for the agents
/// @param _creationFee The creation fee to deploy a new agent
constructor(IERC20 _currencyToken, uint256 _creationFee) Ownable(msg.sender) {
currencyToken = _currencyToken;
creationFee = _creationFee;
if (IERC20Metadata(address(currencyToken)).decimals() != 18) revert InvalidCurrencyToken();
}
/// @notice External function to handle deployment of the `Agent` contract array
/// @dev The `DAO` in `mintToDAOAmount` is IQ DAO, distinct from `Governor`
/// the IQ DAO is expected to be the `owner` of the factory
/// @param _name The `_name` for the agent, token and governance
/// @param _symbol The `_symbol` for the agent and token
/// @param _url The `uri` address to set w/n 721 storage w/n `Agent` contract
/// @param _amountToBuy The _initialPrice to pass as a constructor argument
/// @return agent The `LiquidityManager` of the agent contract created
function createAgent(
string memory _name,
string memory _symbol,
string memory _url,
uint256 _amountToBuy
)
external
returns (Agent agent)
{
// Collect creation fee
if (creationFee > 0) {
currencyToken.safeTransferFrom(msg.sender, address(this), creationFee);
}
// Deploy the agent
agent = Agent(deployAgent(_name, _symbol, _url));
AIToken token = new AIToken(string.concat(_name, " by IQ"), _symbol, address(agent), address(this));
agent.initializeToken(token);
tokenAgent[address(token)] = address(agent);
// Deploy the governor
address governance = deployGovernor(_name, address(token), address(agent));
agent.transferOwnership(address(governance));
agent.transferFrom(address(this), address(governance), 0);
// Mint initial tokens and create the liquidity pool
uint256 mintToDAOAmount = token.totalSupply() * mintToDAO / 10_000;
uint256 mintToAgentAmount = token.totalSupply() * mintToAgent / 10_000;
uint256 initialLiquidity = token.totalSupply() - mintToDAOAmount - mintToAgentAmount;
LiquidityManager manager = deployLiquidityManager(
currencyToken, token, address(agent), initialPrice, targetCCYLiquidity, initialLiquidity, tradingFee
);
if (mintToAgentAmount > 0) token.safeTransfer(address(agent), mintToAgentAmount);
token.safeTransfer(address(manager), initialLiquidity);
manager.initializeBootstrapPool();
if (_amountToBuy > 0) {
// Do the initial buy in name of the creator.
currencyToken.safeTransferFrom(msg.sender, address(this), _amountToBuy);
currencyToken.approve(address(manager.bootstrapPool()), _amountToBuy);
manager.bootstrapPool().buy(_amountToBuy, msg.sender);
}
// Add the agent to the list
agents.push(agent);
emit AgentCreated(
address(agent), address(token), address(agent.owner()), address(manager), address(manager.bootstrapPool())
);
}
/// #### Deployers
/// @notice Internal function to handle deploy via `create2` given the creation code in storage.
/// @param _currencyToken The `_currencyToken` to pass as a constructor argument
/// @param _agentToken The `_agentToken` to pass as a constructor argument
/// @param _agent The `_agent` to pass as a constructor argument
/// @param _initialPrice The `_initialPrice` to pass as a constructor argument
/// @param _targetCCYLiquidity The `_targetCCYLiquidity` to pass as a constructor argument
/// @param _initialLiquidity The `_initialLiquidity` to pass as a constructor argument
/// @param _fee The `_fee` to pass as a constructor argument
/// @return _manager The `LiquidityManager` of the agent contract created
function deployLiquidityManager(
IERC20 _currencyToken,
IERC20 _agentToken,
address _agent,
uint256 _initialPrice,
uint256 _targetCCYLiquidity,
uint256 _initialLiquidity,
uint256 _fee
)
internal
returns (LiquidityManager _manager)
{
uint256 salt = agents.length;
bytes memory bytecodeWithArgs = abi.encodePacked(
liquidityManagerBytecode,
abi.encode(
_currencyToken,
_agentToken,
address(this),
_agent,
_initialPrice,
_targetCCYLiquidity,
_initialLiquidity,
_fee
)
);
assembly {
_manager := create2(0, add(bytecodeWithArgs, 0x20), mload(bytecodeWithArgs), salt)
if iszero(extcodesize(_manager)) { revert(0, 0) }
}
agentManager[_agent] = address(_manager);
}
/// @notice Deploys a new governor
/// @param _name The name of the governor
/// @param _token The token address
/// @param _agent The agent address
/// @return _governor The address of the governor
function deployGovernor(string memory _name, address _token, address _agent) internal returns (address _governor) {
uint256 salt = agents.length;
bytes memory bytecodeWithArgs = abi.encodePacked(governorBytecode, abi.encode(_name, _token, _agent));
assembly {
_governor := create2(0, add(bytecodeWithArgs, 0x20), mload(bytecodeWithArgs), salt)
if iszero(extcodesize(_governor)) { revert(0, 0) }
}
}
/// @notice Internal function to handle deploy via `create2` given the creation code in storage.
/// @param name The name to pass as a constructor argument
/// @param symbol The symbol to pass as a constructor argument
/// @param url The `uri` address to set w/n 721 storage
/// @return agentAddress The address of the agent contract created
function deployAgent(
string memory name,
string memory symbol,
string memory url
)
internal
returns (Agent agentAddress)
{
uint256 salt = agents.length;
bytes memory bytecodeWithArgs = abi.encodePacked(agentBytecode, abi.encode(name, symbol, url, address(this)));
assembly {
agentAddress := create2(0, add(bytecodeWithArgs, 0x20), mload(bytecodeWithArgs), salt)
if iszero(extcodesize(agentAddress)) { revert(0, 0) }
}
}
/// #### Setters
/// @notice Allows the owner to update the governor bytecode
/// @param _newBytecode The creation code for the Gov contract
/// @dev Restricted to owner
function setGovenerBytecode(bytes memory _newBytecode) external onlyOwner {
governorBytecode = _newBytecode;
emit GovernorBytecodeUpdated(_newBytecode);
}
/// @notice Allows the owner to update the agent bytecode
/// @param _newBytecode The creation code for the Agent contract
/// @dev Restricted to owner
function setAgentBytecode(bytes memory _newBytecode) external onlyOwner {
agentBytecode = _newBytecode;
emit AgentBytecodeUpdated(_newBytecode);
}
/// @notice Allows the owner to update the liquidity manager bytecode
/// @param _newBytecode The creation code for the LiquidityManager contract
/// @dev Restricted to owner
function setLiquidityManagerBytecode(bytes memory _newBytecode) external onlyOwner {
liquidityManagerBytecode = _newBytecode;
emit LiquidityManagerBytecodeUpdated(_newBytecode);
}
/// @notice Sets the creation fee for `createAgent()` function call
/// @param _creationFee The nominal amount in `currencyToken` that a user must
/// pay to the `factory` on creation
/// @dev Restricted to owner
function setCreationFee(uint256 _creationFee) external onlyOwner {
creationFee = _creationFee;
emit CreationFeeSet(_creationFee);
}
/// @notice Sets the `tradingFee` for `LiquidityManager` -> `BootstrapPool` on deploy
/// @param _tradingFee The updated trading fee on the `BootstrapPool`
/// @dev Restricted to owner
function setTradingFee(uint256 _tradingFee) external onlyOwner {
// Bound Fee: (0%, 1%]
if (_tradingFee > 100) revert TradingFeeInvalid();
if (_tradingFee == 0) revert TradingFeeInvalid();
tradingFee = _tradingFee;
emit TradingFeeSet(_tradingFee);
}
/// @notice Allows the owner to update the target CCY liquidity
/// @param _targetCCYLiquidity The new target CCY liquidity
function setTargetCCYLiquidity(uint256 _targetCCYLiquidity) external onlyOwner {
targetCCYLiquidity = _targetCCYLiquidity;
emit TargetCCYLiquiditySet(_targetCCYLiquidity);
}
/// @notice Sets the `initialPrice` for `LiquidityManager` -> `BootstrapPool` on deploy
/// @param _initialPrice The new `initialPrice` to set
/// @dev Restricted to owner
function setInitialPrice(uint256 _initialPrice) external onlyOwner {
initialPrice = _initialPrice;
emit InitialPriceSet(_initialPrice);
}
/// @notice Sets the %, 1e4, to be seeded to FRAX BAMM on `addLiquidityToFraxswap`
/// w/n `LiquidityManager`. Cannot be greater than 100%
/// @param _shareToBamm The %, in 1e4, of LP tokens to be seeded to BAMM
/// @dev Restricted to owner
function setShareToBamm(uint256 _shareToBamm) external onlyOwner {
if (_shareToBamm > 10_000) {
// Max 100%
revert ShareToBammTooHigh();
}
shareToBamm = _shareToBamm;
emit ShareToBammSet(_shareToBamm);
}
/// @notice Sets the %, in 1e4, to be sent to `DAO` on creation of agent token
/// @param _mintToDAO The %, in 1e4, of `AIToken` to be sent to `DAO` on creation
/// @dev Restricted to owner
function setMintToDAO(uint256 _mintToDAO) external onlyOwner {
if (_mintToDAO > 100) {
// Max 1%
revert MintTODAOTooHigh();
}
mintToDAO = _mintToDAO;
emit MintToDAOSet(_mintToDAO);
}
/// @notice Sets the %, in 1e4, to be sent to `Agent` on creation of agent token
/// @param _mintToAgent The %, in 1e4, of `AIToken` to be sent to `DAO` on creation
/// @dev Restricted to owner
function setMintToAgent(uint256 _mintToAgent) external onlyOwner {
if (_mintToAgent > 2000) {
// Max 20%
revert MintToAgentTooHigh();
}
mintToAgent = _mintToAgent;
emit MintToAgentSet(_mintToAgent);
}
/// @notice Sets allowed Proxy Impl on agent creation
/// @param _defaultProxyImplementation The default implementation to fallback on the agent
/// @dev Restricted to owner
function setDefaultProxyImplementation(address _defaultProxyImplementation) external onlyOwner {
defaultProxyImplementation = _defaultProxyImplementation;
emit DefaultProxyImplementationSet(_defaultProxyImplementation);
}
/// @notice Sets allowed Proxy Impl w/n whitelist mappping
/// @param _proxyImplementation The poxy address, key, in mapping
/// @param _allowed The intended value to said key
/// @dev Restricted to owner
function setAllowedProxyImplementation(address _proxyImplementation, bool _allowed) external onlyOwner {
allowedProxyImplementation[_proxyImplementation] = _allowed;
emit ProxyImplementationAllowed(_proxyImplementation, _allowed);
}
/// @notice Sets the agent stage
/// @param _agent The address of the agent to set
/// @param _stage The stage to set `_agent` to
/// @dev Restricted to owner
function setAgentStage(address _agent, uint256 _stage) external {
if (msg.sender == owner() || (msg.sender == agentManager[_agent] && _stage == 1)) {
Agent(payable(_agent)).setStage(_stage);
}
}
/// #### Admin
/// @notice Arbitrary Rescue functionality for the `owner` of the `AgentFactory` contract
/// @param _tokenAddress The address of the token to rescue
/// @param _tokenAmount The amount of token to rescue
function recoverERC20(address _tokenAddress, uint256 _tokenAmount) external onlyOwner {
// Only the owner address can ever receive the recovery withdrawal
SafeERC20.safeTransfer(IERC20(_tokenAddress), owner(), _tokenAmount);
emit RecoveredERC20(_tokenAddress, _tokenAmount);
}
/// #### Views
/// @notice Returns the number of agents
/// @return The number of agents
function numberOfAgents() external view returns (uint256) {
return agents.length;
}
/// #### Events
/// @notice Emitted when a new AIAgent is created, `createAgent()`
/// @param agent The address of the `Agent` contract
/// @param token The address of the `AIToken` contract
/// @param governor The address of the `Gov` contract
/// @param manager The address of the `LiquidityManager` contract
/// @param pool The address of the `BootstrapPool` contract
event AgentCreated(
address indexed agent, address indexed token, address indexed governor, address manager, address pool
);
/// @notice Emitted when a new `creationFee` is set
/// @param fee The fee denominated in `currencyToken`
event CreationFeeSet(uint256 fee);
/// @notice Emitted when a new `currencyToken` is set
/// @param currencyToken The token address to set
event CurrencyTokenSet(address currencyToken);
/// @notice Emitted when a new `mintToDAO` is set
/// @param mintToDAO the %, in 1e4, to be minted to tha `DAO`
event MintToDAOSet(uint256 mintToDAO);
/// @notice Emitted when a new `mintToAgnet` is set
/// @param mintToAgnet the %, in 1e4, to be minted to tha `Agent`
event MintToAgentSet(uint256 mintToAgnet);
/// @notice Emitted when new `defaultProxyImplementation` is set
/// @param defaultProxyImplementation new default proxy impl address
event DefaultProxyImplementationSet(address defaultProxyImplementation);
/// @notice Emitted when a new `proxyImplementation` is whitelisted
/// @param proxyImplementation address, key in mapping
/// @param allowed bool, indicates wl status, 1 -> allowed 0 -> not
event ProxyImplementationAllowed(address proxyImplementation, bool allowed);
/// @notice Emitted when `Agent` creation code is changed
/// @param newBytecode The new creation code for the `Agent` contract
event AgentBytecodeUpdated(bytes newBytecode);
/// @notice Emitted when `Gov` creation code is changed
/// @param newBytecode The new creation code for the `Gov` contract
event GovernorBytecodeUpdated(bytes newBytecode);
/// @notice Emitted when `LiquidityManager` creation code is changed
/// @param newBytecode The new creation code for the `LiquidityManager` contract
event LiquidityManagerBytecodeUpdated(bytes newBytecode);
/// @notice Emitted when the `shareToBamm` is set
/// @param shareToBamm Share to seed bamm on migration
event ShareToBammSet(uint256 shareToBamm);
/// @notice Emitted when the Initial price for `BootstrapPool` creation is set
/// @param initialPrice The price to boot strap from
event InitialPriceSet(uint256 initialPrice);
/// @notice Emitted when a new `targetCCYLiquidity` is set
/// @param targetCCYLiquidity The newly set `targetCCYLiquidity` value
event TargetCCYLiquiditySet(uint256 targetCCYLiquidity);
/// @notice Emitted when `tradingFee` for `BootstrapPool` is set
/// @notice The %, in 1e4, for the fees on swap w/n pool
event TradingFeeSet(uint256 tradingFee);
/// @notice Emitted when a token is recovered
/// @param token The address of the token recovered
/// @param amount The amount of the tokens recovered
event RecoveredERC20(address token, uint256 amount);
/// #### Errors
error MintTODAOTooHigh(); // Revert w/n change dao fee
error MintToAgentTooHigh(); // Revert w/n change agent fee
error ShareToBammTooHigh(); // Revert w/n change bamm share
error TradingFeeInvalid(); // Revert w/n change trading fee
error InvalidCurrencyToken(); // Revert w/n constructor
}// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;
import { IUniswapV2Pair } from "@uniswap/v2-core/contracts/interfaces/IUniswapV2Pair.sol";
/// @dev Fraxswap LP Pair Interface
interface IFraxswapPair is IUniswapV2Pair {
// TWAMM
struct TWAPObservation {
uint256 timestamp;
uint256 price0CumulativeLast;
uint256 price1CumulativeLast;
}
function TWAPObservationHistory(uint256 index) external view returns (TWAPObservation memory);
event LongTermSwap0To1(address indexed addr, uint256 orderId, uint256 amount0In, uint256 numberOfTimeIntervals);
event LongTermSwap1To0(address indexed addr, uint256 orderId, uint256 amount1In, uint256 numberOfTimeIntervals);
event CancelLongTermOrder(
address indexed addr,
uint256 orderId,
address sellToken,
uint256 unsoldAmount,
address buyToken,
uint256 purchasedAmount
);
event WithdrawProceedsFromLongTermOrder(
address indexed addr, uint256 orderId, address indexed proceedToken, uint256 proceeds, bool orderExpired
);
function fee() external view returns (uint256);
function longTermSwapFrom0To1(
uint256 amount0In,
uint256 numberOfTimeIntervals
)
external
returns (uint256 orderId);
function longTermSwapFrom1To0(
uint256 amount1In,
uint256 numberOfTimeIntervals
)
external
returns (uint256 orderId);
function cancelLongTermSwap(uint256 orderId) external;
function withdrawProceedsFromLongTermSwap(uint256 orderId)
external
returns (bool is_expired, address rewardTkn, uint256 totalReward);
function executeVirtualOrders(uint256 blockTimestamp) external;
function getAmountOut(uint256 amountIn, address tokenIn) external view returns (uint256);
function getAmountIn(uint256 amountOut, address tokenOut) external view returns (uint256);
function orderTimeInterval() external returns (uint256);
function getTWAPHistoryLength() external view returns (uint256);
function getTwammReserves()
external
view
returns (
uint112 _reserve0,
uint112 _reserve1,
uint32 _blockTimestampLast,
uint112 _twammReserve0,
uint112 _twammReserve1,
uint256 _fee
);
function getReserveAfterTwamm(uint256 blockTimestamp)
external
view
returns (
uint112 _reserve0,
uint112 _reserve1,
uint256 lastVirtualOrderTimestamp,
uint112 _twammReserve0,
uint112 _twammReserve1
);
function getNextOrderID() external view returns (uint256);
function getOrderIDsForUser(address user) external view returns (uint256[] memory);
function getOrderIDsForUserLength(address user) external view returns (uint256);
function twammUpToDate() external view returns (bool);
function getTwammState()
external
view
returns (
uint256 token0Rate,
uint256 token1Rate,
uint256 lastVirtualOrderTimestamp,
uint256 orderTimeInterval_rtn,
uint256 rewardFactorPool0,
uint256 rewardFactorPool1
);
function getTwammSalesRateEnding(uint256 _blockTimestamp)
external
view
returns (uint256 orderPool0SalesRateEnding, uint256 orderPool1SalesRateEnding);
function getTwammRewardFactor(uint256 _blockTimestamp)
external
view
returns (uint256 rewardFactorPool0AtTimestamp, uint256 rewardFactorPool1AtTimestamp);
function getTwammOrder(uint256 orderId)
external
view
returns (
uint256 id,
uint256 creationTimestamp,
uint256 expirationTimestamp,
uint256 saleRate,
address owner,
address sellTokenAddr,
address buyTokenAddr
);
function getTwammOrderProceedsView(
uint256 orderId,
uint256 blockTimestamp
)
external
view
returns (bool orderExpired, uint256 totalReward);
function getTwammOrderProceeds(uint256 orderId) external returns (bool orderExpired, uint256 totalReward);
function togglePauseNewSwaps() external;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import { Context } from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}// SPDX-License-Identifier: ISC
pragma solidity >=0.8.25;
import { IERC20 } from "@openzeppelin/contracts/interfaces/IERC20.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { IFraxswapPair } from "dev-fraxswap/src/contracts/core/interfaces/IFraxswapPair.sol";
import { IFraxswapFactory } from "dev-fraxswap/src/contracts/core/interfaces/IFraxswapFactory.sol";
import { Math } from "dev-fraxswap/src/contracts/core/libraries/Math.sol";
import { BootstrapPool } from "./BootstrapPool.sol";
import { AgentFactory } from "./AgentFactory.sol";
import { IBAMMFactory } from "./interface/IBAMMFactory.sol";
import { IBAMM } from "./interface/IBAMM.sol";
//////////////////////////////////////////////////////////////////////////////
// //
// 888 e88 88e e Y8b d8 //
// 888 d888 888b d8b Y8b e88 888 ,e e, 888 8e d88 dP"Y //
// 888 C8888 8888D d888b Y8b d888 888 d88 88b 888 88b d88888 C88b //
// 888 Y888 888P d888888888b Y888 888 888 , 888 888 888 Y88D //
// 888 "88 88" d8888888b Y8b "88 888 "YeeP" 888 888 888 d,dP //
// b , 88P //
// 8b, "8",P" //
//////////////////////////////////////////////////////////////////////////////
/**
* @title LiquidityManager
* @dev LiquidityManager contract
*/
contract LiquidityManager {
using SafeERC20 for IERC20;
// The agent address
address public immutable agent;
// The owner of the contract
address public immutable owner;
// The initialized status of the contract
bool public initialized = false;
// The agent token
IERC20 public immutable agentToken;
// The currency token
IERC20 public immutable currencyToken;
// The bootstrap pool
BootstrapPool public bootstrapPool;
// The initial price of the agent token
uint256 public immutable initialPrice;
// The target CCY liquidity
uint256 public immutable targetCCYLiquidity;
// The initial liquidity
uint256 public immutable initialLiquidity;
// The fee
uint256 public immutable fee;
// The Fraxswap factory address
IFraxswapFactory public constant fraxswapFactory = IFraxswapFactory(0xE30521fe7f3bEB6Ad556887b50739d6C7CA667E6);
// The BAMM factory address
IBAMMFactory public constant bammFactory = IBAMMFactory(0x19928170D739139bfbBb6614007F8EEeD17DB0Ba);
// Events
/// @notice Emitted on `moveLiquidity()` call
/// @param agent The address of the `Agent` contract being moved
/// @param agentToken The address of the `AIToken` contract being moved
/// @param lpPair The address of the V2 LP pool liquidity is moved to
event LiquidityMoved(address indexed agent, address indexed agentToken, address indexed lpPair);
/// @dev Constructor
/// @param _currencyToken The currency token
/// @param _agentToken The agent token
/// @param _owner The owner of the contract
/// @param _agent The agent address
/// @param _initialPrice The initial price of the agent token in the currency token
/// @param _targetCCYLiquidity The target CCY liquidity needed to move the liquidity
/// @param _initialLiquidity The initial liquidity of the agent token
/// @param _fee The swap fee of the pool
constructor(
IERC20 _currencyToken,
IERC20 _agentToken,
address _owner,
address _agent,
uint256 _initialPrice,
uint256 _targetCCYLiquidity,
uint256 _initialLiquidity,
uint256 _fee
) {
owner = _owner;
agent = _agent;
currencyToken = _currencyToken;
agentToken = _agentToken;
initialPrice = _initialPrice;
targetCCYLiquidity = _targetCCYLiquidity;
initialLiquidity = _initialLiquidity;
fee = _fee;
}
/// @dev Initialize the bootstrap pool, can only be called once
function initializeBootstrapPool() external {
require(!initialized, "BootstrapPool already initialized");
initialized = true;
bootstrapPool = new BootstrapPool(currencyToken, agentToken, initialPrice, initialLiquidity, fee);
agentToken.safeTransfer(address(bootstrapPool), initialLiquidity);
}
/// @dev Move the liquidity from the bootstrap pool to Fraxswap
function moveLiquidity() external {
require(!bootstrapPool.killed(), "BootstrapPool already killed");
uint256 price = bootstrapPool.getPrice();
(uint256 _reserveCurrencyToken,) = bootstrapPool.getReserves();
_reserveCurrencyToken = _reserveCurrencyToken - bootstrapPool.phantomAmount();
uint256 factoryTargetCCYLiquidity = AgentFactory(owner).targetCCYLiquidity();
require(
_reserveCurrencyToken >= targetCCYLiquidity || _reserveCurrencyToken >= factoryTargetCCYLiquidity,
"Bootstrap end-criterion not reached"
);
bootstrapPool.kill();
// Determine liquidity amount to add
uint256 currencyAmount = _reserveCurrencyToken;
uint256 liquidityAmount = currencyAmount * 1e18 / price;
// Add liquidity to Fraxswap
IFraxswapPair fraxswapPair = addLiquidityToFraxswap(liquidityAmount, currencyAmount);
// Send all remaining tokens to the agent.
agentToken.safeTransfer(address(agent), agentToken.balanceOf(address(this)));
currencyToken.safeTransfer(address(agent), currencyToken.balanceOf(address(this)));
emit LiquidityMoved(agent, address(agentToken), address(fraxswapPair));
AgentFactory(owner).setAgentStage(agent, 1);
}
/// @dev Add liquidity to Fraxswap (and BAMM)
/// @param liquidityAmount The amount of liquidity to add
/// @param currencyAmount The amount of currency token to add
function addLiquidityToFraxswap(
uint256 liquidityAmount,
uint256 currencyAmount
)
internal
returns (IFraxswapPair fraxswapPair)
{
fraxswapPair = IFraxswapPair(fraxswapFactory.getPair(address(currencyToken), address(agentToken)));
if (fraxswapPair == IFraxswapPair(address(0))) {
// Create Fraxswap pair and add liquidity
fraxswapPair = IFraxswapPair(fraxswapFactory.createPair(address(currencyToken), address(agentToken), fee));
agentToken.safeTransfer(address(fraxswapPair), liquidityAmount);
currencyToken.safeTransfer(address(fraxswapPair), currencyAmount);
fraxswapPair.mint(address(this));
} else {
// Fraxswappair was already created, make sure the price in the Fraxswap pair is correct before we add
// liquidity
// We do a mini mint first, to make sure there are enough tokens in the pair to swap
agentToken.safeTransfer(address(fraxswapPair), liquidityAmount / 1_000_000);
currencyToken.safeTransfer(address(fraxswapPair), currencyAmount / 1_000_000);
// Try to mint if mini mint too small -> enough liquidity present
try fraxswapPair.mint(address(this)) { }
catch {
fraxswapPair.sync();
}
liquidityAmount = liquidityAmount - liquidityAmount / 1_000_000;
currencyAmount = currencyAmount - currencyAmount / 1_000_000;
// Do three rounds of swaps to get close to the correct price.
// We need to do this because the price in the pair is might not be the same as the price in the bootstrap
// pool, and we need to get the price in the pair close to the price in the bootstrap pool before we add
// liquidity. We do this in three rounds, because the swap amount calculation is not precisely correct.
for (uint256 i = 0; i < 3; ++i) {
uint256 reserveCurrency;
uint256 reserveAgentTokens;
{
(uint112 reserve0, uint112 reserve1,) = fraxswapPair.getReserves();
if (fraxswapPair.token0() == address(currencyToken)) {
reserveCurrency = reserve0;
reserveAgentTokens = reserve1;
} else {
reserveCurrency = reserve1;
reserveAgentTokens = reserve0;
}
}
if (currencyAmount * uint256(reserveAgentTokens) / uint256(reserveCurrency) > liquidityAmount) {
// Swap currencyToken to agentToken
uint256 amountIn = getMaxSell(currencyAmount, liquidityAmount, reserveCurrency, reserveAgentTokens);
if (amountIn > 0) {
uint256 amountOut = fraxswapPair.getAmountOut(amountIn, address(currencyToken));
if (amountOut > 0) {
currencyToken.safeTransfer(address(fraxswapPair), amountIn);
if (fraxswapPair.token0() == address(currencyToken)) {
fraxswapPair.swap(0, amountOut, address(this), "");
} else {
fraxswapPair.swap(amountOut, 0, address(this), "");
}
currencyAmount -= amountIn;
liquidityAmount += amountOut;
}
}
} else {
// Swap agentToken to the currencyToken
uint256 amountIn = getMaxSell(liquidityAmount, currencyAmount, reserveAgentTokens, reserveCurrency);
if (amountIn > 0) {
uint256 amountOut = fraxswapPair.getAmountOut(amountIn, address(agentToken));
if (amountOut > 0) {
agentToken.safeTransfer(address(fraxswapPair), amountIn);
if (fraxswapPair.token0() == address(currencyToken)) {
fraxswapPair.swap(amountOut, 0, address(this), "");
} else {
fraxswapPair.swap(0, amountOut, address(this), "");
}
liquidityAmount -= amountIn;
currencyAmount += amountOut;
}
}
}
}
// Do the final mint
agentToken.safeTransfer(address(fraxswapPair), liquidityAmount);
currencyToken.safeTransfer(address(fraxswapPair), currencyAmount);
fraxswapPair.mint(address(this));
}
uint256 amountToBamm = fraxswapPair.balanceOf(address(this)) * AgentFactory(owner).shareToBamm() / 10_000;
if (amountToBamm > 0) {
// Create BAMM pair if needed and mint BAMM LP tokens
IBAMM bamm = IBAMM(bammFactory.pairToBamm(address(fraxswapPair)));
if (bamm == IBAMM(address(0))) bamm = IBAMM(bammFactory.createBamm(address(fraxswapPair)));
fraxswapPair.approve(address(bamm), amountToBamm);
bamm.mint(agent, amountToBamm);
}
// Transfer remaining Fraxswap LP tokens to the agent
fraxswapPair.transfer(agent, fraxswapPair.balanceOf(address(this)));
}
/// @dev Approximates how much of a token must be sold for the users ratio to be the same as the ratio in the AMM.
/// @dev Note that this calculation ignores swap fees, so the amount is slightly lower than the correct amount.
/// @param tokenIn The amount of tokens we want to add as liquidity from the token we need to sell
/// @param tokenOut The amount of token we want to add as liquidity from the token we need to buy
/// @param reserveIn The current AMM reserve of the token to sell
/// @param reserveOut The current AMM reserve of the token to buy
/// @return maxSell The amount of token in to sell
function getMaxSell(
uint256 tokenIn,
uint256 tokenOut,
uint256 reserveIn,
uint256 reserveOut
)
public
pure
returns (uint256 maxSell)
{
// Solve x for: (reserveOut-y)/(reserveIn+x) = (tokenOut+y)/(tokenIn-x),
// (reserveOut-y)*(reserveIn+x)=reserveIn*reserveOut
uint256 prod = Math.sqrt(reserveOut * reserveIn) * Math.sqrt((reserveOut + tokenOut) * (reserveIn + tokenIn));
uint256 minus = reserveIn * tokenOut + reserveOut * reserveIn;
if (prod > minus) maxSell = (prod - minus) / (reserveOut + tokenOut);
}
}// SPDX-License-Identifier: ISC
pragma solidity >=0.8.25;
import { IERC20 } from "@openzeppelin/contracts/interfaces/IERC20.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { ReentrancyGuard } from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import { LiquidityManager } from "./LiquidityManager.sol";
//////////////////////////////////////////////////////////////////////////////
// //
// 888 e88 88e e Y8b d8 //
// 888 d888 888b d8b Y8b e88 888 ,e e, 888 8e d88 dP"Y //
// 888 C8888 8888D d888b Y8b d888 888 d88 88b 888 88b d88888 C88b //
// 888 Y888 888P d888888888b Y888 888 888 , 888 888 888 Y88D //
// 888 "88 88" d8888888b Y8b "88 888 "YeeP" 888 888 888 d,dP //
// b , 88P //
// 8b, "8",P" //
//////////////////////////////////////////////////////////////////////////////
/**
* @title BootstrapPool
* @dev BootstrapPool contract, the initial liquidity pool for the agent token
*/
contract BootstrapPool is ReentrancyGuard {
using SafeERC20 for IERC20;
// The owner of the pool
address public immutable owner;
// The swap fee of the pool
uint256 public immutable fee;
// The agent token
IERC20 public immutable agentToken;
// The currency token
IERC20 public immutable currencyToken;
// The phantom amount.
uint256 public phantomAmount;
// The currency token fee earned
uint256 public currencyTokenFeeEarned;
// The agent token fee earned
uint256 public agentTokenFeeEarned;
// The killed status of the pool
bool public killed;
modifier notKilled() {
if (killed) revert BootstrapPoolKilled();
_;
}
modifier onlyOwner() {
if (msg.sender != owner) revert NotOwner();
_;
}
/// @dev Constructor
/// @param _currencyToken The currency token
/// @param _agentToken The agent token
/// @param _initialPrice The initial price of the agent token
/// @param _bootstrapAmount The bootstrap amount of the agent token
/// @param _fee The swap fee of the pool
constructor(
IERC20 _currencyToken,
IERC20 _agentToken,
uint256 _initialPrice,
uint256 _bootstrapAmount,
uint256 _fee
) {
owner = msg.sender;
fee = 10_000 - _fee;
currencyToken = _currencyToken;
agentToken = _agentToken;
phantomAmount = _initialPrice * _bootstrapAmount / 1e18;
}
/// @dev Buy agent token
/// @param _amountIn The amount of currency token to spend
/// @return The amount of agent token received
function buy(uint256 _amountIn) external returns (uint256) {
return buy(_amountIn, msg.sender);
}
/// @dev Buy agent token
/// @param _amountIn The amount of currency token to spend
/// @param _recipient The recipient of the agent token
/// @return The amount of agent token received
function buy(uint256 _amountIn, address _recipient) public nonReentrant notKilled returns (uint256) {
uint256 _amountOut = getAmountOut(_amountIn, address(currencyToken));
currencyTokenFeeEarned += _amountIn - (_amountIn * fee) / 10_000;
currencyToken.safeTransferFrom(msg.sender, address(this), _amountIn);
agentToken.safeTransfer(_recipient, _amountOut);
emit Swap(msg.sender, _amountIn, 0, 0, _amountOut, _recipient);
return _amountOut;
}
/// @dev Sell agent token
/// @param _amountIn The amount of agent token to sell
/// @return The amount of currency token received
function sell(uint256 _amountIn) external returns (uint256) {
return sell(_amountIn, msg.sender);
}
/// @dev Sell agent token
/// @param _amountIn The amount of agent token to sell
/// @param _recipient The recipient of the currency token
/// @return The amount of currency token received
function sell(uint256 _amountIn, address _recipient) public nonReentrant notKilled returns (uint256) {
uint256 _amountOut = getAmountOut(_amountIn, address(agentToken));
agentTokenFeeEarned += _amountIn - (_amountIn * fee) / 10_000;
agentToken.safeTransferFrom(msg.sender, address(this), _amountIn);
currencyToken.safeTransfer(_recipient, _amountOut);
require(currencyToken.balanceOf(address(this)) >= currencyTokenFeeEarned, "INSUFFICIENT_LIQUIDITY");
emit Swap(msg.sender, 0, _amountIn, _amountOut, 0, _recipient);
return _amountOut;
}
/// @dev Kill the pool
function kill() external nonReentrant onlyOwner {
_sweepFees();
killed = true;
agentToken.safeTransfer(owner, agentToken.balanceOf(address(this)));
currencyToken.safeTransfer(owner, currencyToken.balanceOf(address(this)));
}
/// @dev Get the price of the agent token in currency token
/// @return _price The price of the agent token in currency token
function getPrice() external view notKilled returns (uint256 _price) {
(uint256 _reserveCurrencyToken, uint256 _reserveAgentToken) = getReserves();
_price = _reserveCurrencyToken * 1e18 / _reserveAgentToken;
}
/// @dev Get the reserves of the pool
/// @return _reserveCurrencyToken The reserves of currency token in the pool
/// @return _reserveAgentToken The reserves of agent token in the pool
function getReserves() public view returns (uint256 _reserveCurrencyToken, uint256 _reserveAgentToken) {
_reserveCurrencyToken = phantomAmount + currencyToken.balanceOf(address(this)) - currencyTokenFeeEarned;
_reserveAgentToken = agentToken.balanceOf(address(this)) - agentTokenFeeEarned;
}
/// @dev Get the amount of tokens received for a given amount of tokens
/// @param _amountIn The amount of tokens spent
/// @param _tokenIn The address of the token spent
/// @return _amountOut The amount of tokens received
function getAmountOut(uint256 _amountIn, address _tokenIn) public view notKilled returns (uint256 _amountOut) {
uint256 _reserveIn;
uint256 _reserveOut;
if (_tokenIn == address(currencyToken)) {
(_reserveIn, _reserveOut) = getReserves();
} else if (_tokenIn == address(agentToken)) {
(_reserveOut, _reserveIn) = getReserves();
}
require(_amountIn > 0 && _reserveIn > 0 && _reserveOut > 0); // INSUFFICIENT_INPUT_AMOUNT/INSUFFICIENT_LIQUIDITY
uint256 _amountInWithFee = _amountIn * fee;
uint256 _numerator = _amountInWithFee * _reserveOut;
uint256 _denominator = (_reserveIn * 10_000) + _amountInWithFee;
_amountOut = _numerator / _denominator;
}
/// @dev Get the amount of tokens spent for a given amount of tokens received
/// @param _amountOut The amount of tokens received
/// @param _tokenOut The address of the token received
/// @return _amountIn The amount of tokens spent
function getAmountIn(uint256 _amountOut, address _tokenOut) public view notKilled returns (uint256 _amountIn) {
uint256 _reserveIn;
uint256 _reserveOut;
if (_tokenOut == address(agentToken)) {
(_reserveIn, _reserveOut) = getReserves();
} else if (_tokenOut == address(currencyToken)) {
(_reserveOut, _reserveIn) = getReserves();
}
require(_amountOut > 0 && _reserveIn > 0 && _reserveOut > 0); //INSUFFICIENT_INPUT_AMOUNT/INSUFFICIENT_LIQUIDITY
uint256 _numerator = _amountOut * _reserveIn * 10_000;
uint256 _denominator = (_reserveOut - _amountOut) * fee;
_amountIn = _numerator / _denominator;
}
/// @dev Get the maximum amount of tokens that can be swapped
/// @param _tokenIn The address of the token spent
/// @return _amountIn The maximum amount of tokens that can be swapped
function maxSwapAmount(address _tokenIn) public view returns (uint256 _amountIn) {
if (_tokenIn == address(currencyToken)) {
_amountIn = type(uint256).max;
} else if (_tokenIn == address(agentToken)) {
_amountIn =
getAmountIn(currencyToken.balanceOf(address(this)) - currencyTokenFeeEarned, address(currencyToken));
}
}
/// @dev Sweep the fees to liquidity manager owner
function sweepFees() public nonReentrant {
_sweepFees();
}
/// @dev Internal function to sweep the fees
function _sweepFees() internal {
address feeTo = LiquidityManager(owner).owner();
currencyToken.safeTransfer(feeTo, currencyTokenFeeEarned);
agentToken.safeTransfer(feeTo, agentTokenFeeEarned);
currencyTokenFeeEarned = 0;
agentTokenFeeEarned = 0;
}
/// @dev Returns the currency token address
function token0() external view returns (address) {
return address(currencyToken);
}
/// @dev Returns the agent token address
function token1() external view returns (address) {
return address(agentToken);
}
error BootstrapPoolKilled();
error NotOwner();
/// @notice Emitted when there is a swap in the pool
/// @param sender The `msg.sender` of the call
/// @param amount0In The amount of `currencyToken` in
/// @param amount1In The amount of `AIToken` in
/// @param amount0Out The amount of `currencyToken` out
/// @param amount1Out The amount of `AIToken` out
/// @param to The designated recipient of the swap
event Swap(
address indexed sender,
uint256 amount0In,
uint256 amount1In,
uint256 amount0Out,
uint256 amount1Out,
address indexed to
);
}pragma solidity ^0.8.0;
import { IUniswapV2Factory } from "@uniswap/v2-core/contracts/interfaces/IUniswapV2Factory.sol";
interface IFraxswapFactory is IUniswapV2Factory {
function createPair(address tokenA, address tokenB, uint256 fee) external returns (address pair);
function globalPause() external view returns (bool);
function toggleGlobalPause() external;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/IERC20.sol)
pragma solidity >=0.4.16;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC1363.sol)
pragma solidity >=0.6.2;
import { IERC20 } from "./IERC20.sol";
import { IERC165 } from "./IERC165.sol";
/**
* @title IERC1363
* @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
*
* Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
* after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
*/
interface IERC1363 is IERC20, IERC165 {
/*
* Note: the ERC-165 identifier for this interface is 0xb0202a11.
* 0xb0202a11 ===
* bytes4(keccak256('transferAndCall(address,uint256)')) ^
* bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
* bytes4(keccak256('approveAndCall(address,uint256)')) ^
* bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
*/
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(
address from,
address to,
uint256 value,
bytes calldata data
)
external
returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @param data Additional data with no specified format, sent in call to `spender`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC20Metadata.sol)
pragma solidity >=0.6.2;
import { IERC20Metadata } from "../token/ERC20/extensions/IERC20Metadata.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (access/Ownable2Step.sol)
pragma solidity ^0.8.20;
import { Ownable } from "./Ownable.sol";
/**
* @dev Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* This extension of the {Ownable} contract includes a two-step mechanism to transfer
* ownership, where the new owner must call {acceptOwnership} in order to replace the
* old one. This can help prevent common mistakes, such as transfers of ownership to
* incorrect accounts, or to contracts that are unable to interact with the
* permission system.
*
* The initial owner is specified at deployment time in the constructor for `Ownable`. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2Step is Ownable {
address private _pendingOwner;
event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
return _pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is
* one.
* Can only be called by the current owner.
*
* Setting `newOwner` to the zero address is allowed; this can be used to cancel an initiated ownership transfer.
*/
function transferOwnership(address newOwner) public virtual override onlyOwner {
_pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
delete _pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() public virtual {
address sender = _msgSender();
if (pendingOwner() != sender) {
revert OwnableUnauthorizedAccount(sender);
}
_transferOwnership(sender);
}
}// SPDX-License-Identifier: ISC
pragma solidity >=0.8.25;
import { ERC721URIStorage, ERC721 } from "@openzeppelin/contracts/token/ERC721/extensions/ERC721URIStorage.sol";
import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
import { Proxy } from "@openzeppelin/contracts/proxy/Proxy.sol";
import { AIToken } from "./AIToken.sol";
import { AgentFactory } from "./AgentFactory.sol";
//////////////////////////////////////////////////////////////////////////////
// //
// 888 e88 88e e Y8b d8 //
// 888 d888 888b d8b Y8b e88 888 ,e e, 888 8e d88 dP"Y //
// 888 C8888 8888D d888b Y8b d888 888 d88 88b 888 88b d88888 C88b //
// 888 Y888 888P d888888888b Y888 888 888 , 888 888 888 Y88D //
// 888 "88 88" d8888888b Y8b "88 888 "YeeP" 888 888 888 d,dP //
// b , 88P //
// 8b, "8",P" //
//////////////////////////////////////////////////////////////////////////////
/**
* @title Agent
* @dev Agent contract
*/
contract Agent is ERC721URIStorage, Ownable, Proxy {
// The AIToken contract associated with this agent
AIToken public token;
// The AgentFactory contract from which `Agent` is deployed
AgentFactory public immutable factory;
// The address of the proxy implementation set by the agent governance
address public proxyImplementation;
// The stage of the agent
uint256 public stage = 0;
// Modifiers
modifier onlyFactory() {
if (msg.sender != address(factory)) revert NotFactory();
_;
}
// Errors
error InvalidTargetAddress();
error InvalidProxyImplementation();
error NotFactory();
error NotAlive();
// Events
event ProxyImplementationSet(address _proxyImplementation);
event TokenURISet(uint256 indexed tokenId, string _tokenURI);
event StageSet(uint256 _stage);
/// @dev Constructor
/// @param name The name of the agent
/// @param symbol The symbol of the agent
/// @param url The URL of the agent
/// @param _factory The address of the AgentFactory contract
constructor(
string memory name,
string memory symbol,
string memory url,
address _factory
)
ERC721(name, symbol)
Ownable(_factory)
{
factory = AgentFactory(_factory);
_mint(_factory, 0);
_setTokenURI(0, url);
}
/// @dev Fallback function to receive the gas token
receive() external payable { }
/// @dev Initialize the token, can only be set once by the owner
/// @param _token The address of the AIToken contract
function initializeToken(AIToken _token) public onlyOwner {
if (token == AIToken(address(0))) token = _token;
}
/// @dev Returns the implementation address of the proxy
function _implementation() internal view override returns (address) {
// If the proxy implementation is set, return it
if (proxyImplementation != address(0)) {
return proxyImplementation;
} else {
// Otherwise, return the default proxy implementation from the factory
return factory.defaultProxyImplementation();
}
}
/// @dev set the proxy implementation address
/// @param _proxyImplementation The address of the proxy implementation
function setProxyImplementation(address _proxyImplementation) public onlyOwner {
if (_proxyImplementation != address(0) && !factory.allowedProxyImplementation(_proxyImplementation)) {
revert InvalidProxyImplementation();
}
proxyImplementation = _proxyImplementation;
emit ProxyImplementationSet(_proxyImplementation);
}
/// @dev set the stage of the agent
/// @param _stage The stage of the agent
function setStage(uint256 _stage) public onlyFactory {
if (_stage > stage) stage = _stage;
emit StageSet(_stage);
}
/// @dev set the token URI
/// @param tokenId The token ID
/// @param _tokenURI The token URI
function setTokenURI(uint256 tokenId, string memory _tokenURI) public onlyOwner {
_setTokenURI(tokenId, _tokenURI);
emit TokenURISet(tokenId, _tokenURI);
}
/// @notice View function for proxyType to conform to EIP-897
/// @return proxyTypeId The proxyType outlined in EIP-897
/// @dev https://eips.ethereum.org/EIPS/eip-897
function proxyType() public pure returns (uint256 proxyTypeId) {
proxyTypeId = 2;
}
/// @notice View function for impl addr to conform to EIP-897
/// @return codeAddr The address of the implementation contract
/// @dev https://eips.ethereum.org/EIPS/eip-897
function implementation() public view returns (address codeAddr) {
codeAddr = proxyImplementation;
}
}// SPDX-License-Identifier: ISC
pragma solidity >=0.8.25;
import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
import { ERC20Permit } from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol";
import { ERC20Votes, ERC20 } from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Votes.sol";
import { Nonces } from "@openzeppelin/contracts/utils/Nonces.sol";
import { Time } from "@openzeppelin/contracts/utils/types/Time.sol";
//////////////////////////////////////////////////////////////////////////////
// //
// 888 e88 88e e Y8b d8 //
// 888 d888 888b d8b Y8b e88 888 ,e e, 888 8e d88 dP"Y //
// 888 C8888 8888D d888b Y8b d888 888 d88 88b 888 88b d88888 C88b //
// 888 Y888 888P d888888888b Y888 888 888 , 888 888 888 Y88D //
// 888 "88 88" d8888888b Y8b "88 888 "YeeP" 888 888 888 d,dP //
// b , 88P //
// 8b, "8",P" //
//////////////////////////////////////////////////////////////////////////////
uint256 constant INITAL_SUPPLY = 100_000_000 * 10 ** 18;
/**
* @title AIToken
* @dev Implementation of the AIToken
*/
contract AIToken is ERC20Votes, ERC20Permit, Ownable {
/// @dev Constructor
/// @param name The name of the `AIToken`
/// @param symbol The symbol of the `AIToken`
/// @param agent The address of the `Agent` contract
/// @param factory The address of the `AgentFactory` contract
constructor(
string memory name,
string memory symbol,
address agent,
address factory
)
ERC20(name, symbol)
ERC20Permit(name)
Ownable(agent)
{
_mint(factory, INITAL_SUPPLY);
}
/// @notice Overrides base class
function _update(address from, address to, uint256 amount) internal override(ERC20, ERC20Votes) {
super._update(from, to, amount);
}
/// @notice Overrides base class
function nonces(address owner) public view virtual override(ERC20Permit, Nonces) returns (uint256) {
return super.nonces(owner);
}
/// @notice Function which will mint tokens
/// @param to The address of the recipient
/// @param amount The amount to mint
/// @dev Only callable via owner (`Agent`)
function mint(address to, uint256 amount) external onlyOwner {
_mint(to, amount);
}
/// @notice Function which will burn tokens
/// @param from The address to burn from
/// @param amount The amount to be burned
/// @dev Only callable via owner (`Agent`)
function burn(address from, uint256 amount) external onlyOwner {
_burn(from, amount);
}
/**
* @dev Clock used for flagging checkpoints. Can be overridden to implement timestamp based
* checkpoints (and voting), in which case {CLOCK_MODE} should be overridden as well to match.
* This is the overridden version that uses timestamps
*/
function clock() public view override returns (uint48) {
return Time.timestamp();
}
/**
* @dev Machine-readable description of the clock as specified in ERC-6372.
*/
// solhint-disable-next-line func-name-mixedcase
function CLOCK_MODE() public view override returns (string memory) {
// Check that the clock was not modified
if (clock() != Time.timestamp()) {
revert ERC6372InconsistentClock();
}
return "mode=timestamp&from=default";
}
}pragma solidity >=0.5.0;
interface IUniswapV2Pair {
event Approval(address indexed owner, address indexed spender, uint256 value);
event Transfer(address indexed from, address indexed to, uint256 value);
function name() external pure returns (string memory);
function symbol() external pure returns (string memory);
function decimals() external pure returns (uint8);
function totalSupply() external view returns (uint256);
function balanceOf(address owner) external view returns (uint256);
function allowance(address owner, address spender) external view returns (uint256);
function approve(address spender, uint256 value) external returns (bool);
function transfer(address to, uint256 value) external returns (bool);
function transferFrom(address from, address to, uint256 value) external returns (bool);
function DOMAIN_SEPARATOR() external view returns (bytes32);
function PERMIT_TYPEHASH() external pure returns (bytes32);
function nonces(address owner) external view returns (uint256);
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
)
external;
event Mint(address indexed sender, uint256 amount0, uint256 amount1);
event Burn(address indexed sender, uint256 amount0, uint256 amount1, address indexed to);
event Swap(
address indexed sender,
uint256 amount0In,
uint256 amount1In,
uint256 amount0Out,
uint256 amount1Out,
address indexed to
);
event Sync(uint112 reserve0, uint112 reserve1);
function MINIMUM_LIQUIDITY() external pure returns (uint256);
function factory() external view returns (address);
function token0() external view returns (address);
function token1() external view returns (address);
function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
function price0CumulativeLast() external view returns (uint256);
function price1CumulativeLast() external view returns (uint256);
function kLast() external view returns (uint256);
function mint(address to) external returns (uint256 liquidity);
function burn(address to) external returns (uint256 amount0, uint256 amount1);
function swap(uint256 amount0Out, uint256 amount1Out, address to, bytes calldata data) external;
function skim(address to) external;
function sync() external;
function initialize(address, address) external;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}// SPDX-Licence-Identifier: MIT
pragma solidity ^0.8.0;
// a library for performing various math operations
library Math {
function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
z = x < y ? x : y;
}
// babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method)
function sqrt(uint256 y) internal pure returns (uint256 z) {
if (y > 3) {
z = y;
uint256 x = y / 2 + 1;
while (x < z) {
z = x;
x = (y / x + x) / 2;
}
} else if (y != 0) {
z = 1;
}
}
}// SPDX-License-Identifier: ISC
pragma solidity ^0.8.25;
/**
* @title IBAMMFactory
* @dev Minimal interface for the IBAMMFactory contract
*/
interface IBAMMFactory {
function pairToBamm(address pair) external view returns (address);
function createBamm(address pair) external returns (address);
}// SPDX-License-Identifier: ISC
pragma solidity ^0.8.25;
/**
* @title IBAMM
* @dev Minimal interface for the BAMM contract
*/
interface IBAMM {
function mint(address to, uint256 lpIn) external returns (uint256 bammOut);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
* consider using {ReentrancyGuardTransient} instead.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
uint256 private _status;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
constructor() {
_status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
if (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == ENTERED;
}
}pragma solidity >=0.5.0;
interface IUniswapV2Factory {
event PairCreated(address indexed token0, address indexed token1, address pair, uint256);
function feeTo() external view returns (address);
function feeToSetter() external view returns (address);
function getPair(address tokenA, address tokenB) external view returns (address pair);
function allPairs(uint256) external view returns (address pair);
function allPairsLength() external view returns (uint256);
function createPair(address tokenA, address tokenB) external returns (address pair);
function setFeeTo(address) external;
function setFeeToSetter(address) external;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC165.sol)
pragma solidity >=0.4.16;
import { IERC165 } from "../utils/introspection/IERC165.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity >=0.6.2;
import { IERC20 } from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC-20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC721/extensions/ERC721URIStorage.sol)
pragma solidity ^0.8.20;
import { ERC721 } from "../ERC721.sol";
import { IERC721Metadata } from "./IERC721Metadata.sol";
import { Strings } from "../../../utils/Strings.sol";
import { IERC4906 } from "../../../interfaces/IERC4906.sol";
import { IERC165 } from "../../../interfaces/IERC165.sol";
/**
* @dev ERC-721 token with storage based token URI management.
*/
abstract contract ERC721URIStorage is IERC4906, ERC721 {
using Strings for uint256;
// Interface ID as defined in ERC-4906. This does not correspond to a traditional interface ID as ERC-4906 only
// defines events and does not include any external function.
bytes4 private constant ERC4906_INTERFACE_ID = bytes4(0x49064906);
// Optional mapping for token URIs
mapping(uint256 tokenId => string) private _tokenURIs;
/// @inheritdoc IERC165
function supportsInterface(bytes4 interfaceId) public view virtual override(ERC721, IERC165) returns (bool) {
return interfaceId == ERC4906_INTERFACE_ID || super.supportsInterface(interfaceId);
}
/// @inheritdoc IERC721Metadata
function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
_requireOwned(tokenId);
string memory _tokenURI = _tokenURIs[tokenId];
string memory base = _baseURI();
// If there is no base URI, return the token URI.
if (bytes(base).length == 0) {
return _tokenURI;
}
// If both are set, concatenate the baseURI and tokenURI (via string.concat).
if (bytes(_tokenURI).length > 0) {
return string.concat(base, _tokenURI);
}
return super.tokenURI(tokenId);
}
/**
* @dev Sets `_tokenURI` as the tokenURI of `tokenId`.
*
* Emits {IERC4906-MetadataUpdate}.
*/
function _setTokenURI(uint256 tokenId, string memory _tokenURI) internal virtual {
_tokenURIs[tokenId] = _tokenURI;
emit MetadataUpdate(tokenId);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/Proxy.sol)
pragma solidity ^0.8.20;
/**
* @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
* instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
* be specified by overriding the virtual {_implementation} function.
*
* Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
* different contract through the {_delegate} function.
*
* The success and return data of the delegated call will be returned back to the caller of the proxy.
*/
abstract contract Proxy {
/**
* @dev Delegates the current call to `implementation`.
*
* This function does not return to its internal call site, it will return directly to the external caller.
*/
function _delegate(address implementation) internal virtual {
assembly {
// Copy msg.data. We take full control of memory in this inline assembly
// block because it will not return to Solidity code. We overwrite the
// Solidity scratch pad at memory position 0.
calldatacopy(0, 0, calldatasize())
// Call the implementation.
// out and outsize are 0 because we don't know the size yet.
let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
// Copy the returned data.
returndatacopy(0, 0, returndatasize())
switch result
// delegatecall returns 0 on error.
case 0 { revert(0, returndatasize()) }
default { return(0, returndatasize()) }
}
}
/**
* @dev This is a virtual function that should be overridden so it returns the address to which the fallback
* function and {_fallback} should delegate.
*/
function _implementation() internal view virtual returns (address);
/**
* @dev Delegates the current call to the address returned by `_implementation()`.
*
* This function does not return to its internal call site, it will return directly to the external caller.
*/
function _fallback() internal virtual {
_delegate(_implementation());
}
/**
* @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
* function in the contract matches the call data.
*/
fallback() external payable virtual {
_fallback();
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/extensions/ERC20Permit.sol)
pragma solidity ^0.8.20;
import { IERC20Permit } from "./IERC20Permit.sol";
import { ERC20 } from "../ERC20.sol";
import { ECDSA } from "../../../utils/cryptography/ECDSA.sol";
import { EIP712 } from "../../../utils/cryptography/EIP712.sol";
import { Nonces } from "../../../utils/Nonces.sol";
/**
* @dev Implementation of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712, Nonces {
bytes32 private constant PERMIT_TYPEHASH =
keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
/**
* @dev Permit deadline has expired.
*/
error ERC2612ExpiredSignature(uint256 deadline);
/**
* @dev Mismatched signature.
*/
error ERC2612InvalidSigner(address signer, address owner);
/**
* @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
*
* It's a good idea to use the same `name` that is defined as the ERC-20 token name.
*/
constructor(string memory name) EIP712(name, "1") { }
/// @inheritdoc IERC20Permit
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
)
public
virtual
{
if (block.timestamp > deadline) {
revert ERC2612ExpiredSignature(deadline);
}
bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));
bytes32 hash = _hashTypedDataV4(structHash);
address signer = ECDSA.recover(hash, v, r, s);
if (signer != owner) {
revert ERC2612InvalidSigner(signer, owner);
}
_approve(owner, spender, value);
}
/// @inheritdoc IERC20Permit
function nonces(address owner) public view virtual override(IERC20Permit, Nonces) returns (uint256) {
return super.nonces(owner);
}
/// @inheritdoc IERC20Permit
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view virtual returns (bytes32) {
return _domainSeparatorV4();
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/ERC20Votes.sol)
pragma solidity ^0.8.20;
import { ERC20 } from "../ERC20.sol";
import { Votes } from "../../../governance/utils/Votes.sol";
import { Checkpoints } from "../../../utils/structs/Checkpoints.sol";
/**
* @dev Extension of ERC-20 to support Compound-like voting and delegation. This version is more generic than
* Compound's,
* and supports token supply up to 2^208^ - 1, while COMP is limited to 2^96^ - 1.
*
* NOTE: This contract does not provide interface compatibility with Compound's COMP token.
*
* This extension keeps a history (checkpoints) of each account's vote power. Vote power can be delegated either
* by calling the {Votes-delegate} function directly, or by providing a signature to be used with {Votes-delegateBySig}.
* Voting
* power can be queried through the public accessors {Votes-getVotes} and {Votes-getPastVotes}.
*
* By default, token balance does not account for voting power. This makes transfers cheaper. The downside is that it
* requires users to delegate to themselves in order to activate checkpoints and have their voting power tracked.
*/
abstract contract ERC20Votes is ERC20, Votes {
/**
* @dev Total supply cap has been exceeded, introducing a risk of votes overflowing.
*/
error ERC20ExceededSafeSupply(uint256 increasedSupply, uint256 cap);
/**
* @dev Maximum token supply. Defaults to `type(uint208).max` (2^208^ - 1).
*
* This maximum is enforced in {_update}. It limits the total supply of the token, which is otherwise a uint256,
* so that checkpoints can be stored in the Trace208 structure used by {Votes}. Increasing this value will not
* remove the underlying limitation, and will cause {_update} to fail because of a math overflow in
* {Votes-_transferVotingUnits}. An override could be used to further restrict the total supply (to a lower value)
* if
* additional logic requires it. When resolving override conflicts on this function, the minimum should be
* returned.
*/
function _maxSupply() internal view virtual returns (uint256) {
return type(uint208).max;
}
/**
* @dev Move voting power when tokens are transferred.
*
* Emits a {IVotes-DelegateVotesChanged} event.
*/
function _update(address from, address to, uint256 value) internal virtual override {
super._update(from, to, value);
if (from == address(0)) {
uint256 supply = totalSupply();
uint256 cap = _maxSupply();
if (supply > cap) {
revert ERC20ExceededSafeSupply(supply, cap);
}
}
_transferVotingUnits(from, to, value);
}
/**
* @dev Returns the voting units of an `account`.
*
* WARNING: Overriding this function may compromise the internal vote accounting.
* `ERC20Votes` assumes tokens map to voting units 1:1 and this is not easy to change.
*/
function _getVotingUnits(address account) internal view virtual override returns (uint256) {
return balanceOf(account);
}
/**
* @dev Get number of checkpoints for `account`.
*/
function numCheckpoints(address account) public view virtual returns (uint32) {
return _numCheckpoints(account);
}
/**
* @dev Get the `pos`-th checkpoint for `account`.
*/
function checkpoints(address account, uint32 pos) public view virtual returns (Checkpoints.Checkpoint208 memory) {
return _checkpoints(account, pos);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides tracking nonces for addresses. Nonces will only increment.
*/
abstract contract Nonces {
/**
* @dev The nonce used for an `account` is not the expected current nonce.
*/
error InvalidAccountNonce(address account, uint256 currentNonce);
mapping(address account => uint256) private _nonces;
/**
* @dev Returns the next unused nonce for an address.
*/
function nonces(address owner) public view virtual returns (uint256) {
return _nonces[owner];
}
/**
* @dev Consumes a nonce.
*
* Returns the current value and increments nonce.
*/
function _useNonce(address owner) internal virtual returns (uint256) {
// For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
// decremented or reset. This guarantees that the nonce never overflows.
unchecked {
// It is important to do x++ and not ++x here.
return _nonces[owner]++;
}
}
/**
* @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
*/
function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
uint256 current = _useNonce(owner);
if (nonce != current) {
revert InvalidAccountNonce(owner, current);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/types/Time.sol)
pragma solidity ^0.8.20;
import { Math } from "../math/Math.sol";
import { SafeCast } from "../math/SafeCast.sol";
/**
* @dev This library provides helpers for manipulating time-related objects.
*
* It uses the following types:
* - `uint48` for timepoints
* - `uint32` for durations
*
* While the library doesn't provide specific types for timepoints and duration, it does provide:
* - a `Delay` type to represent duration that can be programmed to change value automatically at a given point
* - additional helper functions
*/
library Time {
using Time for *;
/**
* @dev Get the block timestamp as a Timepoint.
*/
function timestamp() internal view returns (uint48) {
return SafeCast.toUint48(block.timestamp);
}
/**
* @dev Get the block number as a Timepoint.
*/
function blockNumber() internal view returns (uint48) {
return SafeCast.toUint48(block.number);
}
// ==================================================== Delay =====================================================
/**
* @dev A `Delay` is a uint32 duration that can be programmed to change value automatically at a given point in the
* future. The "effect" timepoint describes when the transitions happens from the "old" value to the "new" value.
* This allows updating the delay applied to some operation while keeping some guarantees.
*
* In particular, the {update} function guarantees that if the delay is reduced, the old delay still applies for
* some time. For example if the delay is currently 7 days to do an upgrade, the admin should not be able to set
* the delay to 0 and upgrade immediately. If the admin wants to reduce the delay, the old delay (7 days) should
* still apply for some time.
*
*
* The `Delay` type is 112 bits long, and packs the following:
*
* ```
* | [uint48]: effect date (timepoint)
* | | [uint32]: value before (duration)
* ↓ ↓ ↓ [uint32]: value after (duration)
* 0xAAAAAAAAAAAABBBBBBBBCCCCCCCC
* ```
*
* NOTE: The {get} and {withUpdate} functions operate using timestamps. Block number based delays are not currently
* supported.
*/
type Delay is uint112;
/**
* @dev Wrap a duration into a Delay to add the one-step "update in the future" feature
*/
function toDelay(uint32 duration) internal pure returns (Delay) {
return Delay.wrap(duration);
}
/**
* @dev Get the value at a given timepoint plus the pending value and effect timepoint if there is a scheduled
* change after this timepoint. If the effect timepoint is 0, then the pending value should not be considered.
*/
function _getFullAt(
Delay self,
uint48 timepoint
)
private
pure
returns (uint32 valueBefore, uint32 valueAfter, uint48 effect)
{
(valueBefore, valueAfter, effect) = self.unpack();
return effect <= timepoint ? (valueAfter, 0, 0) : (valueBefore, valueAfter, effect);
}
/**
* @dev Get the current value plus the pending value and effect timepoint if there is a scheduled change. If the
* effect timepoint is 0, then the pending value should not be considered.
*/
function getFull(Delay self) internal view returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) {
return _getFullAt(self, timestamp());
}
/**
* @dev Get the current value.
*/
function get(Delay self) internal view returns (uint32) {
(uint32 delay,,) = self.getFull();
return delay;
}
/**
* @dev Update a Delay object so that it takes a new duration after a timepoint that is automatically computed to
* enforce the old delay at the moment of the update. Returns the updated Delay object and the timestamp when the
* new delay becomes effective.
*/
function withUpdate(
Delay self,
uint32 newValue,
uint32 minSetback
)
internal
view
returns (Delay updatedDelay, uint48 effect)
{
uint32 value = self.get();
uint32 setback = uint32(Math.max(minSetback, value > newValue ? value - newValue : 0));
effect = timestamp() + setback;
return (pack(value, newValue, effect), effect);
}
/**
* @dev Split a delay into its components: valueBefore, valueAfter and effect (transition timepoint).
*/
function unpack(Delay self) internal pure returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) {
uint112 raw = Delay.unwrap(self);
valueAfter = uint32(raw);
valueBefore = uint32(raw >> 32);
effect = uint48(raw >> 64);
return (valueBefore, valueAfter, effect);
}
/**
* @dev pack the components into a Delay object.
*/
function pack(uint32 valueBefore, uint32 valueAfter, uint48 effect) internal pure returns (Delay) {
return Delay.wrap((uint112(effect) << 64) | (uint112(valueBefore) << 32) | uint112(valueAfter));
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/introspection/IERC165.sol)
pragma solidity >=0.4.16;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC721/ERC721.sol)
pragma solidity ^0.8.20;
import { IERC721 } from "./IERC721.sol";
import { IERC721Metadata } from "./extensions/IERC721Metadata.sol";
import { ERC721Utils } from "./utils/ERC721Utils.sol";
import { Context } from "../../utils/Context.sol";
import { Strings } from "../../utils/Strings.sol";
import { IERC165, ERC165 } from "../../utils/introspection/ERC165.sol";
import { IERC721Errors } from "../../interfaces/draft-IERC6093.sol";
/**
* @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC-721] Non-Fungible Token Standard, including
* the Metadata extension, but not including the Enumerable extension, which is available separately as
* {ERC721Enumerable}.
*/
abstract contract ERC721 is Context, ERC165, IERC721, IERC721Metadata, IERC721Errors {
using Strings for uint256;
// Token name
string private _name;
// Token symbol
string private _symbol;
mapping(uint256 tokenId => address) private _owners;
mapping(address owner => uint256) private _balances;
mapping(uint256 tokenId => address) private _tokenApprovals;
mapping(address owner => mapping(address operator => bool)) private _operatorApprovals;
/**
* @dev Initializes the contract by setting a `name` and a `symbol` to the token collection.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/// @inheritdoc IERC165
function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
return interfaceId == type(IERC721).interfaceId || interfaceId == type(IERC721Metadata).interfaceId
|| super.supportsInterface(interfaceId);
}
/// @inheritdoc IERC721
function balanceOf(address owner) public view virtual returns (uint256) {
if (owner == address(0)) {
revert ERC721InvalidOwner(address(0));
}
return _balances[owner];
}
/// @inheritdoc IERC721
function ownerOf(uint256 tokenId) public view virtual returns (address) {
return _requireOwned(tokenId);
}
/// @inheritdoc IERC721Metadata
function name() public view virtual returns (string memory) {
return _name;
}
/// @inheritdoc IERC721Metadata
function symbol() public view virtual returns (string memory) {
return _symbol;
}
/// @inheritdoc IERC721Metadata
function tokenURI(uint256 tokenId) public view virtual returns (string memory) {
_requireOwned(tokenId);
string memory baseURI = _baseURI();
return bytes(baseURI).length > 0 ? string.concat(baseURI, tokenId.toString()) : "";
}
/**
* @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
* token will be the concatenation of the `baseURI` and the `tokenId`. Empty
* by default, can be overridden in child contracts.
*/
function _baseURI() internal view virtual returns (string memory) {
return "";
}
/// @inheritdoc IERC721
function approve(address to, uint256 tokenId) public virtual {
_approve(to, tokenId, _msgSender());
}
/// @inheritdoc IERC721
function getApproved(uint256 tokenId) public view virtual returns (address) {
_requireOwned(tokenId);
return _getApproved(tokenId);
}
/// @inheritdoc IERC721
function setApprovalForAll(address operator, bool approved) public virtual {
_setApprovalForAll(_msgSender(), operator, approved);
}
/// @inheritdoc IERC721
function isApprovedForAll(address owner, address operator) public view virtual returns (bool) {
return _operatorApprovals[owner][operator];
}
/// @inheritdoc IERC721
function transferFrom(address from, address to, uint256 tokenId) public virtual {
if (to == address(0)) {
revert ERC721InvalidReceiver(address(0));
}
// Setting an "auth" arguments enables the `_isAuthorized` check which verifies that the token exists
// (from != 0). Therefore, it is not needed to verify that the return value is not 0 here.
address previousOwner = _update(to, tokenId, _msgSender());
if (previousOwner != from) {
revert ERC721IncorrectOwner(from, tokenId, previousOwner);
}
}
/// @inheritdoc IERC721
function safeTransferFrom(address from, address to, uint256 tokenId) public {
safeTransferFrom(from, to, tokenId, "");
}
/// @inheritdoc IERC721
function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public virtual {
transferFrom(from, to, tokenId);
ERC721Utils.checkOnERC721Received(_msgSender(), from, to, tokenId, data);
}
/**
* @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist
*
* IMPORTANT: Any overrides to this function that add ownership of tokens not tracked by the
* core ERC-721 logic MUST be matched with the use of {_increaseBalance} to keep balances
* consistent with ownership. The invariant to preserve is that for any address `a` the value returned by
* `balanceOf(a)` must be equal to the number of tokens such that `_ownerOf(tokenId)` is `a`.
*/
function _ownerOf(uint256 tokenId) internal view virtual returns (address) {
return _owners[tokenId];
}
/**
* @dev Returns the approved address for `tokenId`. Returns 0 if `tokenId` is not minted.
*/
function _getApproved(uint256 tokenId) internal view virtual returns (address) {
return _tokenApprovals[tokenId];
}
/**
* @dev Returns whether `spender` is allowed to manage `owner`'s tokens, or `tokenId` in
* particular (ignoring whether it is owned by `owner`).
*
* WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this
* assumption.
*/
function _isAuthorized(address owner, address spender, uint256 tokenId) internal view virtual returns (bool) {
return spender != address(0)
&& (owner == spender || isApprovedForAll(owner, spender) || _getApproved(tokenId) == spender);
}
/**
* @dev Checks if `spender` can operate on `tokenId`, assuming the provided `owner` is the actual owner.
* Reverts if:
* - `spender` does not have approval from `owner` for `tokenId`.
* - `spender` does not have approval to manage all of `owner`'s assets.
*
* WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this
* assumption.
*/
function _checkAuthorized(address owner, address spender, uint256 tokenId) internal view virtual {
if (!_isAuthorized(owner, spender, tokenId)) {
if (owner == address(0)) {
revert ERC721NonexistentToken(tokenId);
} else {
revert ERC721InsufficientApproval(spender, tokenId);
}
}
}
/**
* @dev Unsafe write access to the balances, used by extensions that "mint" tokens using an {ownerOf} override.
*
* NOTE: the value is limited to type(uint128).max. This protect against _balance overflow. It is unrealistic that
* a uint256 would ever overflow from increments when these increments are bounded to uint128 values.
*
* WARNING: Increasing an account's balance using this function tends to be paired with an override of the
* {_ownerOf} function to resolve the ownership of the corresponding tokens so that balances and ownership
* remain consistent with one another.
*/
function _increaseBalance(address account, uint128 value) internal virtual {
unchecked {
_balances[account] += value;
}
}
/**
* @dev Transfers `tokenId` from its current owner to `to`, or alternatively mints (or burns) if the current owner
* (or `to`) is the zero address. Returns the owner of the `tokenId` before the update.
*
* The `auth` argument is optional. If the value passed is non 0, then this function will check that
* `auth` is either the owner of the token, or approved to operate on the token (by the owner).
*
* Emits a {Transfer} event.
*
* NOTE: If overriding this function in a way that tracks balances, see also {_increaseBalance}.
*/
function _update(address to, uint256 tokenId, address auth) internal virtual returns (address) {
address from = _ownerOf(tokenId);
// Perform (optional) operator check
if (auth != address(0)) {
_checkAuthorized(from, auth, tokenId);
}
// Execute the update
if (from != address(0)) {
// Clear approval. No need to re-authorize or emit the Approval event
_approve(address(0), tokenId, address(0), false);
unchecked {
_balances[from] -= 1;
}
}
if (to != address(0)) {
unchecked {
_balances[to] += 1;
}
}
_owners[tokenId] = to;
emit Transfer(from, to, tokenId);
return from;
}
/**
* @dev Mints `tokenId` and transfers it to `to`.
*
* WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible
*
* Requirements:
*
* - `tokenId` must not exist.
* - `to` cannot be the zero address.
*
* Emits a {Transfer} event.
*/
function _mint(address to, uint256 tokenId) internal {
if (to == address(0)) {
revert ERC721InvalidReceiver(address(0));
}
address previousOwner = _update(to, tokenId, address(0));
if (previousOwner != address(0)) {
revert ERC721InvalidSender(address(0));
}
}
/**
* @dev Mints `tokenId`, transfers it to `to` and checks for `to` acceptance.
*
* Requirements:
*
* - `tokenId` must not exist.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function _safeMint(address to, uint256 tokenId) internal {
_safeMint(to, tokenId, "");
}
/**
* @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is
* forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
*/
function _safeMint(address to, uint256 tokenId, bytes memory data) internal virtual {
_mint(to, tokenId);
ERC721Utils.checkOnERC721Received(_msgSender(), address(0), to, tokenId, data);
}
/**
* @dev Destroys `tokenId`.
* The approval is cleared when the token is burned.
* This is an internal function that does not check if the sender is authorized to operate on the token.
*
* Requirements:
*
* - `tokenId` must exist.
*
* Emits a {Transfer} event.
*/
function _burn(uint256 tokenId) internal {
address previousOwner = _update(address(0), tokenId, address(0));
if (previousOwner == address(0)) {
revert ERC721NonexistentToken(tokenId);
}
}
/**
* @dev Transfers `tokenId` from `from` to `to`.
* As opposed to {transferFrom}, this imposes no restrictions on msg.sender.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
*
* Emits a {Transfer} event.
*/
function _transfer(address from, address to, uint256 tokenId) internal {
if (to == address(0)) {
revert ERC721InvalidReceiver(address(0));
}
address previousOwner = _update(to, tokenId, address(0));
if (previousOwner == address(0)) {
revert ERC721NonexistentToken(tokenId);
} else if (previousOwner != from) {
revert ERC721IncorrectOwner(from, tokenId, previousOwner);
}
}
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking that contract recipients
* are aware of the ERC-721 standard to prevent tokens from being forever locked.
*
* `data` is additional data, it has no specified format and it is sent in call to `to`.
*
* This internal function is like {safeTransferFrom} in the sense that it invokes
* {IERC721Receiver-onERC721Received} on the receiver, and can be used to e.g.
* implement alternative mechanisms to perform token transfer, such as signature-based.
*
* Requirements:
*
* - `tokenId` token must exist and be owned by `from`.
* - `to` cannot be the zero address.
* - `from` cannot be the zero address.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function _safeTransfer(address from, address to, uint256 tokenId) internal {
_safeTransfer(from, to, tokenId, "");
}
/**
* @dev Same as {xref-ERC721-_safeTransfer-address-address-uint256-}[`_safeTransfer`], with an additional `data`
* parameter which is
* forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
*/
function _safeTransfer(address from, address to, uint256 tokenId, bytes memory data) internal virtual {
_transfer(from, to, tokenId);
ERC721Utils.checkOnERC721Received(_msgSender(), from, to, tokenId, data);
}
/**
* @dev Approve `to` to operate on `tokenId`
*
* The `auth` argument is optional. If the value passed is non 0, then this function will check that `auth` is
* either the owner of the token, or approved to operate on all tokens held by this owner.
*
* Emits an {Approval} event.
*
* Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
*/
function _approve(address to, uint256 tokenId, address auth) internal {
_approve(to, tokenId, auth, true);
}
/**
* @dev Variant of `_approve` with an optional flag to enable or disable the {Approval} event. The event is not
* emitted in the context of transfers.
*/
function _approve(address to, uint256 tokenId, address auth, bool emitEvent) internal virtual {
// Avoid reading the owner unless necessary
if (emitEvent || auth != address(0)) {
address owner = _requireOwned(tokenId);
// We do not use _isAuthorized because single-token approvals should not be able to call approve
if (auth != address(0) && owner != auth && !isApprovedForAll(owner, auth)) {
revert ERC721InvalidApprover(auth);
}
if (emitEvent) {
emit Approval(owner, to, tokenId);
}
}
_tokenApprovals[tokenId] = to;
}
/**
* @dev Approve `operator` to operate on all of `owner` tokens
*
* Requirements:
* - operator can't be the address zero.
*
* Emits an {ApprovalForAll} event.
*/
function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
if (operator == address(0)) {
revert ERC721InvalidOperator(operator);
}
_operatorApprovals[owner][operator] = approved;
emit ApprovalForAll(owner, operator, approved);
}
/**
* @dev Reverts if the `tokenId` doesn't have a current owner (it hasn't been minted, or it has been burned).
* Returns the owner.
*
* Overrides to ownership logic should be done to {_ownerOf}.
*/
function _requireOwned(uint256 tokenId) internal view returns (address) {
address owner = _ownerOf(tokenId);
if (owner == address(0)) {
revert ERC721NonexistentToken(tokenId);
}
return owner;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC721/extensions/IERC721Metadata.sol)
pragma solidity >=0.6.2;
import { IERC721 } from "../IERC721.sol";
/**
* @title ERC-721 Non-Fungible Token Standard, optional metadata extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
*/
interface IERC721Metadata is IERC721 {
/**
* @dev Returns the token collection name.
*/
function name() external view returns (string memory);
/**
* @dev Returns the token collection symbol.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId) external view returns (string memory);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import { Math } from "./math/Math.sol";
import { SafeCast } from "./math/SafeCast.sol";
import { SignedMath } from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
using SafeCast for *;
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
uint256 private constant SPECIAL_CHARS_LOOKUP = (1 << 0x08) // backspace
| (1 << 0x09) // tab
| (1 << 0x0a) // newline
| (1 << 0x0c) // form feed
| (1 << 0x0d) // carriage return
| (1 << 0x22) // double quote
| (1 << 0x5c); // backslash
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev The string being parsed contains characters that are not in scope of the given base.
*/
error StringsInvalidChar();
/**
* @dev The string being parsed is not a properly formatted address.
*/
error StringsInvalidAddressFormat();
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
assembly ("memory-safe") {
ptr := add(add(buffer, 0x20), length)
}
while (true) {
ptr--;
assembly ("memory-safe") {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
* representation, according to EIP-55.
*/
function toChecksumHexString(address addr) internal pure returns (string memory) {
bytes memory buffer = bytes(toHexString(addr));
// hash the hex part of buffer (skip length + 2 bytes, length 40)
uint256 hashValue;
assembly ("memory-safe") {
hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
}
for (uint256 i = 41; i > 1; --i) {
// possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
// case shift by xoring with 0x20
buffer[i] ^= 0x20;
}
hashValue >>= 4;
}
return string(buffer);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
/**
* @dev Parse a decimal string and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input) internal pure returns (uint256) {
return parseUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included)
* and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(
string memory input,
uint256 begin,
uint256 end
)
internal
pure
returns (bool success, uint256 value)
{
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure
* that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
)
private
pure
returns (bool success, uint256 value)
{
bytes memory buffer = bytes(input);
uint256 result = 0;
for (uint256 i = begin; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 9) return (false, 0);
result *= 10;
result += chr;
}
return (true, result);
}
/**
* @dev Parse a decimal string and returns the value as a `int256`.
*
* Requirements:
* - The string must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input) internal pure returns (int256) {
return parseInt(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included)
* and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
(bool success, int256 value) = tryParseInt(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
* the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
}
uint256 private constant ABS_MIN_INT256 = 2 ** 255;
/**
* @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character or if the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(
string memory input,
uint256 begin,
uint256 end
)
internal
pure
returns (bool success, int256 value)
{
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseIntUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure
* that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseIntUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
)
private
pure
returns (bool success, int256 value)
{
bytes memory buffer = bytes(input);
// Check presence of a negative sign.
bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound
// (possibly unsafe) read if sub-string is empty
bool positiveSign = sign == bytes1("+");
bool negativeSign = sign == bytes1("-");
uint256 offset = (positiveSign || negativeSign).toUint();
(bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);
if (absSuccess && absValue < ABS_MIN_INT256) {
return (true, negativeSign ? -int256(absValue) : int256(absValue));
} else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
return (true, type(int256).min);
} else {
return (false, 0);
}
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input) internal pure returns (uint256) {
return parseHexUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin`
* (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseHexUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
* invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(
string memory input,
uint256 begin,
uint256 end
)
internal
pure
returns (bool success, uint256 value)
{
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseHexUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make
* sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseHexUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
)
private
pure
returns (bool success, uint256 value)
{
bytes memory buffer = bytes(input);
// skip 0x prefix if present
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do
// out-of-bound (possibly unsafe) read if sub-string is empty
uint256 offset = hasPrefix.toUint() * 2;
uint256 result = 0;
for (uint256 i = begin + offset; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 15) return (false, 0);
result *= 16;
unchecked {
// Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
// This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked.
result += chr;
}
}
return (true, result);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input) internal pure returns (address) {
return parseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin`
* (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
(bool success, address value) = tryParseAddress(input, begin, end);
if (!success) revert StringsInvalidAddressFormat();
return value;
}
/**
* @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
* formatted address. See {parseAddress-string} requirements.
*/
function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
return tryParseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is
* not a properly
* formatted address. See {parseAddress-string-uint256-uint256} requirements.
*/
function tryParseAddress(
string memory input,
uint256 begin,
uint256 end
)
internal
pure
returns (bool success, address value)
{
if (end > bytes(input).length || begin > end) return (false, address(0));
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't
// do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 expectedLength = 40 + hasPrefix.toUint() * 2;
// check that input is the correct length
if (end - begin == expectedLength) {
// length guarantees that this does not overflow, and value is at most type(uint160).max
(bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
return (s, address(uint160(v)));
} else {
return (false, address(0));
}
}
function _tryParseChr(bytes1 chr) private pure returns (uint8) {
uint8 value = uint8(chr);
// Try to parse `chr`:
// - Case 1: [0-9]
// - Case 2: [a-f]
// - Case 3: [A-F]
// - otherwise not supported
unchecked {
if (value > 47 && value < 58) value -= 48;
else if (value > 96 && value < 103) value -= 87;
else if (value > 64 && value < 71) value -= 55;
else return type(uint8).max;
}
return value;
}
/**
* @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata.
*
* WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped.
*
* NOTE: This function escapes all unicode characters, and not just the ones in ranges defined in section 2.5 of
* RFC-4627 (U+0000 to U+001F, U+0022 and U+005C). ECMAScript's `JSON.parse` does recover escaped unicode
* characters that are not in this range, but other tooling may provide different results.
*/
function escapeJSON(string memory input) internal pure returns (string memory) {
bytes memory buffer = bytes(input);
bytes memory output = new bytes(2 * buffer.length); // worst case scenario
uint256 outputLength = 0;
for (uint256 i; i < buffer.length; ++i) {
bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i));
if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) {
output[outputLength++] = "\\";
if (char == 0x08) {
output[outputLength++] = "b";
} else if (char == 0x09) {
output[outputLength++] = "t";
} else if (char == 0x0a) {
output[outputLength++] = "n";
} else if (char == 0x0c) {
output[outputLength++] = "f";
} else if (char == 0x0d) {
output[outputLength++] = "r";
} else if (char == 0x5c) {
output[outputLength++] = "\\";
} else if (char == 0x22) {
// solhint-disable-next-line quotes
output[outputLength++] = '"';
}
} else {
output[outputLength++] = char;
}
}
// write the actual length and deallocate unused memory
assembly ("memory-safe") {
mstore(output, outputLength)
mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63)))))
}
return string(output);
}
/**
* @dev Reads a bytes32 from a bytes array without bounds checking.
*
* NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
* assembly block as such would prevent some optimizations.
*/
function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
// This is not memory safe in the general case, but all calls to this private function are within bounds.
assembly ("memory-safe") {
value := mload(add(add(buffer, 0x20), offset))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC4906.sol)
pragma solidity >=0.6.2;
import { IERC165 } from "./IERC165.sol";
import { IERC721 } from "./IERC721.sol";
/// @title ERC-721 Metadata Update Extension
interface IERC4906 is IERC165, IERC721 {
/// @dev This event emits when the metadata of a token is changed.
/// So that the third-party platforms such as NFT market could
/// timely update the images and related attributes of the NFT.
event MetadataUpdate(uint256 _tokenId);
/// @dev This event emits when the metadata of a range of tokens is changed.
/// So that the third-party platforms such as NFT market could
/// timely update the images and related attributes of the NFTs.
event BatchMetadataUpdate(uint256 _fromTokenId, uint256 _toTokenId);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity >=0.4.16;
/**
* @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
)
external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.20;
import { IERC20 } from "./IERC20.sol";
import { IERC20Metadata } from "./extensions/IERC20Metadata.sol";
import { Context } from "../../utils/Context.sol";
import { IERC20Errors } from "../../interfaces/draft-IERC6093.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC-20
* applications.
*/
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
mapping(address account => uint256) private _balances;
mapping(address account => mapping(address spender => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* Both values are immutable: they can only be set once during construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual returns (uint8) {
return 18;
}
/// @inheritdoc IERC20
function totalSupply() public view virtual returns (uint256) {
return _totalSupply;
}
/// @inheritdoc IERC20
function balanceOf(address account) public view virtual returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `value`.
*/
function transfer(address to, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_transfer(owner, to, value);
return true;
}
/// @inheritdoc IERC20
function allowance(address owner, address spender) public view virtual returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, value);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Skips emitting an {Approval} event indicating an allowance update. This is not
* required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `value`.
* - the caller must have allowance for ``from``'s tokens of at least
* `value`.
*/
function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, value);
_transfer(from, to, value);
return true;
}
/**
* @dev Moves a `value` amount of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _transfer(address from, address to, uint256 value) internal {
if (from == address(0)) {
revert ERC20InvalidSender(address(0));
}
if (to == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(from, to, value);
}
/**
* @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
* (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
* this function.
*
* Emits a {Transfer} event.
*/
function _update(address from, address to, uint256 value) internal virtual {
if (from == address(0)) {
// Overflow check required: The rest of the code assumes that totalSupply never overflows
_totalSupply += value;
} else {
uint256 fromBalance = _balances[from];
if (fromBalance < value) {
revert ERC20InsufficientBalance(from, fromBalance, value);
}
unchecked {
// Overflow not possible: value <= fromBalance <= totalSupply.
_balances[from] = fromBalance - value;
}
}
if (to == address(0)) {
unchecked {
// Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
_totalSupply -= value;
}
} else {
unchecked {
// Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
_balances[to] += value;
}
}
emit Transfer(from, to, value);
}
/**
* @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
* Relies on the `_update` mechanism
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _mint(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(address(0), account, value);
}
/**
* @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
* Relies on the `_update` mechanism.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead
*/
function _burn(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidSender(address(0));
}
_update(account, address(0), value);
}
/**
* @dev Sets `value` as the allowance of `spender` over the `owner`'s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*
* Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
*/
function _approve(address owner, address spender, uint256 value) internal {
_approve(owner, spender, value, true);
}
/**
* @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
*
* By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
* `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
* `Approval` event during `transferFrom` operations.
*
* Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
* true using the following override:
*
* ```solidity
* function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
* super._approve(owner, spender, value, true);
* }
* ```
*
* Requirements are the same as {_approve}.
*/
function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
if (owner == address(0)) {
revert ERC20InvalidApprover(address(0));
}
if (spender == address(0)) {
revert ERC20InvalidSpender(address(0));
}
_allowances[owner][spender] = value;
if (emitEvent) {
emit Approval(owner, spender, value);
}
}
/**
* @dev Updates `owner`'s allowance for `spender` based on spent `value`.
*
* Does not update the allowance value in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Does not emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance < type(uint256).max) {
if (currentAllowance < value) {
revert ERC20InsufficientAllowance(spender, currentAllowance, value);
}
unchecked {
_approve(owner, spender, currentAllowance - value, false);
}
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.20;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature derives the `address(0)`.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(
bytes32 hash,
bytes memory signature
)
internal
pure
returns (address recovered, RecoverError err, bytes32 errArg)
{
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
assembly ("memory-safe") {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
)
internal
pure
returns (address recovered, RecoverError err, bytes32 errArg)
{
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
)
internal
pure
returns (address recovered, RecoverError err, bytes32 errArg)
{
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/cryptography/EIP712.sol)
pragma solidity ^0.8.20;
import { MessageHashUtils } from "./MessageHashUtils.sol";
import { ShortStrings, ShortString } from "../ShortStrings.sol";
import { IERC5267 } from "../../interfaces/IERC5267.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
*
* The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
* encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
* does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
* produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
* separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
* separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
*
* @custom:oz-upgrades-unsafe-allow state-variable-immutable
*/
abstract contract EIP712 is IERC5267 {
using ShortStrings for *;
bytes32 private constant TYPE_HASH =
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
// Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
// invalidate the cached domain separator if the chain id changes.
bytes32 private immutable _cachedDomainSeparator;
uint256 private immutable _cachedChainId;
address private immutable _cachedThis;
bytes32 private immutable _hashedName;
bytes32 private immutable _hashedVersion;
ShortString private immutable _name;
ShortString private immutable _version;
// slither-disable-next-line constable-states
string private _nameFallback;
// slither-disable-next-line constable-states
string private _versionFallback;
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
constructor(string memory name, string memory version) {
_name = name.toShortStringWithFallback(_nameFallback);
_version = version.toShortStringWithFallback(_versionFallback);
_hashedName = keccak256(bytes(name));
_hashedVersion = keccak256(bytes(version));
_cachedChainId = block.chainid;
_cachedDomainSeparator = _buildDomainSeparator();
_cachedThis = address(this);
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view returns (bytes32) {
if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
return _cachedDomainSeparator;
} else {
return _buildDomainSeparator();
}
}
function _buildDomainSeparator() private view returns (bytes32) {
return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
}
/// @inheritdoc IERC5267
function eip712Domain()
public
view
virtual
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
)
{
return (
hex"0f", // 01111
_EIP712Name(),
_EIP712Version(),
block.chainid,
address(this),
bytes32(0),
new uint256[](0)
);
}
/**
* @dev The name parameter for the EIP712 domain.
*
* NOTE: By default this function reads _name which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Name() internal view returns (string memory) {
return _name.toStringWithFallback(_nameFallback);
}
/**
* @dev The version parameter for the EIP712 domain.
*
* NOTE: By default this function reads _version which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Version() internal view returns (string memory) {
return _version.toStringWithFallback(_versionFallback);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (governance/utils/Votes.sol)
pragma solidity ^0.8.20;
import { IERC5805 } from "../../interfaces/IERC5805.sol";
import { Context } from "../../utils/Context.sol";
import { Nonces } from "../../utils/Nonces.sol";
import { EIP712 } from "../../utils/cryptography/EIP712.sol";
import { Checkpoints } from "../../utils/structs/Checkpoints.sol";
import { SafeCast } from "../../utils/math/SafeCast.sol";
import { ECDSA } from "../../utils/cryptography/ECDSA.sol";
import { Time } from "../../utils/types/Time.sol";
/**
* @dev This is a base abstract contract that tracks voting units, which are a measure of voting power that can be
* transferred, and provides a system of vote delegation, where an account can delegate its voting units to a sort of
* "representative" that will pool delegated voting units from different accounts and can then use it to vote in
* decisions. In fact, voting units _must_ be delegated in order to count as actual votes, and an account has to
* delegate those votes to itself if it wishes to participate in decisions and does not have a trusted representative.
*
* This contract is often combined with a token contract such that voting units correspond to token units. For an
* example, see {ERC721Votes}.
*
* The full history of delegate votes is tracked on-chain so that governance protocols can consider votes as distributed
* at a particular block number to protect against flash loans and double voting. The opt-in delegate system makes the
* cost of this history tracking optional.
*
* When using this module the derived contract must implement {_getVotingUnits} (for example, make it return
* {ERC721-balanceOf}), and can use {_transferVotingUnits} to track a change in the distribution of those units (in the
* previous example, it would be included in {ERC721-_update}).
*/
abstract contract Votes is Context, EIP712, Nonces, IERC5805 {
using Checkpoints for Checkpoints.Trace208;
bytes32 private constant DELEGATION_TYPEHASH =
keccak256("Delegation(address delegatee,uint256 nonce,uint256 expiry)");
mapping(address account => address) private _delegatee;
mapping(address delegatee => Checkpoints.Trace208) private _delegateCheckpoints;
Checkpoints.Trace208 private _totalCheckpoints;
/**
* @dev The clock was incorrectly modified.
*/
error ERC6372InconsistentClock();
/**
* @dev Lookup to future votes is not available.
*/
error ERC5805FutureLookup(uint256 timepoint, uint48 clock);
/**
* @dev Clock used for flagging checkpoints. Can be overridden to implement timestamp based
* checkpoints (and voting), in which case {CLOCK_MODE} should be overridden as well to match.
*/
function clock() public view virtual returns (uint48) {
return Time.blockNumber();
}
/**
* @dev Machine-readable description of the clock as specified in ERC-6372.
*/
// solhint-disable-next-line func-name-mixedcase
function CLOCK_MODE() public view virtual returns (string memory) {
// Check that the clock was not modified
if (clock() != Time.blockNumber()) {
revert ERC6372InconsistentClock();
}
return "mode=blocknumber&from=default";
}
/**
* @dev Validate that a timepoint is in the past, and return it as a uint48.
*/
function _validateTimepoint(uint256 timepoint) internal view returns (uint48) {
uint48 currentTimepoint = clock();
if (timepoint >= currentTimepoint) revert ERC5805FutureLookup(timepoint, currentTimepoint);
return SafeCast.toUint48(timepoint);
}
/**
* @dev Returns the current amount of votes that `account` has.
*/
function getVotes(address account) public view virtual returns (uint256) {
return _delegateCheckpoints[account].latest();
}
/**
* @dev Returns the amount of votes that `account` had at a specific moment in the past. If the `clock()` is
* configured to use block numbers, this will return the value at the end of the corresponding block.
*
* Requirements:
*
* - `timepoint` must be in the past. If operating using block numbers, the block must be already mined.
*/
function getPastVotes(address account, uint256 timepoint) public view virtual returns (uint256) {
return _delegateCheckpoints[account].upperLookupRecent(_validateTimepoint(timepoint));
}
/**
* @dev Returns the total supply of votes available at a specific moment in the past. If the `clock()` is
* configured to use block numbers, this will return the value at the end of the corresponding block.
*
* NOTE: This value is the sum of all available votes, which is not necessarily the sum of all delegated votes.
* Votes that have not been delegated are still part of total supply, even though they would not participate in a
* vote.
*
* Requirements:
*
* - `timepoint` must be in the past. If operating using block numbers, the block must be already mined.
*/
function getPastTotalSupply(uint256 timepoint) public view virtual returns (uint256) {
return _totalCheckpoints.upperLookupRecent(_validateTimepoint(timepoint));
}
/**
* @dev Returns the current total supply of votes.
*/
function _getTotalSupply() internal view virtual returns (uint256) {
return _totalCheckpoints.latest();
}
/**
* @dev Returns the delegate that `account` has chosen.
*/
function delegates(address account) public view virtual returns (address) {
return _delegatee[account];
}
/**
* @dev Delegates votes from the sender to `delegatee`.
*/
function delegate(address delegatee) public virtual {
address account = _msgSender();
_delegate(account, delegatee);
}
/**
* @dev Delegates votes from signer to `delegatee`.
*/
function delegateBySig(
address delegatee,
uint256 nonce,
uint256 expiry,
uint8 v,
bytes32 r,
bytes32 s
)
public
virtual
{
if (block.timestamp > expiry) {
revert VotesExpiredSignature(expiry);
}
address signer = ECDSA.recover(
_hashTypedDataV4(keccak256(abi.encode(DELEGATION_TYPEHASH, delegatee, nonce, expiry))), v, r, s
);
_useCheckedNonce(signer, nonce);
_delegate(signer, delegatee);
}
/**
* @dev Delegate all of `account`'s voting units to `delegatee`.
*
* Emits events {IVotes-DelegateChanged} and {IVotes-DelegateVotesChanged}.
*/
function _delegate(address account, address delegatee) internal virtual {
address oldDelegate = delegates(account);
_delegatee[account] = delegatee;
emit DelegateChanged(account, oldDelegate, delegatee);
_moveDelegateVotes(oldDelegate, delegatee, _getVotingUnits(account));
}
/**
* @dev Transfers, mints, or burns voting units. To register a mint, `from` should be zero. To register a burn, `to`
* should be zero. Total supply of voting units will be adjusted with mints and burns.
*/
function _transferVotingUnits(address from, address to, uint256 amount) internal virtual {
if (from == address(0)) {
_push(_totalCheckpoints, _add, SafeCast.toUint208(amount));
}
if (to == address(0)) {
_push(_totalCheckpoints, _subtract, SafeCast.toUint208(amount));
}
_moveDelegateVotes(delegates(from), delegates(to), amount);
}
/**
* @dev Moves delegated votes from one delegate to another.
*/
function _moveDelegateVotes(address from, address to, uint256 amount) internal virtual {
if (from != to && amount > 0) {
if (from != address(0)) {
(uint256 oldValue, uint256 newValue) =
_push(_delegateCheckpoints[from], _subtract, SafeCast.toUint208(amount));
emit DelegateVotesChanged(from, oldValue, newValue);
}
if (to != address(0)) {
(uint256 oldValue, uint256 newValue) = _push(_delegateCheckpoints[to], _add, SafeCast.toUint208(amount));
emit DelegateVotesChanged(to, oldValue, newValue);
}
}
}
/**
* @dev Get number of checkpoints for `account`.
*/
function _numCheckpoints(address account) internal view virtual returns (uint32) {
return SafeCast.toUint32(_delegateCheckpoints[account].length());
}
/**
* @dev Get the `pos`-th checkpoint for `account`.
*/
function _checkpoints(
address account,
uint32 pos
)
internal
view
virtual
returns (Checkpoints.Checkpoint208 memory)
{
return _delegateCheckpoints[account].at(pos);
}
function _push(
Checkpoints.Trace208 storage store,
function(uint208, uint208) view returns (uint208) op,
uint208 delta
)
private
returns (uint208 oldValue, uint208 newValue)
{
return store.push(clock(), op(store.latest(), delta));
}
function _add(uint208 a, uint208 b) private pure returns (uint208) {
return a + b;
}
function _subtract(uint208 a, uint208 b) private pure returns (uint208) {
return a - b;
}
/**
* @dev Must return the voting units held by an account.
*/
function _getVotingUnits(address) internal view virtual returns (uint256);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/structs/Checkpoints.sol)
// This file was procedurally generated from scripts/generate/templates/Checkpoints.js.
pragma solidity ^0.8.20;
import { Math } from "../math/Math.sol";
/**
* @dev This library defines the `Trace*` struct, for checkpointing values as they change at different points in
* time, and later looking up past values by block number. See {Votes} as an example.
*
* To create a history of checkpoints define a variable type `Checkpoints.Trace*` in your contract, and store a new
* checkpoint for the current transaction block using the {push} function.
*/
library Checkpoints {
/**
* @dev A value was attempted to be inserted on a past checkpoint.
*/
error CheckpointUnorderedInsertion();
struct Trace224 {
Checkpoint224[] _checkpoints;
}
struct Checkpoint224 {
uint32 _key;
uint224 _value;
}
/**
* @dev Pushes a (`key`, `value`) pair into a Trace224 so that it is stored as the checkpoint.
*
* Returns previous value and new value.
*
* IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint32).max` key set will disable the
* library.
*/
function push(
Trace224 storage self,
uint32 key,
uint224 value
)
internal
returns (uint224 oldValue, uint224 newValue)
{
return _insert(self._checkpoints, key, value);
}
/**
* @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
* there is none.
*/
function lowerLookup(Trace224 storage self, uint32 key) internal view returns (uint224) {
uint256 len = self._checkpoints.length;
uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
}
/**
* @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
* if there is none.
*/
function upperLookup(Trace224 storage self, uint32 key) internal view returns (uint224) {
uint256 len = self._checkpoints.length;
uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
* if there is none.
*
* NOTE: This is a variant of {upperLookup} that is optimized to find "recent" checkpoint (checkpoints with high
* keys).
*/
function upperLookupRecent(Trace224 storage self, uint32 key) internal view returns (uint224) {
uint256 len = self._checkpoints.length;
uint256 low = 0;
uint256 high = len;
if (len > 5) {
uint256 mid = len - Math.sqrt(len);
if (key < _unsafeAccess(self._checkpoints, mid)._key) {
high = mid;
} else {
low = mid + 1;
}
}
uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
*/
function latest(Trace224 storage self) internal view returns (uint224) {
uint256 pos = self._checkpoints.length;
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
* in the most recent checkpoint.
*/
function latestCheckpoint(Trace224 storage self) internal view returns (bool exists, uint32 _key, uint224 _value) {
uint256 pos = self._checkpoints.length;
if (pos == 0) {
return (false, 0, 0);
} else {
Checkpoint224 storage ckpt = _unsafeAccess(self._checkpoints, pos - 1);
return (true, ckpt._key, ckpt._value);
}
}
/**
* @dev Returns the number of checkpoints.
*/
function length(Trace224 storage self) internal view returns (uint256) {
return self._checkpoints.length;
}
/**
* @dev Returns checkpoint at given position.
*/
function at(Trace224 storage self, uint32 pos) internal view returns (Checkpoint224 memory) {
return self._checkpoints[pos];
}
/**
* @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
* or by updating the last one.
*/
function _insert(
Checkpoint224[] storage self,
uint32 key,
uint224 value
)
private
returns (uint224 oldValue, uint224 newValue)
{
uint256 pos = self.length;
if (pos > 0) {
Checkpoint224 storage last = _unsafeAccess(self, pos - 1);
uint32 lastKey = last._key;
uint224 lastValue = last._value;
// Checkpoint keys must be non-decreasing.
if (lastKey > key) {
revert CheckpointUnorderedInsertion();
}
// Update or push new checkpoint
if (lastKey == key) {
last._value = value;
} else {
self.push(Checkpoint224({ _key: key, _value: value }));
}
return (lastValue, value);
} else {
self.push(Checkpoint224({ _key: key, _value: value }));
return (0, value);
}
}
/**
* @dev Return the index of the first (oldest) checkpoint with key strictly bigger than the search key, or `high`
* if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
* `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _upperBinaryLookup(
Checkpoint224[] storage self,
uint32 key,
uint256 low,
uint256 high
)
private
view
returns (uint256)
{
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._key > key) {
high = mid;
} else {
low = mid + 1;
}
}
return high;
}
/**
* @dev Return the index of the first (oldest) checkpoint with key greater or equal than the search key, or `high`
* if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
* `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _lowerBinaryLookup(
Checkpoint224[] storage self,
uint32 key,
uint256 low,
uint256 high
)
private
view
returns (uint256)
{
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._key < key) {
low = mid + 1;
} else {
high = mid;
}
}
return high;
}
/**
* @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
*/
function _unsafeAccess(
Checkpoint224[] storage self,
uint256 pos
)
private
pure
returns (Checkpoint224 storage result)
{
assembly {
mstore(0, self.slot)
result.slot := add(keccak256(0, 0x20), pos)
}
}
struct Trace208 {
Checkpoint208[] _checkpoints;
}
struct Checkpoint208 {
uint48 _key;
uint208 _value;
}
/**
* @dev Pushes a (`key`, `value`) pair into a Trace208 so that it is stored as the checkpoint.
*
* Returns previous value and new value.
*
* IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint48).max` key set will disable the
* library.
*/
function push(
Trace208 storage self,
uint48 key,
uint208 value
)
internal
returns (uint208 oldValue, uint208 newValue)
{
return _insert(self._checkpoints, key, value);
}
/**
* @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
* there is none.
*/
function lowerLookup(Trace208 storage self, uint48 key) internal view returns (uint208) {
uint256 len = self._checkpoints.length;
uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
}
/**
* @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
* if there is none.
*/
function upperLookup(Trace208 storage self, uint48 key) internal view returns (uint208) {
uint256 len = self._checkpoints.length;
uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
* if there is none.
*
* NOTE: This is a variant of {upperLookup} that is optimized to find "recent" checkpoint (checkpoints with high
* keys).
*/
function upperLookupRecent(Trace208 storage self, uint48 key) internal view returns (uint208) {
uint256 len = self._checkpoints.length;
uint256 low = 0;
uint256 high = len;
if (len > 5) {
uint256 mid = len - Math.sqrt(len);
if (key < _unsafeAccess(self._checkpoints, mid)._key) {
high = mid;
} else {
low = mid + 1;
}
}
uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
*/
function latest(Trace208 storage self) internal view returns (uint208) {
uint256 pos = self._checkpoints.length;
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
* in the most recent checkpoint.
*/
function latestCheckpoint(Trace208 storage self) internal view returns (bool exists, uint48 _key, uint208 _value) {
uint256 pos = self._checkpoints.length;
if (pos == 0) {
return (false, 0, 0);
} else {
Checkpoint208 storage ckpt = _unsafeAccess(self._checkpoints, pos - 1);
return (true, ckpt._key, ckpt._value);
}
}
/**
* @dev Returns the number of checkpoints.
*/
function length(Trace208 storage self) internal view returns (uint256) {
return self._checkpoints.length;
}
/**
* @dev Returns checkpoint at given position.
*/
function at(Trace208 storage self, uint32 pos) internal view returns (Checkpoint208 memory) {
return self._checkpoints[pos];
}
/**
* @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
* or by updating the last one.
*/
function _insert(
Checkpoint208[] storage self,
uint48 key,
uint208 value
)
private
returns (uint208 oldValue, uint208 newValue)
{
uint256 pos = self.length;
if (pos > 0) {
Checkpoint208 storage last = _unsafeAccess(self, pos - 1);
uint48 lastKey = last._key;
uint208 lastValue = last._value;
// Checkpoint keys must be non-decreasing.
if (lastKey > key) {
revert CheckpointUnorderedInsertion();
}
// Update or push new checkpoint
if (lastKey == key) {
last._value = value;
} else {
self.push(Checkpoint208({ _key: key, _value: value }));
}
return (lastValue, value);
} else {
self.push(Checkpoint208({ _key: key, _value: value }));
return (0, value);
}
}
/**
* @dev Return the index of the first (oldest) checkpoint with key strictly bigger than the search key, or `high`
* if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
* `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _upperBinaryLookup(
Checkpoint208[] storage self,
uint48 key,
uint256 low,
uint256 high
)
private
view
returns (uint256)
{
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._key > key) {
high = mid;
} else {
low = mid + 1;
}
}
return high;
}
/**
* @dev Return the index of the first (oldest) checkpoint with key greater or equal than the search key, or `high`
* if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
* `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _lowerBinaryLookup(
Checkpoint208[] storage self,
uint48 key,
uint256 low,
uint256 high
)
private
view
returns (uint256)
{
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._key < key) {
low = mid + 1;
} else {
high = mid;
}
}
return high;
}
/**
* @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
*/
function _unsafeAccess(
Checkpoint208[] storage self,
uint256 pos
)
private
pure
returns (Checkpoint208 storage result)
{
assembly {
mstore(0, self.slot)
result.slot := add(keccak256(0, 0x20), pos)
}
}
struct Trace160 {
Checkpoint160[] _checkpoints;
}
struct Checkpoint160 {
uint96 _key;
uint160 _value;
}
/**
* @dev Pushes a (`key`, `value`) pair into a Trace160 so that it is stored as the checkpoint.
*
* Returns previous value and new value.
*
* IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint96).max` key set will disable the
* library.
*/
function push(
Trace160 storage self,
uint96 key,
uint160 value
)
internal
returns (uint160 oldValue, uint160 newValue)
{
return _insert(self._checkpoints, key, value);
}
/**
* @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
* there is none.
*/
function lowerLookup(Trace160 storage self, uint96 key) internal view returns (uint160) {
uint256 len = self._checkpoints.length;
uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
}
/**
* @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
* if there is none.
*/
function upperLookup(Trace160 storage self, uint96 key) internal view returns (uint160) {
uint256 len = self._checkpoints.length;
uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
* if there is none.
*
* NOTE: This is a variant of {upperLookup} that is optimized to find "recent" checkpoint (checkpoints with high
* keys).
*/
function upperLookupRecent(Trace160 storage self, uint96 key) internal view returns (uint160) {
uint256 len = self._checkpoints.length;
uint256 low = 0;
uint256 high = len;
if (len > 5) {
uint256 mid = len - Math.sqrt(len);
if (key < _unsafeAccess(self._checkpoints, mid)._key) {
high = mid;
} else {
low = mid + 1;
}
}
uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
*/
function latest(Trace160 storage self) internal view returns (uint160) {
uint256 pos = self._checkpoints.length;
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
* in the most recent checkpoint.
*/
function latestCheckpoint(Trace160 storage self) internal view returns (bool exists, uint96 _key, uint160 _value) {
uint256 pos = self._checkpoints.length;
if (pos == 0) {
return (false, 0, 0);
} else {
Checkpoint160 storage ckpt = _unsafeAccess(self._checkpoints, pos - 1);
return (true, ckpt._key, ckpt._value);
}
}
/**
* @dev Returns the number of checkpoints.
*/
function length(Trace160 storage self) internal view returns (uint256) {
return self._checkpoints.length;
}
/**
* @dev Returns checkpoint at given position.
*/
function at(Trace160 storage self, uint32 pos) internal view returns (Checkpoint160 memory) {
return self._checkpoints[pos];
}
/**
* @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
* or by updating the last one.
*/
function _insert(
Checkpoint160[] storage self,
uint96 key,
uint160 value
)
private
returns (uint160 oldValue, uint160 newValue)
{
uint256 pos = self.length;
if (pos > 0) {
Checkpoint160 storage last = _unsafeAccess(self, pos - 1);
uint96 lastKey = last._key;
uint160 lastValue = last._value;
// Checkpoint keys must be non-decreasing.
if (lastKey > key) {
revert CheckpointUnorderedInsertion();
}
// Update or push new checkpoint
if (lastKey == key) {
last._value = value;
} else {
self.push(Checkpoint160({ _key: key, _value: value }));
}
return (lastValue, value);
} else {
self.push(Checkpoint160({ _key: key, _value: value }));
return (0, value);
}
}
/**
* @dev Return the index of the first (oldest) checkpoint with key strictly bigger than the search key, or `high`
* if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
* `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _upperBinaryLookup(
Checkpoint160[] storage self,
uint96 key,
uint256 low,
uint256 high
)
private
view
returns (uint256)
{
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._key > key) {
high = mid;
} else {
low = mid + 1;
}
}
return high;
}
/**
* @dev Return the index of the first (oldest) checkpoint with key greater or equal than the search key, or `high`
* if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
* `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _lowerBinaryLookup(
Checkpoint160[] storage self,
uint96 key,
uint256 low,
uint256 high
)
private
view
returns (uint256)
{
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._key < key) {
low = mid + 1;
} else {
high = mid;
}
}
return high;
}
/**
* @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
*/
function _unsafeAccess(
Checkpoint160[] storage self,
uint256 pos
)
private
pure
returns (Checkpoint160 storage result)
{
assembly {
mstore(0, self.slot)
result.slot := add(keccak256(0, 0x20), pos)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import { Panic } from "../Panic.sol";
import { SafeCast } from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Return the 512-bit addition of two uint256.
*
* The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
*/
function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
assembly ("memory-safe") {
low := add(a, b)
high := lt(low, a)
}
}
/**
* @dev Return the 512-bit multiplication of two uint256.
*
* The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
*/
function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
// 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = high * 2²⁵⁶ + low.
assembly ("memory-safe") {
let mm := mulmod(a, b, not(0))
low := mul(a, b)
high := sub(sub(mm, low), lt(mm, low))
}
}
/**
* @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
success = c >= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a - b;
success = c <= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a * b;
assembly ("memory-safe") {
// Only true when the multiplication doesn't overflow
// (c / a == b) || (a == 0)
success := or(eq(div(c, a), b), iszero(a))
}
// equivalent to: success ? c : 0
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `DIV` opcode returns zero when the denominator is 0.
result := div(a, b)
}
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `MOD` opcode returns zero when the denominator is 0.
result := mod(a, b)
}
}
}
/**
* @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryAdd(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
*/
function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
(, uint256 result) = trySub(a, b);
return result;
}
/**
* @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryMul(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
// Handle non-overflow cases, 256 by 256 division.
if (high == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return low / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= high) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [high low].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
high := sub(high, gt(remainder, low))
low := sub(low, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly ("memory-safe") {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [high low] by twos.
low := div(low, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from high into low.
low |= high * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
// is no longer required.
result = low * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
*/
function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
if (high >= 1 << n) {
Panic.panic(Panic.UNDER_OVERFLOW);
}
return (high << (256 - n)) | (low >> n);
}
}
/**
* @dev Calculates x * y >> n with full precision, following the selected rounding direction.
*/
function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
)
internal
view
returns (bool success, bytes memory result)
{
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// If upper 8 bits of 16-bit half set, add 8 to result
r |= SafeCast.toUint((x >> r) > 0xff) << 3;
// If upper 4 bits of 8-bit half set, add 4 to result
r |= SafeCast.toUint((x >> r) > 0xf) << 2;
// Shifts value right by the current result and use it as an index into this lookup table:
//
// | x (4 bits) | index | table[index] = MSB position |
// |------------|---------|-----------------------------|
// | 0000 | 0 | table[0] = 0 |
// | 0001 | 1 | table[1] = 0 |
// | 0010 | 2 | table[2] = 1 |
// | 0011 | 3 | table[3] = 1 |
// | 0100 | 4 | table[4] = 2 |
// | 0101 | 5 | table[5] = 2 |
// | 0110 | 6 | table[6] = 2 |
// | 0111 | 7 | table[7] = 2 |
// | 1000 | 8 | table[8] = 3 |
// | 1001 | 9 | table[9] = 3 |
// | 1010 | 10 | table[10] = 3 |
// | 1011 | 11 | table[11] = 3 |
// | 1100 | 12 | table[12] = 3 |
// | 1101 | 13 | table[13] = 3 |
// | 1110 | 14 | table[14] = 3 |
// | 1111 | 15 | table[15] = 3 |
//
// The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
assembly ("memory-safe") {
r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
}
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC721/IERC721.sol)
pragma solidity >=0.6.2;
import { IERC165 } from "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC-721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC-721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
* {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC-721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the address zero.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC721/utils/ERC721Utils.sol)
pragma solidity ^0.8.20;
import { IERC721Receiver } from "../IERC721Receiver.sol";
import { IERC721Errors } from "../../../interfaces/draft-IERC6093.sol";
/**
* @dev Library that provide common ERC-721 utility functions.
*
* See https://eips.ethereum.org/EIPS/eip-721[ERC-721].
*
* _Available since v5.1._
*/
library ERC721Utils {
/**
* @dev Performs an acceptance check for the provided `operator` by calling {IERC721Receiver-onERC721Received}
* on the `to` address. The `operator` is generally the address that initiated the token transfer (i.e.
* `msg.sender`).
*
* The acceptance call is not executed and treated as a no-op if the target address doesn't contain code (i.e. an
* EOA).
* Otherwise, the recipient must implement {IERC721Receiver-onERC721Received} and return the acceptance magic value
* to accept
* the transfer.
*/
function checkOnERC721Received(
address operator,
address from,
address to,
uint256 tokenId,
bytes memory data
)
internal
{
if (to.code.length > 0) {
try IERC721Receiver(to).onERC721Received(operator, from, tokenId, data) returns (bytes4 retval) {
if (retval != IERC721Receiver.onERC721Received.selector) {
// Token rejected
revert IERC721Errors.ERC721InvalidReceiver(to);
}
} catch (bytes memory reason) {
if (reason.length == 0) {
// non-IERC721Receiver implementer
revert IERC721Errors.ERC721InvalidReceiver(to);
} else {
assembly ("memory-safe") {
revert(add(reason, 0x20), mload(reason))
}
}
}
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/introspection/ERC165.sol)
pragma solidity ^0.8.20;
import { IERC165 } from "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*/
abstract contract ERC165 is IERC165 {
/// @inheritdoc IERC165
function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/draft-IERC6093.sol)
pragma solidity >=0.8.4;
/**
* @dev Standard ERC-20 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
*/
interface IERC20Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC20InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC20InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
* @param spender Address that may be allowed to operate on tokens without being their owner.
* @param allowance Amount of tokens a `spender` is allowed to operate with.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC20InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `spender` to be approved. Used in approvals.
* @param spender Address that may be allowed to operate on tokens without being their owner.
*/
error ERC20InvalidSpender(address spender);
}
/**
* @dev Standard ERC-721 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
*/
interface IERC721Errors {
/**
* @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
* Used in balance queries.
* @param owner Address of the current owner of a token.
*/
error ERC721InvalidOwner(address owner);
/**
* @dev Indicates a `tokenId` whose `owner` is the zero address.
* @param tokenId Identifier number of a token.
*/
error ERC721NonexistentToken(uint256 tokenId);
/**
* @dev Indicates an error related to the ownership over a particular token. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param tokenId Identifier number of a token.
* @param owner Address of the current owner of a token.
*/
error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC721InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC721InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param tokenId Identifier number of a token.
*/
error ERC721InsufficientApproval(address operator, uint256 tokenId);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC721InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC721InvalidOperator(address operator);
}
/**
* @dev Standard ERC-1155 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
*/
interface IERC1155Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
* @param tokenId Identifier number of a token.
*/
error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC1155InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC1155InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param owner Address of the current owner of a token.
*/
error ERC1155MissingApprovalForAll(address operator, address owner);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC1155InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC1155InvalidOperator(address operator);
/**
* @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
* Used in batch transfers.
* @param idsLength Length of the array of token identifiers
* @param valuesLength Length of the array of token amounts
*/
error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
import { SafeCast } from "./SafeCast.sol";
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
}
}
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
// Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
// taking advantage of the most significant (or "sign" bit) in two's complement representation.
// This opcode adds new most significant bits set to the value of the previous most significant bit. As a
// result,
// the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
int256 mask = n >> 255;
// A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
return uint256((n + mask) ^ mask);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC721.sol)
pragma solidity >=0.6.2;
import { IERC721 } from "../token/ERC721/IERC721.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/cryptography/MessageHashUtils.sol)
pragma solidity ^0.8.20;
import { Strings } from "../Strings.sol";
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing a bytes32 `messageHash` with
* `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
* hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC
* method.
*
* NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
* keccak256, although any bytes32 value can be safely used because the final digest will
* be re-hashed.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
}
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing an arbitrary `message` with
* `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
* hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC
* method.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
return
keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x00` (data with intended validator).
*
* The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
* `validator` address. Then hashing the result.
*
* See {ECDSA-recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(hex"1900", validator, data));
}
/**
* @dev Variant of {toDataWithIntendedValidatorHash-address-bytes} optimized for cases where `data` is a bytes32.
*/
function toDataWithIntendedValidatorHash(
address validator,
bytes32 messageHash
)
internal
pure
returns (bytes32 digest)
{
assembly ("memory-safe") {
mstore(0x00, hex"1900")
mstore(0x02, shl(96, validator))
mstore(0x16, messageHash)
digest := keccak256(0x00, 0x36)
}
}
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\x19\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* See {ECDSA-recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
let ptr := mload(0x40)
mstore(ptr, hex"1901")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/ShortStrings.sol)
pragma solidity ^0.8.20;
import { StorageSlot } from "./StorageSlot.sol";
// | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
// | length | 0x BB |
type ShortString is bytes32;
/**
* @dev This library provides functions to convert short memory strings
* into a `ShortString` type that can be used as an immutable variable.
*
* Strings of arbitrary length can be optimized using this library if
* they are short enough (up to 31 bytes) by packing them with their
* length (1 byte) in a single EVM word (32 bytes). Additionally, a
* fallback mechanism can be used for every other case.
*
* Usage example:
*
* ```solidity
* contract Named {
* using ShortStrings for *;
*
* ShortString private immutable _name;
* string private _nameFallback;
*
* constructor(string memory contractName) {
* _name = contractName.toShortStringWithFallback(_nameFallback);
* }
*
* function name() external view returns (string memory) {
* return _name.toStringWithFallback(_nameFallback);
* }
* }
* ```
*/
library ShortStrings {
// Used as an identifier for strings longer than 31 bytes.
bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
error StringTooLong(string str);
error InvalidShortString();
/**
* @dev Encode a string of at most 31 chars into a `ShortString`.
*
* This will trigger a `StringTooLong` error is the input string is too long.
*/
function toShortString(string memory str) internal pure returns (ShortString) {
bytes memory bstr = bytes(str);
if (bstr.length > 31) {
revert StringTooLong(str);
}
return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
}
/**
* @dev Decode a `ShortString` back to a "normal" string.
*/
function toString(ShortString sstr) internal pure returns (string memory) {
uint256 len = byteLength(sstr);
// using `new string(len)` would work locally but is not memory safe.
string memory str = new string(32);
assembly ("memory-safe") {
mstore(str, len)
mstore(add(str, 0x20), sstr)
}
return str;
}
/**
* @dev Return the length of a `ShortString`.
*/
function byteLength(ShortString sstr) internal pure returns (uint256) {
uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
if (result > 31) {
revert InvalidShortString();
}
return result;
}
/**
* @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
*/
function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
if (bytes(value).length < 32) {
return toShortString(value);
} else {
StorageSlot.getStringSlot(store).value = value;
return ShortString.wrap(FALLBACK_SENTINEL);
}
}
/**
* @dev Decode a string that was encoded to `ShortString` or written to storage using {toShortStringWithFallback}.
*/
function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return toString(value);
} else {
return store;
}
}
/**
* @dev Return the length of a string that was encoded to `ShortString` or written to storage using
* {toShortStringWithFallback}.
*
* WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
* actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
*/
function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return byteLength(value);
} else {
return bytes(store).length;
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC5267.sol)
pragma solidity >=0.4.16;
interface IERC5267 {
/**
* @dev MAY be emitted to signal that the domain could have changed.
*/
event EIP712DomainChanged();
/**
* @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
* signature.
*/
function eip712Domain()
external
view
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC5805.sol)
pragma solidity >=0.8.4;
import { IVotes } from "../governance/utils/IVotes.sol";
import { IERC6372 } from "./IERC6372.sol";
interface IERC5805 is IERC6372, IVotes { }// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC721/IERC721Receiver.sol)
pragma solidity >=0.5.0;
/**
* @title ERC-721 token receiver interface
* @dev Interface for any contract that wants to support safeTransfers
* from ERC-721 asset contracts.
*/
interface IERC721Receiver {
/**
* @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
* by `operator` from `from`, this function is called.
*
* It must return its Solidity selector to confirm the token transfer.
* If any other value is returned or the interface is not implemented by the recipient, the transfer will be
* reverted.
*
* The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
*/
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
)
external
returns (bytes4);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.20;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC-1967 implementation slot:
* ```solidity
* contract ERC1967 {
* // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
* bytes32 internal constant _IMPLEMENTATION_SLOT =
* 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(newImplementation.code.length > 0);
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*
* TIP: Consider using this library along with {SlotDerivation}.
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct Int256Slot {
int256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Int256Slot` with member `value` located at `slot`.
*/
function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
/**
* @dev Returns a `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (governance/utils/IVotes.sol)
pragma solidity >=0.8.4;
/**
* @dev Common interface for {ERC20Votes}, {ERC721Votes}, and other {Votes}-enabled contracts.
*/
interface IVotes {
/**
* @dev The signature used has expired.
*/
error VotesExpiredSignature(uint256 expiry);
/**
* @dev Emitted when an account changes their delegate.
*/
event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate);
/**
* @dev Emitted when a token transfer or delegate change results in changes to a delegate's number of voting units.
*/
event DelegateVotesChanged(address indexed delegate, uint256 previousVotes, uint256 newVotes);
/**
* @dev Returns the current amount of votes that `account` has.
*/
function getVotes(address account) external view returns (uint256);
/**
* @dev Returns the amount of votes that `account` had at a specific moment in the past. If the `clock()` is
* configured to use block numbers, this will return the value at the end of the corresponding block.
*/
function getPastVotes(address account, uint256 timepoint) external view returns (uint256);
/**
* @dev Returns the total supply of votes available at a specific moment in the past. If the `clock()` is
* configured to use block numbers, this will return the value at the end of the corresponding block.
*
* NOTE: This value is the sum of all available votes, which is not necessarily the sum of all delegated votes.
* Votes that have not been delegated are still part of total supply, even though they would not participate in a
* vote.
*/
function getPastTotalSupply(uint256 timepoint) external view returns (uint256);
/**
* @dev Returns the delegate that `account` has chosen.
*/
function delegates(address account) external view returns (address);
/**
* @dev Delegates votes from the sender to `delegatee`.
*/
function delegate(address delegatee) external;
/**
* @dev Delegates votes from signer to `delegatee`.
*/
function delegateBySig(address delegatee, uint256 nonce, uint256 expiry, uint8 v, bytes32 r, bytes32 s) external;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC6372.sol)
pragma solidity >=0.4.16;
interface IERC6372 {
/**
* @dev Clock used for flagging checkpoints. Can be overridden to implement timestamp based checkpoints (and
* voting).
*/
function clock() external view returns (uint48);
/**
* @dev Description of the clock
*/
// solhint-disable-next-line func-name-mixedcase
function CLOCK_MODE() external view returns (string memory);
}{
"remappings": [
"@chainlink/=node_modules/@chainlink/",
"@eth-optimism/=node_modules/@eth-optimism/",
"@openzeppelin/=node_modules/@openzeppelin/",
"@prb/test/=node_modules/dev-fraxswap/node_modules/@prb/test/",
"@uniswap/=node_modules/@uniswap/",
"dev-fraxswap/=node_modules/dev-fraxswap/",
"ds-test/=node_modules/ds-test/",
"forge-std/=node_modules/forge-std/",
"frax-standard-solidity/=node_modules/frax-standard-solidity/",
"frax-std/=node_modules/dev-fraxswap/node_modules/frax-standard-solidity/src/",
"solidity-bytes-utils/=node_modules/solidity-bytes-utils/",
"@layerzerolabs/=node_modules/@layerzerolabs/"
],
"optimizer": {
"enabled": true,
"runs": 832
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "none",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "cancun",
"viaIR": false
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"contract AgentFactory","name":"_factory","type":"address"},{"internalType":"address","name":"_wrappedNativeToken","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AgentNotFound","type":"error"},{"inputs":[],"name":"InsufficientAmountOut","type":"error"},{"inputs":[],"name":"InvalidTokenInput","type":"error"},{"inputs":[],"name":"NoCurrencyToken","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[],"name":"TokenNotAllowed","type":"error"},{"inputs":[],"name":"WrappedNativeTokenNotSet","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"address","name":"inputToken","type":"address"},{"indexed":true,"internalType":"address","name":"agentToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"amountIn","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountOut","type":"uint256"}],"name":"BuyWithToken","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"bool","name":"allowed","type":"bool"}],"name":"TokenWhitelisted","type":"event"},{"inputs":[],"name":"WRAPPED_NATIVE_TOKEN","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"}],"name":"addAllowedToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"allowedTokens","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"allowedTokensArray","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_agentToken","type":"address"},{"internalType":"uint256","name":"_amountIn","type":"uint256"},{"internalType":"uint256","name":"_minAmountOut","type":"uint256"},{"internalType":"address","name":"_recipient","type":"address"}],"name":"buy","outputs":[{"internalType":"uint256","name":"_amountOut","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_agentToken","type":"address"},{"internalType":"uint256","name":"_amountIn","type":"uint256"},{"internalType":"uint256","name":"_minAmountOut","type":"uint256"}],"name":"buy","outputs":[{"internalType":"uint256","name":"_amountOut","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_inputToken","type":"address"},{"internalType":"address","name":"_agentToken","type":"address"},{"internalType":"uint256","name":"_amountIn","type":"uint256"},{"internalType":"uint256","name":"_minAmountOut","type":"uint256"}],"name":"buyWithToken","outputs":[{"internalType":"uint256","name":"_amountOut","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"_inputToken","type":"address"},{"internalType":"address","name":"_agentToken","type":"address"},{"internalType":"uint256","name":"_amountIn","type":"uint256"},{"internalType":"uint256","name":"_minAmountOut","type":"uint256"},{"internalType":"address","name":"_recipient","type":"address"}],"name":"buyWithToken","outputs":[{"internalType":"uint256","name":"_amountOut","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"currencyToken","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"factory","outputs":[{"internalType":"contract AgentFactory","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"fraxswapFactory","outputs":[{"internalType":"contract IFraxswapFactory","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAllowedTokens","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_tokenIn","type":"address"},{"internalType":"address","name":"_tokenOut","type":"address"},{"internalType":"uint256","name":"_amountIn","type":"uint256"}],"name":"getAmountOut","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_inputToken","type":"address"},{"internalType":"address","name":"_agentToken","type":"address"},{"internalType":"uint256","name":"_amountIn","type":"uint256"}],"name":"getAmountOutForBuy","outputs":[{"internalType":"uint256","name":"_amountOut","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"}],"name":"removeAllowedToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_agentToken","type":"address"},{"internalType":"uint256","name":"_amountIn","type":"uint256"},{"internalType":"uint256","name":"_minAmountOut","type":"uint256"},{"internalType":"address","name":"_recipient","type":"address"}],"name":"sell","outputs":[{"internalType":"uint256","name":"_amountOut","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_agentToken","type":"address"},{"internalType":"uint256","name":"_amountIn","type":"uint256"},{"internalType":"uint256","name":"_minAmountOut","type":"uint256"}],"name":"sell","outputs":[{"internalType":"uint256","name":"_amountOut","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]Contract Creation Code
60a060405234801561000f575f80fd5b5060405161273138038061273183398101604081905261002e91610308565b3382805f806101000a8154816001600160a01b0302191690836001600160a01b03160217905550806001600160a01b0316636b2fa3746040518163ffffffff1660e01b8152600401602060405180830381865afa158015610091573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906100b59190610340565b600180546001600160a01b0319166001600160a01b03928316179055821690506100f857604051631e4fbdf760e01b81525f600482015260240160405180910390fd5b610101816102a0565b50806001600160a01b03166080816001600160a01b031681525050600160045f846001600160a01b0316636b2fa3746040518163ffffffff1660e01b8152600401602060405180830381865afa15801561015d573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906101819190610340565b6001600160a01b03166001600160a01b031681526020019081526020015f205f6101000a81548160ff0219169083151502179055506003826001600160a01b0316636b2fa3746040518163ffffffff1660e01b8152600401602060405180830381865afa1580156101f4573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906102189190610340565b8154600181810184555f938452602080852090920180546001600160a01b039485166001600160a01b03199182161790915594909216808452600490915260408320805460ff1916831790556003805492830181559092527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b01805490921617905550610362565b600280546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b6001600160a01b0381168114610305575f80fd5b50565b5f8060408385031215610319575f80fd5b8251610324816102f1565b6020840151909250610335816102f1565b809150509250929050565b5f60208284031215610350575f80fd5b815161035b816102f1565b9392505050565b60805161239b6103965f395f81816101a001528181611390015281816115e0015281816116270152611697015261239b5ff3fe60806040526004361061015a575f3560e01c806375268ff7116100bb578063c45a015511610071578063e744092e11610057578063e744092e146103a9578063e93f5f0e146103e7578063f2fde38b146103fa575f80fd5b8063c45a015514610378578063cdb4cf2714610396575f80fd5b80638da5cb5b116100a15780638da5cb5b1461031d57806390469a9d1461033a578063a59ac6dd14610359575f80fd5b806375268ff7146102d75780638d4b99d4146102fe575f80fd5b80634178617f116101105780636a272462116100f65780636a272462146102855780636b2fa374146102a4578063715018a6146102c3575f80fd5b80634178617f146102455780634aa0665214610266575f80fd5b8063224a99a711610140578063224a99a7146101da5780632dc8f867146101f95780633f60b63314610226575f80fd5b8063024ece89146101655780631b3f8c5e1461018f575f80fd5b3661016157005b5f80fd5b348015610170575f80fd5b50610179610419565b6040516101869190612156565b60405180910390f35b34801561019a575f80fd5b506101c27f000000000000000000000000000000000000000000000000000000000000000081565b6040516001600160a01b039091168152602001610186565b3480156101e5575f80fd5b506101c26101f43660046121a2565b610479565b348015610204575f80fd5b506102186102133660046121cd565b6104a1565b604051908152602001610186565b348015610231575f80fd5b506102186102403660046121cd565b6109fe565b348015610250575f80fd5b5061026461025f366004612214565b610ddc565b005b348015610271575f80fd5b5061021861028036600461222f565b610eab565b348015610290575f80fd5b5061021861029f36600461226d565b6112bd565b3480156102af575f80fd5b506001546101c2906001600160a01b031681565b3480156102ce575f80fd5b506102646112d2565b3480156102e2575f80fd5b506101c273e30521fe7f3beb6ad556887b50739d6c7ca667e681565b348015610309575f80fd5b5061021861031836600461222f565b6112e5565b348015610328575f80fd5b506002546001600160a01b03166101c2565b348015610345575f80fd5b50610264610354366004612214565b6114a9565b348015610364575f80fd5b5061021861037336600461226d565b61151f565b348015610383575f80fd5b505f546101c2906001600160a01b031681565b6102186103a436600461229f565b61152c565b3480156103b4575f80fd5b506103d76103c3366004612214565b60046020525f908152604090205460ff1681565b6040519015158152602001610186565b6102186103f53660046122e2565b611543565b348015610405575f80fd5b50610264610414366004612214565b6117f3565b6060600380548060200260200160405190810160405280929190818152602001828054801561046f57602002820191905f5260205f20905b81546001600160a01b03168152600190910190602001808311610451575b5050505050905090565b60038181548110610488575f80fd5b5f918252602090912001546001600160a01b0316905081565b5f8054604051638959341f60e01b81526001600160a01b03878116600483015283921690638959341f90602401602060405180830381865afa1580156104e9573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061050d919061233d565b90506001600160a01b0381166105365760405163e93ba22360e01b815260040160405180910390fd5b5f8054604051633fc6867560e01b81526001600160a01b03848116600483015290911690633fc6867590602401602060405180830381865afa15801561057e573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105a2919061233d565b90505f816001600160a01b0316637269bdc66040518163ffffffff1660e01b8152600401602060405180830381865afa1580156105e1573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610605919061233d565b9050806001600160a01b0316631f3a0e416040518163ffffffff1660e01b8152600401602060405180830381865afa158015610643573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906106679190612358565b61070c576106806001600160a01b03891633308a611832565b6106946001600160a01b03891682896118b4565b6040516320c4d34760e11b8152600481018890526001600160a01b038681166024830152821690634189a68e906044015b6020604051808303815f875af11580156106e1573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107059190612377565b93506109d2565b60015460405163e6a4390560e01b81526001600160a01b03918216600482015290891660248201525f9073e30521fe7f3beb6ad556887b50739d6c7ca667e69063e6a4390590604401602060405180830381865afa158015610770573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610794919061233d565b9050806001600160a01b031663fff6cae96040518163ffffffff1660e01b81526004015f604051808303815f87803b1580156107ce575f80fd5b505af11580156107e0573d5f803e3d5ffd5b50506040516378a051ad60e11b8152600481018b90526001600160a01b038c811660248301528416925063f140a35a9150604401602060405180830381865afa15801561082f573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906108539190612377565b945061086a6001600160a01b038a1633838b611832565b886001600160a01b0316816001600160a01b0316630dfe16816040518163ffffffff1660e01b8152600401602060405180830381865afa1580156108b0573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906108d4919061233d565b6001600160a01b03160361095b5760405163022c0d9f60e01b81525f60048201819052602482018790526001600160a01b03888116604484015260806064840152608483019190915282169063022c0d9f9060a4015f604051808303815f87803b158015610940575f80fd5b505af1158015610952573d5f803e3d5ffd5b505050506109d0565b60405163022c0d9f60e01b8152600481018690525f602482018190526001600160a01b03888116604484015260806064840152608483019190915282169063022c0d9f9060a4015f604051808303815f87803b1580156109b9575f80fd5b505af11580156109cb573d5f803e3d5ffd5b505050505b505b858410156109f357604051637294b85560e11b815260040160405180910390fd5b505050949350505050565b5f8054604051638959341f60e01b81526001600160a01b03878116600483015283921690638959341f90602401602060405180830381865afa158015610a46573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610a6a919061233d565b90506001600160a01b038116610a935760405163e93ba22360e01b815260040160405180910390fd5b5f8054604051633fc6867560e01b81526001600160a01b03848116600483015290911690633fc6867590602401602060405180830381865afa158015610adb573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610aff919061233d565b90505f816001600160a01b0316637269bdc66040518163ffffffff1660e01b8152600401602060405180830381865afa158015610b3e573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610b62919061233d565b9050806001600160a01b0316631f3a0e416040518163ffffffff1660e01b8152600401602060405180830381865afa158015610ba0573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610bc49190612358565b610c2c57600154610be0906001600160a01b031633308a611832565b600154610bf7906001600160a01b031682896118b4565b604051637deb602560e01b8152600481018890526001600160a01b038681166024830152821690637deb6025906044016106c5565b60015460405163e6a4390560e01b81526001600160a01b03918216600482015290891660248201525f9073e30521fe7f3beb6ad556887b50739d6c7ca667e69063e6a4390590604401602060405180830381865afa158015610c90573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610cb4919061233d565b9050806001600160a01b031663fff6cae96040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610cee575f80fd5b505af1158015610d00573d5f803e3d5ffd5b50506001546040516378a051ad60e11b8152600481018c90526001600160a01b039182166024820152908416925063f140a35a9150604401602060405180830381865afa158015610d53573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d779190612377565b600154909550610d92906001600160a01b031633838b611832565b60015460408051630dfe168160e01b815290516001600160a01b0392831692841691630dfe16819160048083019260209291908290030181865afa1580156108b0573d5f803e3d5ffd5b610de4611958565b6001600160a01b0381165f9081526004602052604090205460ff16610ea8576001600160a01b0381165f818152600460209081526040808320805460ff1916600190811790915560038054808301825594527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b909301805473ffffffffffffffffffffffffffffffffffffffff191685179055519182527fef81a9943b96c8df4ef243401c9bf5159146166211356898b52d382086168d9291015b60405180910390a25b50565b6001545f906001600160a01b0390811690851603611255575f8054604051638959341f60e01b81526001600160a01b03868116600483015290911690638959341f906024015b602060405180830381865afa158015610f0c573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610f30919061233d565b90506001600160a01b038116610f595760405163e93ba22360e01b815260040160405180910390fd5b5f8054604051633fc6867560e01b81526001600160a01b03848116600483015290911690633fc6867590602401602060405180830381865afa158015610fa1573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610fc5919061233d565b90505f816001600160a01b0316637269bdc66040518163ffffffff1660e01b8152600401602060405180830381865afa158015611004573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611028919061233d565b9050806001600160a01b0316631f3a0e416040518163ffffffff1660e01b8152600401602060405180830381865afa158015611066573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061108a9190612358565b611107576040516378a051ad60e11b8152600481018690526001600160a01b03888116602483015282169063f140a35a90604401602060405180830381865afa1580156110d9573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906110fd9190612377565b93505050506112b6565b60405163e6a4390560e01b81526001600160a01b038089166004830152871660248201525f9073e30521fe7f3beb6ad556887b50739d6c7ca667e69063e6a4390590604401602060405180830381865afa158015611167573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061118b919061233d565b9050806001600160a01b031663fff6cae96040518163ffffffff1660e01b81526004015f604051808303815f87803b1580156111c5575f80fd5b505af11580156111d7573d5f803e3d5ffd5b50506040516378a051ad60e11b8152600481018990526001600160a01b038b811660248301528416925063f140a35a9150604401602060405180830381865afa158015611226573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061124a9190612377565b9450505050506112b6565b6001546001600160a01b039081169084160361129d575f8054604051638959341f60e01b81526001600160a01b03878116600483015290911690638959341f90602401610ef1565b604051635b220d3760e11b815260040160405180910390fd5b9392505050565b5f6112ca848484336104a1565b949350505050565b6112da611958565b6112e35f611985565b565b5f8054604051638959341f60e01b81526001600160a01b03858116600483015283921690638959341f90602401602060405180830381865afa15801561132d573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611351919061233d565b6001600160a01b0316036113785760405163e93ba22360e01b815260040160405180910390fd5b5f6001600160a01b0385161561138e57846113b0565b7f00000000000000000000000000000000000000000000000000000000000000005b6001600160a01b0381165f9081526004602052604090205490915060ff166113eb5760405163514e24c360e11b815260040160405180910390fd5b6001545f906001600160a01b039081169083160361140a575082611425565b6001546114229083906001600160a01b0316866119e3565b90505b600154604051632550332960e11b81526001600160a01b0391821660048201529086166024820152604481018290523090634aa06652906064016020604051808303815f875af115801561147b573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061149f9190612377565b9695505050505050565b6114b1611958565b6001600160a01b0381165f9081526004602052604090205460ff1615610ea8576001600160a01b0381165f818152600460209081526040808320805460ff19169055519182527fef81a9943b96c8df4ef243401c9bf5159146166211356898b52d382086168d929101610e9f565b5f6112ca848484336109fe565b5f61153a8585858533611543565b95945050505050565b5f8054604051638959341f60e01b81526001600160a01b03878116600483015283921690638959341f90602401602060405180830381865afa15801561158b573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906115af919061233d565b6001600160a01b0316036115d65760405163e93ba22360e01b815260040160405180910390fd5b5f8034156116c0577f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03166116255760405163dee18d7d60e01b815260040160405180910390fd5b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663d0e30db0346040518263ffffffff1660e01b81526004015f604051808303818588803b15801561167e575f80fd5b505af1158015611690573d5f803e3d5ffd5b50505050507f00000000000000000000000000000000000000000000000000000000000000009150349050611733565b855f036116e0576040516378f55f0560e11b815260040160405180910390fd5b6001600160a01b0388165f9081526004602052604090205460ff166117185760405163514e24c360e11b815260040160405180910390fd5b61172d6001600160a01b038916333089611832565b50869050845b6001545f906001600160a01b039081169084160361175257508061176e565b60015461176b9084906001600160a01b03168430611b28565b90505b611779888287611df2565b93508584101561179c57604051637294b85560e11b815260040160405180910390fd5b60408051838152602081018690526001600160a01b03808b16929086169133917f2295f8caf6869861ff6aa02ec3c0d0ea7de3aacdffda17ab87a8033263936d6c910160405180910390a450505095945050505050565b6117fb611958565b6001600160a01b03811661182957604051631e4fbdf760e01b81525f60048201526024015b60405180910390fd5b610ea881611985565b6040516001600160a01b0384811660248301528381166044830152606482018390526118ae9186918216906323b872dd906084015b604051602081830303815290604052915060e01b6020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff838183161783525050505061206f565b50505050565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1663095ea7b360e01b17905261191a84826120db565b6118ae576040516001600160a01b0384811660248301525f604483015261194e91869182169063095ea7b390606401611867565b6118ae848261206f565b6002546001600160a01b031633146112e35760405163118cdaa760e01b8152336004820152602401611820565b600280546001600160a01b0383811673ffffffffffffffffffffffffffffffffffffffff19831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b60405163e6a4390560e01b81526001600160a01b038085166004830152831660248201525f90819073e30521fe7f3beb6ad556887b50739d6c7ca667e69063e6a4390590604401602060405180830381865afa158015611a45573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611a69919061233d565b9050806001600160a01b031663fff6cae96040518163ffffffff1660e01b81526004015f604051808303815f87803b158015611aa3575f80fd5b505af1158015611ab5573d5f803e3d5ffd5b50506040516378a051ad60e11b8152600481018690526001600160a01b0388811660248301528416925063f140a35a9150604401602060405180830381865afa158015611b04573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061153a9190612377565b60405163e6a4390560e01b81526001600160a01b038086166004830152841660248201525f90819073e30521fe7f3beb6ad556887b50739d6c7ca667e69063e6a4390590604401602060405180830381865afa158015611b8a573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611bae919061233d565b9050806001600160a01b031663fff6cae96040518163ffffffff1660e01b81526004015f604051808303815f87803b158015611be8575f80fd5b505af1158015611bfa573d5f803e3d5ffd5b50506040516378a051ad60e11b8152600481018790526001600160a01b0389811660248301528416925063f140a35a9150604401602060405180830381865afa158015611c49573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611c6d9190612377565b9150611c836001600160a01b0387168286612120565b856001600160a01b0316816001600160a01b0316630dfe16816040518163ffffffff1660e01b8152600401602060405180830381865afa158015611cc9573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611ced919061233d565b6001600160a01b031603611d745760405163022c0d9f60e01b81525f60048201819052602482018490526001600160a01b03858116604484015260806064840152608483019190915282169063022c0d9f9060a4015f604051808303815f87803b158015611d59575f80fd5b505af1158015611d6b573d5f803e3d5ffd5b50505050611de9565b60405163022c0d9f60e01b8152600481018390525f602482018190526001600160a01b03858116604484015260806064840152608483019190915282169063022c0d9f9060a4015f604051808303815f87803b158015611dd2575f80fd5b505af1158015611de4573d5f803e3d5ffd5b505050505b50949350505050565b5f8054604051638959341f60e01b81526001600160a01b03868116600483015283921690638959341f90602401602060405180830381865afa158015611e3a573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611e5e919061233d565b90506001600160a01b038116611e875760405163e93ba22360e01b815260040160405180910390fd5b5f8054604051633fc6867560e01b81526001600160a01b03848116600483015290911690633fc6867590602401602060405180830381865afa158015611ecf573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611ef3919061233d565b90505f816001600160a01b0316637269bdc66040518163ffffffff1660e01b8152600401602060405180830381865afa158015611f32573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611f56919061233d565b9050806001600160a01b0316631f3a0e416040518163ffffffff1660e01b8152600401602060405180830381865afa158015611f94573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611fb89190612358565b61204a57600154611fd3906001600160a01b031682886118b4565b604051637deb602560e01b8152600481018790526001600160a01b038681166024830152821690637deb6025906044016020604051808303815f875af115801561201f573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906120439190612377565b9350612065565b600154612062906001600160a01b0316888888611b28565b93505b5050509392505050565b5f8060205f8451602086015f885af18061208e576040513d5f823e3d81fd5b50505f513d915081156120a55780600114156120b2565b6001600160a01b0384163b155b156118ae57604051635274afe760e01b81526001600160a01b0385166004820152602401611820565b5f805f8060205f8651602088015f8a5af192503d91505f51905082801561149f5750811561210c578060011461149f565b50505050506001600160a01b03163b151590565b6040516001600160a01b0383811660248301526044820183905261215191859182169063a9059cbb90606401611867565b505050565b602080825282518282018190525f9190848201906040850190845b818110156121965783516001600160a01b031683529284019291840191600101612171565b50909695505050505050565b5f602082840312156121b2575f80fd5b5035919050565b6001600160a01b0381168114610ea8575f80fd5b5f805f80608085870312156121e0575f80fd5b84356121eb816121b9565b935060208501359250604085013591506060850135612209816121b9565b939692955090935050565b5f60208284031215612224575f80fd5b81356112b6816121b9565b5f805f60608486031215612241575f80fd5b833561224c816121b9565b9250602084013561225c816121b9565b929592945050506040919091013590565b5f805f6060848603121561227f575f80fd5b833561228a816121b9565b95602085013595506040909401359392505050565b5f805f80608085870312156122b2575f80fd5b84356122bd816121b9565b935060208501356122cd816121b9565b93969395505050506040820135916060013590565b5f805f805f60a086880312156122f6575f80fd5b8535612301816121b9565b94506020860135612311816121b9565b93506040860135925060608601359150608086013561232f816121b9565b809150509295509295909350565b5f6020828403121561234d575f80fd5b81516112b6816121b9565b5f60208284031215612368575f80fd5b815180151581146112b6575f80fd5b5f60208284031215612387575f80fd5b505191905056fea164736f6c6343000819000a000000000000000000000000e10fa4b9d13f43b90a4ef4a5581e9d8d9c6a788f000000000000000000000000fc00000000000000000000000000000000000002
Deployed Bytecode
0x60806040526004361061015a575f3560e01c806375268ff7116100bb578063c45a015511610071578063e744092e11610057578063e744092e146103a9578063e93f5f0e146103e7578063f2fde38b146103fa575f80fd5b8063c45a015514610378578063cdb4cf2714610396575f80fd5b80638da5cb5b116100a15780638da5cb5b1461031d57806390469a9d1461033a578063a59ac6dd14610359575f80fd5b806375268ff7146102d75780638d4b99d4146102fe575f80fd5b80634178617f116101105780636a272462116100f65780636a272462146102855780636b2fa374146102a4578063715018a6146102c3575f80fd5b80634178617f146102455780634aa0665214610266575f80fd5b8063224a99a711610140578063224a99a7146101da5780632dc8f867146101f95780633f60b63314610226575f80fd5b8063024ece89146101655780631b3f8c5e1461018f575f80fd5b3661016157005b5f80fd5b348015610170575f80fd5b50610179610419565b6040516101869190612156565b60405180910390f35b34801561019a575f80fd5b506101c27f000000000000000000000000fc0000000000000000000000000000000000000281565b6040516001600160a01b039091168152602001610186565b3480156101e5575f80fd5b506101c26101f43660046121a2565b610479565b348015610204575f80fd5b506102186102133660046121cd565b6104a1565b604051908152602001610186565b348015610231575f80fd5b506102186102403660046121cd565b6109fe565b348015610250575f80fd5b5061026461025f366004612214565b610ddc565b005b348015610271575f80fd5b5061021861028036600461222f565b610eab565b348015610290575f80fd5b5061021861029f36600461226d565b6112bd565b3480156102af575f80fd5b506001546101c2906001600160a01b031681565b3480156102ce575f80fd5b506102646112d2565b3480156102e2575f80fd5b506101c273e30521fe7f3beb6ad556887b50739d6c7ca667e681565b348015610309575f80fd5b5061021861031836600461222f565b6112e5565b348015610328575f80fd5b506002546001600160a01b03166101c2565b348015610345575f80fd5b50610264610354366004612214565b6114a9565b348015610364575f80fd5b5061021861037336600461226d565b61151f565b348015610383575f80fd5b505f546101c2906001600160a01b031681565b6102186103a436600461229f565b61152c565b3480156103b4575f80fd5b506103d76103c3366004612214565b60046020525f908152604090205460ff1681565b6040519015158152602001610186565b6102186103f53660046122e2565b611543565b348015610405575f80fd5b50610264610414366004612214565b6117f3565b6060600380548060200260200160405190810160405280929190818152602001828054801561046f57602002820191905f5260205f20905b81546001600160a01b03168152600190910190602001808311610451575b5050505050905090565b60038181548110610488575f80fd5b5f918252602090912001546001600160a01b0316905081565b5f8054604051638959341f60e01b81526001600160a01b03878116600483015283921690638959341f90602401602060405180830381865afa1580156104e9573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061050d919061233d565b90506001600160a01b0381166105365760405163e93ba22360e01b815260040160405180910390fd5b5f8054604051633fc6867560e01b81526001600160a01b03848116600483015290911690633fc6867590602401602060405180830381865afa15801561057e573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105a2919061233d565b90505f816001600160a01b0316637269bdc66040518163ffffffff1660e01b8152600401602060405180830381865afa1580156105e1573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610605919061233d565b9050806001600160a01b0316631f3a0e416040518163ffffffff1660e01b8152600401602060405180830381865afa158015610643573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906106679190612358565b61070c576106806001600160a01b03891633308a611832565b6106946001600160a01b03891682896118b4565b6040516320c4d34760e11b8152600481018890526001600160a01b038681166024830152821690634189a68e906044015b6020604051808303815f875af11580156106e1573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107059190612377565b93506109d2565b60015460405163e6a4390560e01b81526001600160a01b03918216600482015290891660248201525f9073e30521fe7f3beb6ad556887b50739d6c7ca667e69063e6a4390590604401602060405180830381865afa158015610770573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610794919061233d565b9050806001600160a01b031663fff6cae96040518163ffffffff1660e01b81526004015f604051808303815f87803b1580156107ce575f80fd5b505af11580156107e0573d5f803e3d5ffd5b50506040516378a051ad60e11b8152600481018b90526001600160a01b038c811660248301528416925063f140a35a9150604401602060405180830381865afa15801561082f573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906108539190612377565b945061086a6001600160a01b038a1633838b611832565b886001600160a01b0316816001600160a01b0316630dfe16816040518163ffffffff1660e01b8152600401602060405180830381865afa1580156108b0573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906108d4919061233d565b6001600160a01b03160361095b5760405163022c0d9f60e01b81525f60048201819052602482018790526001600160a01b03888116604484015260806064840152608483019190915282169063022c0d9f9060a4015f604051808303815f87803b158015610940575f80fd5b505af1158015610952573d5f803e3d5ffd5b505050506109d0565b60405163022c0d9f60e01b8152600481018690525f602482018190526001600160a01b03888116604484015260806064840152608483019190915282169063022c0d9f9060a4015f604051808303815f87803b1580156109b9575f80fd5b505af11580156109cb573d5f803e3d5ffd5b505050505b505b858410156109f357604051637294b85560e11b815260040160405180910390fd5b505050949350505050565b5f8054604051638959341f60e01b81526001600160a01b03878116600483015283921690638959341f90602401602060405180830381865afa158015610a46573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610a6a919061233d565b90506001600160a01b038116610a935760405163e93ba22360e01b815260040160405180910390fd5b5f8054604051633fc6867560e01b81526001600160a01b03848116600483015290911690633fc6867590602401602060405180830381865afa158015610adb573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610aff919061233d565b90505f816001600160a01b0316637269bdc66040518163ffffffff1660e01b8152600401602060405180830381865afa158015610b3e573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610b62919061233d565b9050806001600160a01b0316631f3a0e416040518163ffffffff1660e01b8152600401602060405180830381865afa158015610ba0573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610bc49190612358565b610c2c57600154610be0906001600160a01b031633308a611832565b600154610bf7906001600160a01b031682896118b4565b604051637deb602560e01b8152600481018890526001600160a01b038681166024830152821690637deb6025906044016106c5565b60015460405163e6a4390560e01b81526001600160a01b03918216600482015290891660248201525f9073e30521fe7f3beb6ad556887b50739d6c7ca667e69063e6a4390590604401602060405180830381865afa158015610c90573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610cb4919061233d565b9050806001600160a01b031663fff6cae96040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610cee575f80fd5b505af1158015610d00573d5f803e3d5ffd5b50506001546040516378a051ad60e11b8152600481018c90526001600160a01b039182166024820152908416925063f140a35a9150604401602060405180830381865afa158015610d53573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d779190612377565b600154909550610d92906001600160a01b031633838b611832565b60015460408051630dfe168160e01b815290516001600160a01b0392831692841691630dfe16819160048083019260209291908290030181865afa1580156108b0573d5f803e3d5ffd5b610de4611958565b6001600160a01b0381165f9081526004602052604090205460ff16610ea8576001600160a01b0381165f818152600460209081526040808320805460ff1916600190811790915560038054808301825594527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b909301805473ffffffffffffffffffffffffffffffffffffffff191685179055519182527fef81a9943b96c8df4ef243401c9bf5159146166211356898b52d382086168d9291015b60405180910390a25b50565b6001545f906001600160a01b0390811690851603611255575f8054604051638959341f60e01b81526001600160a01b03868116600483015290911690638959341f906024015b602060405180830381865afa158015610f0c573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610f30919061233d565b90506001600160a01b038116610f595760405163e93ba22360e01b815260040160405180910390fd5b5f8054604051633fc6867560e01b81526001600160a01b03848116600483015290911690633fc6867590602401602060405180830381865afa158015610fa1573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610fc5919061233d565b90505f816001600160a01b0316637269bdc66040518163ffffffff1660e01b8152600401602060405180830381865afa158015611004573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611028919061233d565b9050806001600160a01b0316631f3a0e416040518163ffffffff1660e01b8152600401602060405180830381865afa158015611066573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061108a9190612358565b611107576040516378a051ad60e11b8152600481018690526001600160a01b03888116602483015282169063f140a35a90604401602060405180830381865afa1580156110d9573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906110fd9190612377565b93505050506112b6565b60405163e6a4390560e01b81526001600160a01b038089166004830152871660248201525f9073e30521fe7f3beb6ad556887b50739d6c7ca667e69063e6a4390590604401602060405180830381865afa158015611167573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061118b919061233d565b9050806001600160a01b031663fff6cae96040518163ffffffff1660e01b81526004015f604051808303815f87803b1580156111c5575f80fd5b505af11580156111d7573d5f803e3d5ffd5b50506040516378a051ad60e11b8152600481018990526001600160a01b038b811660248301528416925063f140a35a9150604401602060405180830381865afa158015611226573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061124a9190612377565b9450505050506112b6565b6001546001600160a01b039081169084160361129d575f8054604051638959341f60e01b81526001600160a01b03878116600483015290911690638959341f90602401610ef1565b604051635b220d3760e11b815260040160405180910390fd5b9392505050565b5f6112ca848484336104a1565b949350505050565b6112da611958565b6112e35f611985565b565b5f8054604051638959341f60e01b81526001600160a01b03858116600483015283921690638959341f90602401602060405180830381865afa15801561132d573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611351919061233d565b6001600160a01b0316036113785760405163e93ba22360e01b815260040160405180910390fd5b5f6001600160a01b0385161561138e57846113b0565b7f000000000000000000000000fc000000000000000000000000000000000000025b6001600160a01b0381165f9081526004602052604090205490915060ff166113eb5760405163514e24c360e11b815260040160405180910390fd5b6001545f906001600160a01b039081169083160361140a575082611425565b6001546114229083906001600160a01b0316866119e3565b90505b600154604051632550332960e11b81526001600160a01b0391821660048201529086166024820152604481018290523090634aa06652906064016020604051808303815f875af115801561147b573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061149f9190612377565b9695505050505050565b6114b1611958565b6001600160a01b0381165f9081526004602052604090205460ff1615610ea8576001600160a01b0381165f818152600460209081526040808320805460ff19169055519182527fef81a9943b96c8df4ef243401c9bf5159146166211356898b52d382086168d929101610e9f565b5f6112ca848484336109fe565b5f61153a8585858533611543565b95945050505050565b5f8054604051638959341f60e01b81526001600160a01b03878116600483015283921690638959341f90602401602060405180830381865afa15801561158b573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906115af919061233d565b6001600160a01b0316036115d65760405163e93ba22360e01b815260040160405180910390fd5b5f8034156116c0577f000000000000000000000000fc000000000000000000000000000000000000026001600160a01b03166116255760405163dee18d7d60e01b815260040160405180910390fd5b7f000000000000000000000000fc000000000000000000000000000000000000026001600160a01b031663d0e30db0346040518263ffffffff1660e01b81526004015f604051808303818588803b15801561167e575f80fd5b505af1158015611690573d5f803e3d5ffd5b50505050507f000000000000000000000000fc000000000000000000000000000000000000029150349050611733565b855f036116e0576040516378f55f0560e11b815260040160405180910390fd5b6001600160a01b0388165f9081526004602052604090205460ff166117185760405163514e24c360e11b815260040160405180910390fd5b61172d6001600160a01b038916333089611832565b50869050845b6001545f906001600160a01b039081169084160361175257508061176e565b60015461176b9084906001600160a01b03168430611b28565b90505b611779888287611df2565b93508584101561179c57604051637294b85560e11b815260040160405180910390fd5b60408051838152602081018690526001600160a01b03808b16929086169133917f2295f8caf6869861ff6aa02ec3c0d0ea7de3aacdffda17ab87a8033263936d6c910160405180910390a450505095945050505050565b6117fb611958565b6001600160a01b03811661182957604051631e4fbdf760e01b81525f60048201526024015b60405180910390fd5b610ea881611985565b6040516001600160a01b0384811660248301528381166044830152606482018390526118ae9186918216906323b872dd906084015b604051602081830303815290604052915060e01b6020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff838183161783525050505061206f565b50505050565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1663095ea7b360e01b17905261191a84826120db565b6118ae576040516001600160a01b0384811660248301525f604483015261194e91869182169063095ea7b390606401611867565b6118ae848261206f565b6002546001600160a01b031633146112e35760405163118cdaa760e01b8152336004820152602401611820565b600280546001600160a01b0383811673ffffffffffffffffffffffffffffffffffffffff19831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b60405163e6a4390560e01b81526001600160a01b038085166004830152831660248201525f90819073e30521fe7f3beb6ad556887b50739d6c7ca667e69063e6a4390590604401602060405180830381865afa158015611a45573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611a69919061233d565b9050806001600160a01b031663fff6cae96040518163ffffffff1660e01b81526004015f604051808303815f87803b158015611aa3575f80fd5b505af1158015611ab5573d5f803e3d5ffd5b50506040516378a051ad60e11b8152600481018690526001600160a01b0388811660248301528416925063f140a35a9150604401602060405180830381865afa158015611b04573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061153a9190612377565b60405163e6a4390560e01b81526001600160a01b038086166004830152841660248201525f90819073e30521fe7f3beb6ad556887b50739d6c7ca667e69063e6a4390590604401602060405180830381865afa158015611b8a573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611bae919061233d565b9050806001600160a01b031663fff6cae96040518163ffffffff1660e01b81526004015f604051808303815f87803b158015611be8575f80fd5b505af1158015611bfa573d5f803e3d5ffd5b50506040516378a051ad60e11b8152600481018790526001600160a01b0389811660248301528416925063f140a35a9150604401602060405180830381865afa158015611c49573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611c6d9190612377565b9150611c836001600160a01b0387168286612120565b856001600160a01b0316816001600160a01b0316630dfe16816040518163ffffffff1660e01b8152600401602060405180830381865afa158015611cc9573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611ced919061233d565b6001600160a01b031603611d745760405163022c0d9f60e01b81525f60048201819052602482018490526001600160a01b03858116604484015260806064840152608483019190915282169063022c0d9f9060a4015f604051808303815f87803b158015611d59575f80fd5b505af1158015611d6b573d5f803e3d5ffd5b50505050611de9565b60405163022c0d9f60e01b8152600481018390525f602482018190526001600160a01b03858116604484015260806064840152608483019190915282169063022c0d9f9060a4015f604051808303815f87803b158015611dd2575f80fd5b505af1158015611de4573d5f803e3d5ffd5b505050505b50949350505050565b5f8054604051638959341f60e01b81526001600160a01b03868116600483015283921690638959341f90602401602060405180830381865afa158015611e3a573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611e5e919061233d565b90506001600160a01b038116611e875760405163e93ba22360e01b815260040160405180910390fd5b5f8054604051633fc6867560e01b81526001600160a01b03848116600483015290911690633fc6867590602401602060405180830381865afa158015611ecf573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611ef3919061233d565b90505f816001600160a01b0316637269bdc66040518163ffffffff1660e01b8152600401602060405180830381865afa158015611f32573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611f56919061233d565b9050806001600160a01b0316631f3a0e416040518163ffffffff1660e01b8152600401602060405180830381865afa158015611f94573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611fb89190612358565b61204a57600154611fd3906001600160a01b031682886118b4565b604051637deb602560e01b8152600481018790526001600160a01b038681166024830152821690637deb6025906044016020604051808303815f875af115801561201f573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906120439190612377565b9350612065565b600154612062906001600160a01b0316888888611b28565b93505b5050509392505050565b5f8060205f8451602086015f885af18061208e576040513d5f823e3d81fd5b50505f513d915081156120a55780600114156120b2565b6001600160a01b0384163b155b156118ae57604051635274afe760e01b81526001600160a01b0385166004820152602401611820565b5f805f8060205f8651602088015f8a5af192503d91505f51905082801561149f5750811561210c578060011461149f565b50505050506001600160a01b03163b151590565b6040516001600160a01b0383811660248301526044820183905261215191859182169063a9059cbb90606401611867565b505050565b602080825282518282018190525f9190848201906040850190845b818110156121965783516001600160a01b031683529284019291840191600101612171565b50909695505050505050565b5f602082840312156121b2575f80fd5b5035919050565b6001600160a01b0381168114610ea8575f80fd5b5f805f80608085870312156121e0575f80fd5b84356121eb816121b9565b935060208501359250604085013591506060850135612209816121b9565b939692955090935050565b5f60208284031215612224575f80fd5b81356112b6816121b9565b5f805f60608486031215612241575f80fd5b833561224c816121b9565b9250602084013561225c816121b9565b929592945050506040919091013590565b5f805f6060848603121561227f575f80fd5b833561228a816121b9565b95602085013595506040909401359392505050565b5f805f80608085870312156122b2575f80fd5b84356122bd816121b9565b935060208501356122cd816121b9565b93969395505050506040820135916060013590565b5f805f805f60a086880312156122f6575f80fd5b8535612301816121b9565b94506020860135612311816121b9565b93506040860135925060608601359150608086013561232f816121b9565b809150509295509295909350565b5f6020828403121561234d575f80fd5b81516112b6816121b9565b5f60208284031215612368575f80fd5b815180151581146112b6575f80fd5b5f60208284031215612387575f80fd5b505191905056fea164736f6c6343000819000a
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000e10fa4b9d13f43b90a4ef4a5581e9d8d9c6a788f000000000000000000000000fc00000000000000000000000000000000000002
-----Decoded View---------------
Arg [0] : _factory (address): 0xe10fa4b9d13F43B90a4ef4A5581e9D8d9c6a788f
Arg [1] : _wrappedNativeToken (address): 0xFc00000000000000000000000000000000000002
-----Encoded View---------------
2 Constructor Arguments found :
Arg [0] : 000000000000000000000000e10fa4b9d13f43b90a4ef4a5581e9d8d9c6a788f
Arg [1] : 000000000000000000000000fc00000000000000000000000000000000000002
Loading...
Loading
Loading...
Loading
Loading...
Loading
Net Worth in USD
$0.00
Net Worth in FRAX
0
Multichain Portfolio | 35 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.