Source Code
| Transaction Hash |
|
Block
|
From
|
To
|
|||||
|---|---|---|---|---|---|---|---|---|---|
Cross-Chain Transactions
Loading...
Loading
Contract Name:
TokenGovernor
Compiler Version
v0.8.25+commit.b61c2a91
Optimization Enabled:
Yes with 1000 runs
Other Settings:
shanghai EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: UNLICENSED
pragma solidity >=0.8.25;
import { Governor } from "@openzeppelin/contracts/governance/Governor.sol";
import { GovernorCountingSimple } from "@openzeppelin/contracts/governance/extensions/GovernorCountingSimple.sol";
import { GovernorVotes } from "@openzeppelin/contracts/governance/extensions/GovernorVotes.sol";
import { GovernorVotesQuorumFraction } from
"@openzeppelin/contracts/governance/extensions/GovernorVotesQuorumFraction.sol";
import { IVotes } from "@openzeppelin/contracts/governance/utils/IVotes.sol";
// TODO: allow change period, delay & threshold
contract TokenGovernor is Governor, GovernorCountingSimple, GovernorVotes, GovernorVotesQuorumFraction {
constructor(
string memory _name,
IVotes _token
)
Governor(_name)
GovernorVotes(_token)
GovernorVotesQuorumFraction(4)
{ }
function votingDelay() public pure override returns (uint256) {
return 7200; // 1 day
}
function votingPeriod() public pure override returns (uint256) {
return 50_400; // 1 week
}
function proposalThreshold() public pure override returns (uint256) {
return 0;
}
// The functions below are overrides required by Solidity.
function state(uint256 proposalId) public view override(Governor) returns (ProposalState) {
return super.state(proposalId);
}
function proposalNeedsQueuing(uint256 proposalId) public view virtual override(Governor) returns (bool) {
return super.proposalNeedsQueuing(proposalId);
}
function _executeOperations(
uint256 proposalId,
address[] memory targets,
uint256[] memory values,
bytes[] memory calldatas,
bytes32 descriptionHash
)
internal
override(Governor)
{
super._executeOperations(proposalId, targets, values, calldatas, descriptionHash);
}
function _cancel(
address[] memory targets,
uint256[] memory values,
bytes[] memory calldatas,
bytes32 descriptionHash
)
internal
override(Governor)
returns (uint256)
{
return super._cancel(targets, values, calldatas, descriptionHash);
}
function _executor() internal view override(Governor) returns (address) {
return super._executor();
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (governance/Governor.sol)
pragma solidity ^0.8.20;
import {IERC721Receiver} from "../token/ERC721/IERC721Receiver.sol";
import {IERC1155Receiver} from "../token/ERC1155/IERC1155Receiver.sol";
import {EIP712} from "../utils/cryptography/EIP712.sol";
import {SignatureChecker} from "../utils/cryptography/SignatureChecker.sol";
import {IERC165, ERC165} from "../utils/introspection/ERC165.sol";
import {SafeCast} from "../utils/math/SafeCast.sol";
import {DoubleEndedQueue} from "../utils/structs/DoubleEndedQueue.sol";
import {Address} from "../utils/Address.sol";
import {Context} from "../utils/Context.sol";
import {Nonces} from "../utils/Nonces.sol";
import {IGovernor, IERC6372} from "./IGovernor.sol";
/**
* @dev Core of the governance system, designed to be extended through various modules.
*
* This contract is abstract and requires several functions to be implemented in various modules:
*
* - A counting module must implement {quorum}, {_quorumReached}, {_voteSucceeded} and {_countVote}
* - A voting module must implement {_getVotes}
* - Additionally, {votingPeriod} must also be implemented
*/
abstract contract Governor is Context, ERC165, EIP712, Nonces, IGovernor, IERC721Receiver, IERC1155Receiver {
using DoubleEndedQueue for DoubleEndedQueue.Bytes32Deque;
bytes32 public constant BALLOT_TYPEHASH =
keccak256("Ballot(uint256 proposalId,uint8 support,address voter,uint256 nonce)");
bytes32 public constant EXTENDED_BALLOT_TYPEHASH =
keccak256(
"ExtendedBallot(uint256 proposalId,uint8 support,address voter,uint256 nonce,string reason,bytes params)"
);
struct ProposalCore {
address proposer;
uint48 voteStart;
uint32 voteDuration;
bool executed;
bool canceled;
uint48 etaSeconds;
}
bytes32 private constant ALL_PROPOSAL_STATES_BITMAP = bytes32((2 ** (uint8(type(ProposalState).max) + 1)) - 1);
string private _name;
mapping(uint256 proposalId => ProposalCore) private _proposals;
// This queue keeps track of the governor operating on itself. Calls to functions protected by the {onlyGovernance}
// modifier needs to be whitelisted in this queue. Whitelisting is set in {execute}, consumed by the
// {onlyGovernance} modifier and eventually reset after {_executeOperations} completes. This ensures that the
// execution of {onlyGovernance} protected calls can only be achieved through successful proposals.
DoubleEndedQueue.Bytes32Deque private _governanceCall;
/**
* @dev Restricts a function so it can only be executed through governance proposals. For example, governance
* parameter setters in {GovernorSettings} are protected using this modifier.
*
* The governance executing address may be different from the Governor's own address, for example it could be a
* timelock. This can be customized by modules by overriding {_executor}. The executor is only able to invoke these
* functions during the execution of the governor's {execute} function, and not under any other circumstances. Thus,
* for example, additional timelock proposers are not able to change governance parameters without going through the
* governance protocol (since v4.6).
*/
modifier onlyGovernance() {
_checkGovernance();
_;
}
/**
* @dev Sets the value for {name} and {version}
*/
constructor(string memory name_) EIP712(name_, version()) {
_name = name_;
}
/**
* @dev Function to receive ETH that will be handled by the governor (disabled if executor is a third party contract)
*/
receive() external payable virtual {
if (_executor() != address(this)) {
revert GovernorDisabledDeposit();
}
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override(IERC165, ERC165) returns (bool) {
return
interfaceId == type(IGovernor).interfaceId ||
interfaceId == type(IERC1155Receiver).interfaceId ||
super.supportsInterface(interfaceId);
}
/**
* @dev See {IGovernor-name}.
*/
function name() public view virtual returns (string memory) {
return _name;
}
/**
* @dev See {IGovernor-version}.
*/
function version() public view virtual returns (string memory) {
return "1";
}
/**
* @dev See {IGovernor-hashProposal}.
*
* The proposal id is produced by hashing the ABI encoded `targets` array, the `values` array, the `calldatas` array
* and the descriptionHash (bytes32 which itself is the keccak256 hash of the description string). This proposal id
* can be produced from the proposal data which is part of the {ProposalCreated} event. It can even be computed in
* advance, before the proposal is submitted.
*
* Note that the chainId and the governor address are not part of the proposal id computation. Consequently, the
* same proposal (with same operation and same description) will have the same id if submitted on multiple governors
* across multiple networks. This also means that in order to execute the same operation twice (on the same
* governor) the proposer will have to change the description in order to avoid proposal id conflicts.
*/
function hashProposal(
address[] memory targets,
uint256[] memory values,
bytes[] memory calldatas,
bytes32 descriptionHash
) public pure virtual returns (uint256) {
return uint256(keccak256(abi.encode(targets, values, calldatas, descriptionHash)));
}
/**
* @dev See {IGovernor-state}.
*/
function state(uint256 proposalId) public view virtual returns (ProposalState) {
// We read the struct fields into the stack at once so Solidity emits a single SLOAD
ProposalCore storage proposal = _proposals[proposalId];
bool proposalExecuted = proposal.executed;
bool proposalCanceled = proposal.canceled;
if (proposalExecuted) {
return ProposalState.Executed;
}
if (proposalCanceled) {
return ProposalState.Canceled;
}
uint256 snapshot = proposalSnapshot(proposalId);
if (snapshot == 0) {
revert GovernorNonexistentProposal(proposalId);
}
uint256 currentTimepoint = clock();
if (snapshot >= currentTimepoint) {
return ProposalState.Pending;
}
uint256 deadline = proposalDeadline(proposalId);
if (deadline >= currentTimepoint) {
return ProposalState.Active;
} else if (!_quorumReached(proposalId) || !_voteSucceeded(proposalId)) {
return ProposalState.Defeated;
} else if (proposalEta(proposalId) == 0) {
return ProposalState.Succeeded;
} else {
return ProposalState.Queued;
}
}
/**
* @dev See {IGovernor-proposalThreshold}.
*/
function proposalThreshold() public view virtual returns (uint256) {
return 0;
}
/**
* @dev See {IGovernor-proposalSnapshot}.
*/
function proposalSnapshot(uint256 proposalId) public view virtual returns (uint256) {
return _proposals[proposalId].voteStart;
}
/**
* @dev See {IGovernor-proposalDeadline}.
*/
function proposalDeadline(uint256 proposalId) public view virtual returns (uint256) {
return _proposals[proposalId].voteStart + _proposals[proposalId].voteDuration;
}
/**
* @dev See {IGovernor-proposalProposer}.
*/
function proposalProposer(uint256 proposalId) public view virtual returns (address) {
return _proposals[proposalId].proposer;
}
/**
* @dev See {IGovernor-proposalEta}.
*/
function proposalEta(uint256 proposalId) public view virtual returns (uint256) {
return _proposals[proposalId].etaSeconds;
}
/**
* @dev See {IGovernor-proposalNeedsQueuing}.
*/
function proposalNeedsQueuing(uint256) public view virtual returns (bool) {
return false;
}
/**
* @dev Reverts if the `msg.sender` is not the executor. In case the executor is not this contract
* itself, the function reverts if `msg.data` is not whitelisted as a result of an {execute}
* operation. See {onlyGovernance}.
*/
function _checkGovernance() internal virtual {
if (_executor() != _msgSender()) {
revert GovernorOnlyExecutor(_msgSender());
}
if (_executor() != address(this)) {
bytes32 msgDataHash = keccak256(_msgData());
// loop until popping the expected operation - throw if deque is empty (operation not authorized)
while (_governanceCall.popFront() != msgDataHash) {}
}
}
/**
* @dev Amount of votes already cast passes the threshold limit.
*/
function _quorumReached(uint256 proposalId) internal view virtual returns (bool);
/**
* @dev Is the proposal successful or not.
*/
function _voteSucceeded(uint256 proposalId) internal view virtual returns (bool);
/**
* @dev Get the voting weight of `account` at a specific `timepoint`, for a vote as described by `params`.
*/
function _getVotes(address account, uint256 timepoint, bytes memory params) internal view virtual returns (uint256);
/**
* @dev Register a vote for `proposalId` by `account` with a given `support`, voting `weight` and voting `params`.
*
* Note: Support is generic and can represent various things depending on the voting system used.
*/
function _countVote(
uint256 proposalId,
address account,
uint8 support,
uint256 totalWeight,
bytes memory params
) internal virtual returns (uint256);
/**
* @dev Default additional encoded parameters used by castVote methods that don't include them
*
* Note: Should be overridden by specific implementations to use an appropriate value, the
* meaning of the additional params, in the context of that implementation
*/
function _defaultParams() internal view virtual returns (bytes memory) {
return "";
}
/**
* @dev See {IGovernor-propose}. This function has opt-in frontrunning protection, described in {_isValidDescriptionForProposer}.
*/
function propose(
address[] memory targets,
uint256[] memory values,
bytes[] memory calldatas,
string memory description
) public virtual returns (uint256) {
address proposer = _msgSender();
// check description restriction
if (!_isValidDescriptionForProposer(proposer, description)) {
revert GovernorRestrictedProposer(proposer);
}
// check proposal threshold
uint256 votesThreshold = proposalThreshold();
if (votesThreshold > 0) {
uint256 proposerVotes = getVotes(proposer, clock() - 1);
if (proposerVotes < votesThreshold) {
revert GovernorInsufficientProposerVotes(proposer, proposerVotes, votesThreshold);
}
}
return _propose(targets, values, calldatas, description, proposer);
}
/**
* @dev Internal propose mechanism. Can be overridden to add more logic on proposal creation.
*
* Emits a {IGovernor-ProposalCreated} event.
*/
function _propose(
address[] memory targets,
uint256[] memory values,
bytes[] memory calldatas,
string memory description,
address proposer
) internal virtual returns (uint256 proposalId) {
proposalId = hashProposal(targets, values, calldatas, keccak256(bytes(description)));
if (targets.length != values.length || targets.length != calldatas.length || targets.length == 0) {
revert GovernorInvalidProposalLength(targets.length, calldatas.length, values.length);
}
if (_proposals[proposalId].voteStart != 0) {
revert GovernorUnexpectedProposalState(proposalId, state(proposalId), bytes32(0));
}
uint256 snapshot = clock() + votingDelay();
uint256 duration = votingPeriod();
ProposalCore storage proposal = _proposals[proposalId];
proposal.proposer = proposer;
proposal.voteStart = SafeCast.toUint48(snapshot);
proposal.voteDuration = SafeCast.toUint32(duration);
emit ProposalCreated(
proposalId,
proposer,
targets,
values,
new string[](targets.length),
calldatas,
snapshot,
snapshot + duration,
description
);
// Using a named return variable to avoid stack too deep errors
}
/**
* @dev See {IGovernor-queue}.
*/
function queue(
address[] memory targets,
uint256[] memory values,
bytes[] memory calldatas,
bytes32 descriptionHash
) public virtual returns (uint256) {
uint256 proposalId = hashProposal(targets, values, calldatas, descriptionHash);
_validateStateBitmap(proposalId, _encodeStateBitmap(ProposalState.Succeeded));
uint48 etaSeconds = _queueOperations(proposalId, targets, values, calldatas, descriptionHash);
if (etaSeconds != 0) {
_proposals[proposalId].etaSeconds = etaSeconds;
emit ProposalQueued(proposalId, etaSeconds);
} else {
revert GovernorQueueNotImplemented();
}
return proposalId;
}
/**
* @dev Internal queuing mechanism. Can be overridden (without a super call) to modify the way queuing is
* performed (for example adding a vault/timelock).
*
* This is empty by default, and must be overridden to implement queuing.
*
* This function returns a timestamp that describes the expected ETA for execution. If the returned value is 0
* (which is the default value), the core will consider queueing did not succeed, and the public {queue} function
* will revert.
*
* NOTE: Calling this function directly will NOT check the current state of the proposal, or emit the
* `ProposalQueued` event. Queuing a proposal should be done using {queue}.
*/
function _queueOperations(
uint256 /*proposalId*/,
address[] memory /*targets*/,
uint256[] memory /*values*/,
bytes[] memory /*calldatas*/,
bytes32 /*descriptionHash*/
) internal virtual returns (uint48) {
return 0;
}
/**
* @dev See {IGovernor-execute}.
*/
function execute(
address[] memory targets,
uint256[] memory values,
bytes[] memory calldatas,
bytes32 descriptionHash
) public payable virtual returns (uint256) {
uint256 proposalId = hashProposal(targets, values, calldatas, descriptionHash);
_validateStateBitmap(
proposalId,
_encodeStateBitmap(ProposalState.Succeeded) | _encodeStateBitmap(ProposalState.Queued)
);
// mark as executed before calls to avoid reentrancy
_proposals[proposalId].executed = true;
// before execute: register governance call in queue.
if (_executor() != address(this)) {
for (uint256 i = 0; i < targets.length; ++i) {
if (targets[i] == address(this)) {
_governanceCall.pushBack(keccak256(calldatas[i]));
}
}
}
_executeOperations(proposalId, targets, values, calldatas, descriptionHash);
// after execute: cleanup governance call queue.
if (_executor() != address(this) && !_governanceCall.empty()) {
_governanceCall.clear();
}
emit ProposalExecuted(proposalId);
return proposalId;
}
/**
* @dev Internal execution mechanism. Can be overridden (without a super call) to modify the way execution is
* performed (for example adding a vault/timelock).
*
* NOTE: Calling this function directly will NOT check the current state of the proposal, set the executed flag to
* true or emit the `ProposalExecuted` event. Executing a proposal should be done using {execute} or {_execute}.
*/
function _executeOperations(
uint256 /* proposalId */,
address[] memory targets,
uint256[] memory values,
bytes[] memory calldatas,
bytes32 /*descriptionHash*/
) internal virtual {
for (uint256 i = 0; i < targets.length; ++i) {
(bool success, bytes memory returndata) = targets[i].call{value: values[i]}(calldatas[i]);
Address.verifyCallResult(success, returndata);
}
}
/**
* @dev See {IGovernor-cancel}.
*/
function cancel(
address[] memory targets,
uint256[] memory values,
bytes[] memory calldatas,
bytes32 descriptionHash
) public virtual returns (uint256) {
// The proposalId will be recomputed in the `_cancel` call further down. However we need the value before we
// do the internal call, because we need to check the proposal state BEFORE the internal `_cancel` call
// changes it. The `hashProposal` duplication has a cost that is limited, and that we accept.
uint256 proposalId = hashProposal(targets, values, calldatas, descriptionHash);
// public cancel restrictions (on top of existing _cancel restrictions).
_validateStateBitmap(proposalId, _encodeStateBitmap(ProposalState.Pending));
if (_msgSender() != proposalProposer(proposalId)) {
revert GovernorOnlyProposer(_msgSender());
}
return _cancel(targets, values, calldatas, descriptionHash);
}
/**
* @dev Internal cancel mechanism with minimal restrictions. A proposal can be cancelled in any state other than
* Canceled, Expired, or Executed. Once cancelled a proposal can't be re-submitted.
*
* Emits a {IGovernor-ProposalCanceled} event.
*/
function _cancel(
address[] memory targets,
uint256[] memory values,
bytes[] memory calldatas,
bytes32 descriptionHash
) internal virtual returns (uint256) {
uint256 proposalId = hashProposal(targets, values, calldatas, descriptionHash);
_validateStateBitmap(
proposalId,
ALL_PROPOSAL_STATES_BITMAP ^
_encodeStateBitmap(ProposalState.Canceled) ^
_encodeStateBitmap(ProposalState.Expired) ^
_encodeStateBitmap(ProposalState.Executed)
);
_proposals[proposalId].canceled = true;
emit ProposalCanceled(proposalId);
return proposalId;
}
/**
* @dev See {IGovernor-getVotes}.
*/
function getVotes(address account, uint256 timepoint) public view virtual returns (uint256) {
return _getVotes(account, timepoint, _defaultParams());
}
/**
* @dev See {IGovernor-getVotesWithParams}.
*/
function getVotesWithParams(
address account,
uint256 timepoint,
bytes memory params
) public view virtual returns (uint256) {
return _getVotes(account, timepoint, params);
}
/**
* @dev See {IGovernor-castVote}.
*/
function castVote(uint256 proposalId, uint8 support) public virtual returns (uint256) {
address voter = _msgSender();
return _castVote(proposalId, voter, support, "");
}
/**
* @dev See {IGovernor-castVoteWithReason}.
*/
function castVoteWithReason(
uint256 proposalId,
uint8 support,
string calldata reason
) public virtual returns (uint256) {
address voter = _msgSender();
return _castVote(proposalId, voter, support, reason);
}
/**
* @dev See {IGovernor-castVoteWithReasonAndParams}.
*/
function castVoteWithReasonAndParams(
uint256 proposalId,
uint8 support,
string calldata reason,
bytes memory params
) public virtual returns (uint256) {
address voter = _msgSender();
return _castVote(proposalId, voter, support, reason, params);
}
/**
* @dev See {IGovernor-castVoteBySig}.
*/
function castVoteBySig(
uint256 proposalId,
uint8 support,
address voter,
bytes memory signature
) public virtual returns (uint256) {
bool valid = SignatureChecker.isValidSignatureNow(
voter,
_hashTypedDataV4(keccak256(abi.encode(BALLOT_TYPEHASH, proposalId, support, voter, _useNonce(voter)))),
signature
);
if (!valid) {
revert GovernorInvalidSignature(voter);
}
return _castVote(proposalId, voter, support, "");
}
/**
* @dev See {IGovernor-castVoteWithReasonAndParamsBySig}.
*/
function castVoteWithReasonAndParamsBySig(
uint256 proposalId,
uint8 support,
address voter,
string calldata reason,
bytes memory params,
bytes memory signature
) public virtual returns (uint256) {
bool valid = SignatureChecker.isValidSignatureNow(
voter,
_hashTypedDataV4(
keccak256(
abi.encode(
EXTENDED_BALLOT_TYPEHASH,
proposalId,
support,
voter,
_useNonce(voter),
keccak256(bytes(reason)),
keccak256(params)
)
)
),
signature
);
if (!valid) {
revert GovernorInvalidSignature(voter);
}
return _castVote(proposalId, voter, support, reason, params);
}
/**
* @dev Internal vote casting mechanism: Check that the vote is pending, that it has not been cast yet, retrieve
* voting weight using {IGovernor-getVotes} and call the {_countVote} internal function. Uses the _defaultParams().
*
* Emits a {IGovernor-VoteCast} event.
*/
function _castVote(
uint256 proposalId,
address account,
uint8 support,
string memory reason
) internal virtual returns (uint256) {
return _castVote(proposalId, account, support, reason, _defaultParams());
}
/**
* @dev Internal vote casting mechanism: Check that the vote is pending, that it has not been cast yet, retrieve
* voting weight using {IGovernor-getVotes} and call the {_countVote} internal function.
*
* Emits a {IGovernor-VoteCast} event.
*/
function _castVote(
uint256 proposalId,
address account,
uint8 support,
string memory reason,
bytes memory params
) internal virtual returns (uint256) {
_validateStateBitmap(proposalId, _encodeStateBitmap(ProposalState.Active));
uint256 totalWeight = _getVotes(account, proposalSnapshot(proposalId), params);
uint256 votedWeight = _countVote(proposalId, account, support, totalWeight, params);
if (params.length == 0) {
emit VoteCast(account, proposalId, support, votedWeight, reason);
} else {
emit VoteCastWithParams(account, proposalId, support, votedWeight, reason, params);
}
return votedWeight;
}
/**
* @dev Relays a transaction or function call to an arbitrary target. In cases where the governance executor
* is some contract other than the governor itself, like when using a timelock, this function can be invoked
* in a governance proposal to recover tokens or Ether that was sent to the governor contract by mistake.
* Note that if the executor is simply the governor itself, use of `relay` is redundant.
*/
function relay(address target, uint256 value, bytes calldata data) external payable virtual onlyGovernance {
(bool success, bytes memory returndata) = target.call{value: value}(data);
Address.verifyCallResult(success, returndata);
}
/**
* @dev Address through which the governor executes action. Will be overloaded by module that execute actions
* through another contract such as a timelock.
*/
function _executor() internal view virtual returns (address) {
return address(this);
}
/**
* @dev See {IERC721Receiver-onERC721Received}.
* Receiving tokens is disabled if the governance executor is other than the governor itself (eg. when using with a timelock).
*/
function onERC721Received(address, address, uint256, bytes memory) public virtual returns (bytes4) {
if (_executor() != address(this)) {
revert GovernorDisabledDeposit();
}
return this.onERC721Received.selector;
}
/**
* @dev See {IERC1155Receiver-onERC1155Received}.
* Receiving tokens is disabled if the governance executor is other than the governor itself (eg. when using with a timelock).
*/
function onERC1155Received(address, address, uint256, uint256, bytes memory) public virtual returns (bytes4) {
if (_executor() != address(this)) {
revert GovernorDisabledDeposit();
}
return this.onERC1155Received.selector;
}
/**
* @dev See {IERC1155Receiver-onERC1155BatchReceived}.
* Receiving tokens is disabled if the governance executor is other than the governor itself (eg. when using with a timelock).
*/
function onERC1155BatchReceived(
address,
address,
uint256[] memory,
uint256[] memory,
bytes memory
) public virtual returns (bytes4) {
if (_executor() != address(this)) {
revert GovernorDisabledDeposit();
}
return this.onERC1155BatchReceived.selector;
}
/**
* @dev Encodes a `ProposalState` into a `bytes32` representation where each bit enabled corresponds to
* the underlying position in the `ProposalState` enum. For example:
*
* 0x000...10000
* ^^^^^^------ ...
* ^----- Succeeded
* ^---- Defeated
* ^--- Canceled
* ^-- Active
* ^- Pending
*/
function _encodeStateBitmap(ProposalState proposalState) internal pure returns (bytes32) {
return bytes32(1 << uint8(proposalState));
}
/**
* @dev Check that the current state of a proposal matches the requirements described by the `allowedStates` bitmap.
* This bitmap should be built using `_encodeStateBitmap`.
*
* If requirements are not met, reverts with a {GovernorUnexpectedProposalState} error.
*/
function _validateStateBitmap(uint256 proposalId, bytes32 allowedStates) private view returns (ProposalState) {
ProposalState currentState = state(proposalId);
if (_encodeStateBitmap(currentState) & allowedStates == bytes32(0)) {
revert GovernorUnexpectedProposalState(proposalId, currentState, allowedStates);
}
return currentState;
}
/*
* @dev Check if the proposer is authorized to submit a proposal with the given description.
*
* If the proposal description ends with `#proposer=0x???`, where `0x???` is an address written as a hex string
* (case insensitive), then the submission of this proposal will only be authorized to said address.
*
* This is used for frontrunning protection. By adding this pattern at the end of their proposal, one can ensure
* that no other address can submit the same proposal. An attacker would have to either remove or change that part,
* which would result in a different proposal id.
*
* If the description does not match this pattern, it is unrestricted and anyone can submit it. This includes:
* - If the `0x???` part is not a valid hex string.
* - If the `0x???` part is a valid hex string, but does not contain exactly 40 hex digits.
* - If it ends with the expected suffix followed by newlines or other whitespace.
* - If it ends with some other similar suffix, e.g. `#other=abc`.
* - If it does not end with any such suffix.
*/
function _isValidDescriptionForProposer(
address proposer,
string memory description
) internal view virtual returns (bool) {
uint256 len = bytes(description).length;
// Length is too short to contain a valid proposer suffix
if (len < 52) {
return true;
}
// Extract what would be the `#proposer=0x` marker beginning the suffix
bytes12 marker;
assembly ("memory-safe") {
// - Start of the string contents in memory = description + 32
// - First character of the marker = len - 52
// - Length of "#proposer=0x0000000000000000000000000000000000000000" = 52
// - We read the memory word starting at the first character of the marker:
// - (description + 32) + (len - 52) = description + (len - 20)
// - Note: Solidity will ignore anything past the first 12 bytes
marker := mload(add(description, sub(len, 20)))
}
// If the marker is not found, there is no proposer suffix to check
if (marker != bytes12("#proposer=0x")) {
return true;
}
// Parse the 40 characters following the marker as uint160
uint160 recovered = 0;
for (uint256 i = len - 40; i < len; ++i) {
(bool isHex, uint8 value) = _tryHexToUint(bytes(description)[i]);
// If any of the characters is not a hex digit, ignore the suffix entirely
if (!isHex) {
return true;
}
recovered = (recovered << 4) | value;
}
return recovered == uint160(proposer);
}
/**
* @dev Try to parse a character from a string as a hex value. Returns `(true, value)` if the char is in
* `[0-9a-fA-F]` and `(false, 0)` otherwise. Value is guaranteed to be in the range `0 <= value < 16`
*/
function _tryHexToUint(bytes1 char) private pure returns (bool isHex, uint8 value) {
uint8 c = uint8(char);
unchecked {
// Case 0-9
if (47 < c && c < 58) {
return (true, c - 48);
}
// Case A-F
else if (64 < c && c < 71) {
return (true, c - 55);
}
// Case a-f
else if (96 < c && c < 103) {
return (true, c - 87);
}
// Else: not a hex char
else {
return (false, 0);
}
}
}
/**
* @inheritdoc IERC6372
*/
function clock() public view virtual returns (uint48);
/**
* @inheritdoc IERC6372
*/
// solhint-disable-next-line func-name-mixedcase
function CLOCK_MODE() public view virtual returns (string memory);
/**
* @inheritdoc IGovernor
*/
function votingDelay() public view virtual returns (uint256);
/**
* @inheritdoc IGovernor
*/
function votingPeriod() public view virtual returns (uint256);
/**
* @inheritdoc IGovernor
*/
function quorum(uint256 timepoint) public view virtual returns (uint256);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (governance/extensions/GovernorCountingSimple.sol)
pragma solidity ^0.8.20;
import {Governor} from "../Governor.sol";
/**
* @dev Extension of {Governor} for simple, 3 options, vote counting.
*/
abstract contract GovernorCountingSimple is Governor {
/**
* @dev Supported vote types. Matches Governor Bravo ordering.
*/
enum VoteType {
Against,
For,
Abstain
}
struct ProposalVote {
uint256 againstVotes;
uint256 forVotes;
uint256 abstainVotes;
mapping(address voter => bool) hasVoted;
}
mapping(uint256 proposalId => ProposalVote) private _proposalVotes;
/**
* @dev See {IGovernor-COUNTING_MODE}.
*/
// solhint-disable-next-line func-name-mixedcase
function COUNTING_MODE() public pure virtual override returns (string memory) {
return "support=bravo&quorum=for,abstain";
}
/**
* @dev See {IGovernor-hasVoted}.
*/
function hasVoted(uint256 proposalId, address account) public view virtual override returns (bool) {
return _proposalVotes[proposalId].hasVoted[account];
}
/**
* @dev Accessor to the internal vote counts.
*/
function proposalVotes(
uint256 proposalId
) public view virtual returns (uint256 againstVotes, uint256 forVotes, uint256 abstainVotes) {
ProposalVote storage proposalVote = _proposalVotes[proposalId];
return (proposalVote.againstVotes, proposalVote.forVotes, proposalVote.abstainVotes);
}
/**
* @dev See {Governor-_quorumReached}.
*/
function _quorumReached(uint256 proposalId) internal view virtual override returns (bool) {
ProposalVote storage proposalVote = _proposalVotes[proposalId];
return quorum(proposalSnapshot(proposalId)) <= proposalVote.forVotes + proposalVote.abstainVotes;
}
/**
* @dev See {Governor-_voteSucceeded}. In this module, the forVotes must be strictly over the againstVotes.
*/
function _voteSucceeded(uint256 proposalId) internal view virtual override returns (bool) {
ProposalVote storage proposalVote = _proposalVotes[proposalId];
return proposalVote.forVotes > proposalVote.againstVotes;
}
/**
* @dev See {Governor-_countVote}. In this module, the support follows the `VoteType` enum (from Governor Bravo).
*/
function _countVote(
uint256 proposalId,
address account,
uint8 support,
uint256 totalWeight,
bytes memory // params
) internal virtual override returns (uint256) {
ProposalVote storage proposalVote = _proposalVotes[proposalId];
if (proposalVote.hasVoted[account]) {
revert GovernorAlreadyCastVote(account);
}
proposalVote.hasVoted[account] = true;
if (support == uint8(VoteType.Against)) {
proposalVote.againstVotes += totalWeight;
} else if (support == uint8(VoteType.For)) {
proposalVote.forVotes += totalWeight;
} else if (support == uint8(VoteType.Abstain)) {
proposalVote.abstainVotes += totalWeight;
} else {
revert GovernorInvalidVoteType();
}
return totalWeight;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (governance/extensions/GovernorVotes.sol)
pragma solidity ^0.8.20;
import {Governor} from "../Governor.sol";
import {IVotes} from "../utils/IVotes.sol";
import {IERC5805} from "../../interfaces/IERC5805.sol";
import {SafeCast} from "../../utils/math/SafeCast.sol";
import {Time} from "../../utils/types/Time.sol";
/**
* @dev Extension of {Governor} for voting weight extraction from an {ERC20Votes} token, or since v4.5 an {ERC721Votes}
* token.
*/
abstract contract GovernorVotes is Governor {
IERC5805 private immutable _token;
constructor(IVotes tokenAddress) {
_token = IERC5805(address(tokenAddress));
}
/**
* @dev The token that voting power is sourced from.
*/
function token() public view virtual returns (IERC5805) {
return _token;
}
/**
* @dev Clock (as specified in ERC-6372) is set to match the token's clock. Fallback to block numbers if the token
* does not implement ERC-6372.
*/
function clock() public view virtual override returns (uint48) {
try token().clock() returns (uint48 timepoint) {
return timepoint;
} catch {
return Time.blockNumber();
}
}
/**
* @dev Machine-readable description of the clock as specified in ERC-6372.
*/
// solhint-disable-next-line func-name-mixedcase
function CLOCK_MODE() public view virtual override returns (string memory) {
try token().CLOCK_MODE() returns (string memory clockmode) {
return clockmode;
} catch {
return "mode=blocknumber&from=default";
}
}
/**
* Read the voting weight from the token's built in snapshot mechanism (see {Governor-_getVotes}).
*/
function _getVotes(
address account,
uint256 timepoint,
bytes memory /*params*/
) internal view virtual override returns (uint256) {
return token().getPastVotes(account, timepoint);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (governance/extensions/GovernorVotesQuorumFraction.sol)
pragma solidity ^0.8.20;
import {GovernorVotes} from "./GovernorVotes.sol";
import {SafeCast} from "../../utils/math/SafeCast.sol";
import {Checkpoints} from "../../utils/structs/Checkpoints.sol";
/**
* @dev Extension of {Governor} for voting weight extraction from an {ERC20Votes} token and a quorum expressed as a
* fraction of the total supply.
*/
abstract contract GovernorVotesQuorumFraction is GovernorVotes {
using Checkpoints for Checkpoints.Trace208;
Checkpoints.Trace208 private _quorumNumeratorHistory;
event QuorumNumeratorUpdated(uint256 oldQuorumNumerator, uint256 newQuorumNumerator);
/**
* @dev The quorum set is not a valid fraction.
*/
error GovernorInvalidQuorumFraction(uint256 quorumNumerator, uint256 quorumDenominator);
/**
* @dev Initialize quorum as a fraction of the token's total supply.
*
* The fraction is specified as `numerator / denominator`. By default the denominator is 100, so quorum is
* specified as a percent: a numerator of 10 corresponds to quorum being 10% of total supply. The denominator can be
* customized by overriding {quorumDenominator}.
*/
constructor(uint256 quorumNumeratorValue) {
_updateQuorumNumerator(quorumNumeratorValue);
}
/**
* @dev Returns the current quorum numerator. See {quorumDenominator}.
*/
function quorumNumerator() public view virtual returns (uint256) {
return _quorumNumeratorHistory.latest();
}
/**
* @dev Returns the quorum numerator at a specific timepoint. See {quorumDenominator}.
*/
function quorumNumerator(uint256 timepoint) public view virtual returns (uint256) {
uint256 length = _quorumNumeratorHistory._checkpoints.length;
// Optimistic search, check the latest checkpoint
Checkpoints.Checkpoint208 storage latest = _quorumNumeratorHistory._checkpoints[length - 1];
uint48 latestKey = latest._key;
uint208 latestValue = latest._value;
if (latestKey <= timepoint) {
return latestValue;
}
// Otherwise, do the binary search
return _quorumNumeratorHistory.upperLookupRecent(SafeCast.toUint48(timepoint));
}
/**
* @dev Returns the quorum denominator. Defaults to 100, but may be overridden.
*/
function quorumDenominator() public view virtual returns (uint256) {
return 100;
}
/**
* @dev Returns the quorum for a timepoint, in terms of number of votes: `supply * numerator / denominator`.
*/
function quorum(uint256 timepoint) public view virtual override returns (uint256) {
return (token().getPastTotalSupply(timepoint) * quorumNumerator(timepoint)) / quorumDenominator();
}
/**
* @dev Changes the quorum numerator.
*
* Emits a {QuorumNumeratorUpdated} event.
*
* Requirements:
*
* - Must be called through a governance proposal.
* - New numerator must be smaller or equal to the denominator.
*/
function updateQuorumNumerator(uint256 newQuorumNumerator) external virtual onlyGovernance {
_updateQuorumNumerator(newQuorumNumerator);
}
/**
* @dev Changes the quorum numerator.
*
* Emits a {QuorumNumeratorUpdated} event.
*
* Requirements:
*
* - New numerator must be smaller or equal to the denominator.
*/
function _updateQuorumNumerator(uint256 newQuorumNumerator) internal virtual {
uint256 denominator = quorumDenominator();
if (newQuorumNumerator > denominator) {
revert GovernorInvalidQuorumFraction(newQuorumNumerator, denominator);
}
uint256 oldQuorumNumerator = quorumNumerator();
_quorumNumeratorHistory.push(clock(), SafeCast.toUint208(newQuorumNumerator));
emit QuorumNumeratorUpdated(oldQuorumNumerator, newQuorumNumerator);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (governance/utils/IVotes.sol)
pragma solidity ^0.8.20;
/**
* @dev Common interface for {ERC20Votes}, {ERC721Votes}, and other {Votes}-enabled contracts.
*/
interface IVotes {
/**
* @dev The signature used has expired.
*/
error VotesExpiredSignature(uint256 expiry);
/**
* @dev Emitted when an account changes their delegate.
*/
event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate);
/**
* @dev Emitted when a token transfer or delegate change results in changes to a delegate's number of voting units.
*/
event DelegateVotesChanged(address indexed delegate, uint256 previousVotes, uint256 newVotes);
/**
* @dev Returns the current amount of votes that `account` has.
*/
function getVotes(address account) external view returns (uint256);
/**
* @dev Returns the amount of votes that `account` had at a specific moment in the past. If the `clock()` is
* configured to use block numbers, this will return the value at the end of the corresponding block.
*/
function getPastVotes(address account, uint256 timepoint) external view returns (uint256);
/**
* @dev Returns the total supply of votes available at a specific moment in the past. If the `clock()` is
* configured to use block numbers, this will return the value at the end of the corresponding block.
*
* NOTE: This value is the sum of all available votes, which is not necessarily the sum of all delegated votes.
* Votes that have not been delegated are still part of total supply, even though they would not participate in a
* vote.
*/
function getPastTotalSupply(uint256 timepoint) external view returns (uint256);
/**
* @dev Returns the delegate that `account` has chosen.
*/
function delegates(address account) external view returns (address);
/**
* @dev Delegates votes from the sender to `delegatee`.
*/
function delegate(address delegatee) external;
/**
* @dev Delegates votes from signer to `delegatee`.
*/
function delegateBySig(address delegatee, uint256 nonce, uint256 expiry, uint8 v, bytes32 r, bytes32 s) external;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/IERC721Receiver.sol)
pragma solidity ^0.8.20;
/**
* @title ERC-721 token receiver interface
* @dev Interface for any contract that wants to support safeTransfers
* from ERC-721 asset contracts.
*/
interface IERC721Receiver {
/**
* @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
* by `operator` from `from`, this function is called.
*
* It must return its Solidity selector to confirm the token transfer.
* If any other value is returned or the interface is not implemented by the recipient, the transfer will be
* reverted.
*
* The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
*/
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/IERC1155Receiver.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Interface that must be implemented by smart contracts in order to receive
* ERC-1155 token transfers.
*/
interface IERC1155Receiver is IERC165 {
/**
* @dev Handles the receipt of a single ERC-1155 token type. This function is
* called at the end of a `safeTransferFrom` after the balance has been updated.
*
* NOTE: To accept the transfer, this must return
* `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))`
* (i.e. 0xf23a6e61, or its own function selector).
*
* @param operator The address which initiated the transfer (i.e. msg.sender)
* @param from The address which previously owned the token
* @param id The ID of the token being transferred
* @param value The amount of tokens being transferred
* @param data Additional data with no specified format
* @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed
*/
function onERC1155Received(
address operator,
address from,
uint256 id,
uint256 value,
bytes calldata data
) external returns (bytes4);
/**
* @dev Handles the receipt of a multiple ERC-1155 token types. This function
* is called at the end of a `safeBatchTransferFrom` after the balances have
* been updated.
*
* NOTE: To accept the transfer(s), this must return
* `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))`
* (i.e. 0xbc197c81, or its own function selector).
*
* @param operator The address which initiated the batch transfer (i.e. msg.sender)
* @param from The address which previously owned the token
* @param ids An array containing ids of each token being transferred (order and length must match values array)
* @param values An array containing amounts of each token being transferred (order and length must match ids array)
* @param data Additional data with no specified format
* @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed
*/
function onERC1155BatchReceived(
address operator,
address from,
uint256[] calldata ids,
uint256[] calldata values,
bytes calldata data
) external returns (bytes4);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/EIP712.sol)
pragma solidity ^0.8.20;
import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
*
* The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
* encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
* does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
* produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
* separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
* separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
*
* @custom:oz-upgrades-unsafe-allow state-variable-immutable
*/
abstract contract EIP712 is IERC5267 {
using ShortStrings for *;
bytes32 private constant TYPE_HASH =
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
// Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
// invalidate the cached domain separator if the chain id changes.
bytes32 private immutable _cachedDomainSeparator;
uint256 private immutable _cachedChainId;
address private immutable _cachedThis;
bytes32 private immutable _hashedName;
bytes32 private immutable _hashedVersion;
ShortString private immutable _name;
ShortString private immutable _version;
string private _nameFallback;
string private _versionFallback;
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
constructor(string memory name, string memory version) {
_name = name.toShortStringWithFallback(_nameFallback);
_version = version.toShortStringWithFallback(_versionFallback);
_hashedName = keccak256(bytes(name));
_hashedVersion = keccak256(bytes(version));
_cachedChainId = block.chainid;
_cachedDomainSeparator = _buildDomainSeparator();
_cachedThis = address(this);
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view returns (bytes32) {
if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
return _cachedDomainSeparator;
} else {
return _buildDomainSeparator();
}
}
function _buildDomainSeparator() private view returns (bytes32) {
return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
}
/**
* @dev See {IERC-5267}.
*/
function eip712Domain()
public
view
virtual
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
)
{
return (
hex"0f", // 01111
_EIP712Name(),
_EIP712Version(),
block.chainid,
address(this),
bytes32(0),
new uint256[](0)
);
}
/**
* @dev The name parameter for the EIP712 domain.
*
* NOTE: By default this function reads _name which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Name() internal view returns (string memory) {
return _name.toStringWithFallback(_nameFallback);
}
/**
* @dev The version parameter for the EIP712 domain.
*
* NOTE: By default this function reads _version which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Version() internal view returns (string memory) {
return _version.toStringWithFallback(_versionFallback);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/SignatureChecker.sol)
pragma solidity ^0.8.20;
import {ECDSA} from "./ECDSA.sol";
import {IERC1271} from "../../interfaces/IERC1271.sol";
/**
* @dev Signature verification helper that can be used instead of `ECDSA.recover` to seamlessly support both ECDSA
* signatures from externally owned accounts (EOAs) as well as ERC-1271 signatures from smart contract wallets like
* Argent and Safe Wallet (previously Gnosis Safe).
*/
library SignatureChecker {
/**
* @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the
* signature is validated against that smart contract using ERC-1271, otherwise it's validated using `ECDSA.recover`.
*
* NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
* change through time. It could return true at block N and false at block N+1 (or the opposite).
*/
function isValidSignatureNow(address signer, bytes32 hash, bytes memory signature) internal view returns (bool) {
if (signer.code.length == 0) {
(address recovered, ECDSA.RecoverError err, ) = ECDSA.tryRecover(hash, signature);
return err == ECDSA.RecoverError.NoError && recovered == signer;
} else {
return isValidERC1271SignatureNow(signer, hash, signature);
}
}
/**
* @dev Checks if a signature is valid for a given signer and data hash. The signature is validated
* against the signer smart contract using ERC-1271.
*
* NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
* change through time. It could return true at block N and false at block N+1 (or the opposite).
*/
function isValidERC1271SignatureNow(
address signer,
bytes32 hash,
bytes memory signature
) internal view returns (bool) {
(bool success, bytes memory result) = signer.staticcall(
abi.encodeCall(IERC1271.isValidSignature, (hash, signature))
);
return (success &&
result.length >= 32 &&
abi.decode(result, (bytes32)) == bytes32(IERC1271.isValidSignature.selector));
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/ERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/structs/DoubleEndedQueue.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
/**
* @dev A sequence of items with the ability to efficiently push and pop items (i.e. insert and remove) on both ends of
* the sequence (called front and back). Among other access patterns, it can be used to implement efficient LIFO and
* FIFO queues. Storage use is optimized, and all operations are O(1) constant time. This includes {clear}, given that
* the existing queue contents are left in storage.
*
* The struct is called `Bytes32Deque`. Other types can be cast to and from `bytes32`. This data structure can only be
* used in storage, and not in memory.
* ```solidity
* DoubleEndedQueue.Bytes32Deque queue;
* ```
*/
library DoubleEndedQueue {
/**
* @dev Indices are 128 bits so begin and end are packed in a single storage slot for efficient access.
*
* Struct members have an underscore prefix indicating that they are "private" and should not be read or written to
* directly. Use the functions provided below instead. Modifying the struct manually may violate assumptions and
* lead to unexpected behavior.
*
* The first item is at data[begin] and the last item is at data[end - 1]. This range can wrap around.
*/
struct Bytes32Deque {
uint128 _begin;
uint128 _end;
mapping(uint128 index => bytes32) _data;
}
/**
* @dev Inserts an item at the end of the queue.
*
* Reverts with {Panic-RESOURCE_ERROR} if the queue is full.
*/
function pushBack(Bytes32Deque storage deque, bytes32 value) internal {
unchecked {
uint128 backIndex = deque._end;
if (backIndex + 1 == deque._begin) Panic.panic(Panic.RESOURCE_ERROR);
deque._data[backIndex] = value;
deque._end = backIndex + 1;
}
}
/**
* @dev Removes the item at the end of the queue and returns it.
*
* Reverts with {Panic-EMPTY_ARRAY_POP} if the queue is empty.
*/
function popBack(Bytes32Deque storage deque) internal returns (bytes32 value) {
unchecked {
uint128 backIndex = deque._end;
if (backIndex == deque._begin) Panic.panic(Panic.EMPTY_ARRAY_POP);
--backIndex;
value = deque._data[backIndex];
delete deque._data[backIndex];
deque._end = backIndex;
}
}
/**
* @dev Inserts an item at the beginning of the queue.
*
* Reverts with {Panic-RESOURCE_ERROR} if the queue is full.
*/
function pushFront(Bytes32Deque storage deque, bytes32 value) internal {
unchecked {
uint128 frontIndex = deque._begin - 1;
if (frontIndex == deque._end) Panic.panic(Panic.RESOURCE_ERROR);
deque._data[frontIndex] = value;
deque._begin = frontIndex;
}
}
/**
* @dev Removes the item at the beginning of the queue and returns it.
*
* Reverts with {Panic-EMPTY_ARRAY_POP} if the queue is empty.
*/
function popFront(Bytes32Deque storage deque) internal returns (bytes32 value) {
unchecked {
uint128 frontIndex = deque._begin;
if (frontIndex == deque._end) Panic.panic(Panic.EMPTY_ARRAY_POP);
value = deque._data[frontIndex];
delete deque._data[frontIndex];
deque._begin = frontIndex + 1;
}
}
/**
* @dev Returns the item at the beginning of the queue.
*
* Reverts with {Panic-ARRAY_OUT_OF_BOUNDS} if the queue is empty.
*/
function front(Bytes32Deque storage deque) internal view returns (bytes32 value) {
if (empty(deque)) Panic.panic(Panic.ARRAY_OUT_OF_BOUNDS);
return deque._data[deque._begin];
}
/**
* @dev Returns the item at the end of the queue.
*
* Reverts with {Panic-ARRAY_OUT_OF_BOUNDS} if the queue is empty.
*/
function back(Bytes32Deque storage deque) internal view returns (bytes32 value) {
if (empty(deque)) Panic.panic(Panic.ARRAY_OUT_OF_BOUNDS);
unchecked {
return deque._data[deque._end - 1];
}
}
/**
* @dev Return the item at a position in the queue given by `index`, with the first item at 0 and last item at
* `length(deque) - 1`.
*
* Reverts with {Panic-ARRAY_OUT_OF_BOUNDS} if the index is out of bounds.
*/
function at(Bytes32Deque storage deque, uint256 index) internal view returns (bytes32 value) {
if (index >= length(deque)) Panic.panic(Panic.ARRAY_OUT_OF_BOUNDS);
// By construction, length is a uint128, so the check above ensures that index can be safely downcast to uint128
unchecked {
return deque._data[deque._begin + uint128(index)];
}
}
/**
* @dev Resets the queue back to being empty.
*
* NOTE: The current items are left behind in storage. This does not affect the functioning of the queue, but misses
* out on potential gas refunds.
*/
function clear(Bytes32Deque storage deque) internal {
deque._begin = 0;
deque._end = 0;
}
/**
* @dev Returns the number of items in the queue.
*/
function length(Bytes32Deque storage deque) internal view returns (uint256) {
unchecked {
return uint256(deque._end - deque._begin);
}
}
/**
* @dev Returns true if the queue is empty.
*/
function empty(Bytes32Deque storage deque) internal view returns (bool) {
return deque._end == deque._begin;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Address.sol)
pragma solidity ^0.8.20;
import {Errors} from "./Errors.sol";
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert Errors.InsufficientBalance(address(this).balance, amount);
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert Errors.FailedCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {Errors.FailedCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert Errors.InsufficientBalance(address(this).balance, value);
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
* of an unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {Errors.FailedCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
assembly ("memory-safe") {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert Errors.FailedCall();
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides tracking nonces for addresses. Nonces will only increment.
*/
abstract contract Nonces {
/**
* @dev The nonce used for an `account` is not the expected current nonce.
*/
error InvalidAccountNonce(address account, uint256 currentNonce);
mapping(address account => uint256) private _nonces;
/**
* @dev Returns the next unused nonce for an address.
*/
function nonces(address owner) public view virtual returns (uint256) {
return _nonces[owner];
}
/**
* @dev Consumes a nonce.
*
* Returns the current value and increments nonce.
*/
function _useNonce(address owner) internal virtual returns (uint256) {
// For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
// decremented or reset. This guarantees that the nonce never overflows.
unchecked {
// It is important to do x++ and not ++x here.
return _nonces[owner]++;
}
}
/**
* @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
*/
function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
uint256 current = _useNonce(owner);
if (nonce != current) {
revert InvalidAccountNonce(owner, current);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (governance/IGovernor.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../interfaces/IERC165.sol";
import {IERC6372} from "../interfaces/IERC6372.sol";
/**
* @dev Interface of the {Governor} core.
*
* NOTE: Event parameters lack the `indexed` keyword for compatibility with GovernorBravo events.
* Making event parameters `indexed` affects how events are decoded, potentially breaking existing indexers.
*/
interface IGovernor is IERC165, IERC6372 {
enum ProposalState {
Pending,
Active,
Canceled,
Defeated,
Succeeded,
Queued,
Expired,
Executed
}
/**
* @dev Empty proposal or a mismatch between the parameters length for a proposal call.
*/
error GovernorInvalidProposalLength(uint256 targets, uint256 calldatas, uint256 values);
/**
* @dev The vote was already cast.
*/
error GovernorAlreadyCastVote(address voter);
/**
* @dev Token deposits are disabled in this contract.
*/
error GovernorDisabledDeposit();
/**
* @dev The `account` is not a proposer.
*/
error GovernorOnlyProposer(address account);
/**
* @dev The `account` is not the governance executor.
*/
error GovernorOnlyExecutor(address account);
/**
* @dev The `proposalId` doesn't exist.
*/
error GovernorNonexistentProposal(uint256 proposalId);
/**
* @dev The current state of a proposal is not the required for performing an operation.
* The `expectedStates` is a bitmap with the bits enabled for each ProposalState enum position
* counting from right to left.
*
* NOTE: If `expectedState` is `bytes32(0)`, the proposal is expected to not be in any state (i.e. not exist).
* This is the case when a proposal that is expected to be unset is already initiated (the proposal is duplicated).
*
* See {Governor-_encodeStateBitmap}.
*/
error GovernorUnexpectedProposalState(uint256 proposalId, ProposalState current, bytes32 expectedStates);
/**
* @dev The voting period set is not a valid period.
*/
error GovernorInvalidVotingPeriod(uint256 votingPeriod);
/**
* @dev The `proposer` does not have the required votes to create a proposal.
*/
error GovernorInsufficientProposerVotes(address proposer, uint256 votes, uint256 threshold);
/**
* @dev The `proposer` is not allowed to create a proposal.
*/
error GovernorRestrictedProposer(address proposer);
/**
* @dev The vote type used is not valid for the corresponding counting module.
*/
error GovernorInvalidVoteType();
/**
* @dev The provided params buffer is not supported by the counting module.
*/
error GovernorInvalidVoteParams();
/**
* @dev Queue operation is not implemented for this governor. Execute should be called directly.
*/
error GovernorQueueNotImplemented();
/**
* @dev The proposal hasn't been queued yet.
*/
error GovernorNotQueuedProposal(uint256 proposalId);
/**
* @dev The proposal has already been queued.
*/
error GovernorAlreadyQueuedProposal(uint256 proposalId);
/**
* @dev The provided signature is not valid for the expected `voter`.
* If the `voter` is a contract, the signature is not valid using {IERC1271-isValidSignature}.
*/
error GovernorInvalidSignature(address voter);
/**
* @dev Emitted when a proposal is created.
*/
event ProposalCreated(
uint256 proposalId,
address proposer,
address[] targets,
uint256[] values,
string[] signatures,
bytes[] calldatas,
uint256 voteStart,
uint256 voteEnd,
string description
);
/**
* @dev Emitted when a proposal is queued.
*/
event ProposalQueued(uint256 proposalId, uint256 etaSeconds);
/**
* @dev Emitted when a proposal is executed.
*/
event ProposalExecuted(uint256 proposalId);
/**
* @dev Emitted when a proposal is canceled.
*/
event ProposalCanceled(uint256 proposalId);
/**
* @dev Emitted when a vote is cast without params.
*
* Note: `support` values should be seen as buckets. Their interpretation depends on the voting module used.
*/
event VoteCast(address indexed voter, uint256 proposalId, uint8 support, uint256 weight, string reason);
/**
* @dev Emitted when a vote is cast with params.
*
* Note: `support` values should be seen as buckets. Their interpretation depends on the voting module used.
* `params` are additional encoded parameters. Their interpretation also depends on the voting module used.
*/
event VoteCastWithParams(
address indexed voter,
uint256 proposalId,
uint8 support,
uint256 weight,
string reason,
bytes params
);
/**
* @notice module:core
* @dev Name of the governor instance (used in building the EIP-712 domain separator).
*/
function name() external view returns (string memory);
/**
* @notice module:core
* @dev Version of the governor instance (used in building the EIP-712 domain separator). Default: "1"
*/
function version() external view returns (string memory);
/**
* @notice module:voting
* @dev A description of the possible `support` values for {castVote} and the way these votes are counted, meant to
* be consumed by UIs to show correct vote options and interpret the results. The string is a URL-encoded sequence of
* key-value pairs that each describe one aspect, for example `support=bravo&quorum=for,abstain`.
*
* There are 2 standard keys: `support` and `quorum`.
*
* - `support=bravo` refers to the vote options 0 = Against, 1 = For, 2 = Abstain, as in `GovernorBravo`.
* - `quorum=bravo` means that only For votes are counted towards quorum.
* - `quorum=for,abstain` means that both For and Abstain votes are counted towards quorum.
*
* If a counting module makes use of encoded `params`, it should include this under a `params` key with a unique
* name that describes the behavior. For example:
*
* - `params=fractional` might refer to a scheme where votes are divided fractionally between for/against/abstain.
* - `params=erc721` might refer to a scheme where specific NFTs are delegated to vote.
*
* NOTE: The string can be decoded by the standard
* https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams[`URLSearchParams`]
* JavaScript class.
*/
// solhint-disable-next-line func-name-mixedcase
function COUNTING_MODE() external view returns (string memory);
/**
* @notice module:core
* @dev Hashing function used to (re)build the proposal id from the proposal details..
*/
function hashProposal(
address[] memory targets,
uint256[] memory values,
bytes[] memory calldatas,
bytes32 descriptionHash
) external pure returns (uint256);
/**
* @notice module:core
* @dev Current state of a proposal, following Compound's convention
*/
function state(uint256 proposalId) external view returns (ProposalState);
/**
* @notice module:core
* @dev The number of votes required in order for a voter to become a proposer.
*/
function proposalThreshold() external view returns (uint256);
/**
* @notice module:core
* @dev Timepoint used to retrieve user's votes and quorum. If using block number (as per Compound's Comp), the
* snapshot is performed at the end of this block. Hence, voting for this proposal starts at the beginning of the
* following block.
*/
function proposalSnapshot(uint256 proposalId) external view returns (uint256);
/**
* @notice module:core
* @dev Timepoint at which votes close. If using block number, votes close at the end of this block, so it is
* possible to cast a vote during this block.
*/
function proposalDeadline(uint256 proposalId) external view returns (uint256);
/**
* @notice module:core
* @dev The account that created a proposal.
*/
function proposalProposer(uint256 proposalId) external view returns (address);
/**
* @notice module:core
* @dev The time when a queued proposal becomes executable ("ETA"). Unlike {proposalSnapshot} and
* {proposalDeadline}, this doesn't use the governor clock, and instead relies on the executor's clock which may be
* different. In most cases this will be a timestamp.
*/
function proposalEta(uint256 proposalId) external view returns (uint256);
/**
* @notice module:core
* @dev Whether a proposal needs to be queued before execution.
*/
function proposalNeedsQueuing(uint256 proposalId) external view returns (bool);
/**
* @notice module:user-config
* @dev Delay, between the proposal is created and the vote starts. The unit this duration is expressed in depends
* on the clock (see ERC-6372) this contract uses.
*
* This can be increased to leave time for users to buy voting power, or delegate it, before the voting of a
* proposal starts.
*
* NOTE: While this interface returns a uint256, timepoints are stored as uint48 following the ERC-6372 clock type.
* Consequently this value must fit in a uint48 (when added to the current clock). See {IERC6372-clock}.
*/
function votingDelay() external view returns (uint256);
/**
* @notice module:user-config
* @dev Delay between the vote start and vote end. The unit this duration is expressed in depends on the clock
* (see ERC-6372) this contract uses.
*
* NOTE: The {votingDelay} can delay the start of the vote. This must be considered when setting the voting
* duration compared to the voting delay.
*
* NOTE: This value is stored when the proposal is submitted so that possible changes to the value do not affect
* proposals that have already been submitted. The type used to save it is a uint32. Consequently, while this
* interface returns a uint256, the value it returns should fit in a uint32.
*/
function votingPeriod() external view returns (uint256);
/**
* @notice module:user-config
* @dev Minimum number of cast voted required for a proposal to be successful.
*
* NOTE: The `timepoint` parameter corresponds to the snapshot used for counting vote. This allows to scale the
* quorum depending on values such as the totalSupply of a token at this timepoint (see {ERC20Votes}).
*/
function quorum(uint256 timepoint) external view returns (uint256);
/**
* @notice module:reputation
* @dev Voting power of an `account` at a specific `timepoint`.
*
* Note: this can be implemented in a number of ways, for example by reading the delegated balance from one (or
* multiple), {ERC20Votes} tokens.
*/
function getVotes(address account, uint256 timepoint) external view returns (uint256);
/**
* @notice module:reputation
* @dev Voting power of an `account` at a specific `timepoint` given additional encoded parameters.
*/
function getVotesWithParams(
address account,
uint256 timepoint,
bytes memory params
) external view returns (uint256);
/**
* @notice module:voting
* @dev Returns whether `account` has cast a vote on `proposalId`.
*/
function hasVoted(uint256 proposalId, address account) external view returns (bool);
/**
* @dev Create a new proposal. Vote start after a delay specified by {IGovernor-votingDelay} and lasts for a
* duration specified by {IGovernor-votingPeriod}.
*
* Emits a {ProposalCreated} event.
*
* NOTE: The state of the Governor and `targets` may change between the proposal creation and its execution.
* This may be the result of third party actions on the targeted contracts, or other governor proposals.
* For example, the balance of this contract could be updated or its access control permissions may be modified,
* possibly compromising the proposal's ability to execute successfully (e.g. the governor doesn't have enough
* value to cover a proposal with multiple transfers).
*/
function propose(
address[] memory targets,
uint256[] memory values,
bytes[] memory calldatas,
string memory description
) external returns (uint256 proposalId);
/**
* @dev Queue a proposal. Some governors require this step to be performed before execution can happen. If queuing
* is not necessary, this function may revert.
* Queuing a proposal requires the quorum to be reached, the vote to be successful, and the deadline to be reached.
*
* Emits a {ProposalQueued} event.
*/
function queue(
address[] memory targets,
uint256[] memory values,
bytes[] memory calldatas,
bytes32 descriptionHash
) external returns (uint256 proposalId);
/**
* @dev Execute a successful proposal. This requires the quorum to be reached, the vote to be successful, and the
* deadline to be reached. Depending on the governor it might also be required that the proposal was queued and
* that some delay passed.
*
* Emits a {ProposalExecuted} event.
*
* NOTE: Some modules can modify the requirements for execution, for example by adding an additional timelock.
*/
function execute(
address[] memory targets,
uint256[] memory values,
bytes[] memory calldatas,
bytes32 descriptionHash
) external payable returns (uint256 proposalId);
/**
* @dev Cancel a proposal. A proposal is cancellable by the proposer, but only while it is Pending state, i.e.
* before the vote starts.
*
* Emits a {ProposalCanceled} event.
*/
function cancel(
address[] memory targets,
uint256[] memory values,
bytes[] memory calldatas,
bytes32 descriptionHash
) external returns (uint256 proposalId);
/**
* @dev Cast a vote
*
* Emits a {VoteCast} event.
*/
function castVote(uint256 proposalId, uint8 support) external returns (uint256 balance);
/**
* @dev Cast a vote with a reason
*
* Emits a {VoteCast} event.
*/
function castVoteWithReason(
uint256 proposalId,
uint8 support,
string calldata reason
) external returns (uint256 balance);
/**
* @dev Cast a vote with a reason and additional encoded parameters
*
* Emits a {VoteCast} or {VoteCastWithParams} event depending on the length of params.
*/
function castVoteWithReasonAndParams(
uint256 proposalId,
uint8 support,
string calldata reason,
bytes memory params
) external returns (uint256 balance);
/**
* @dev Cast a vote using the voter's signature, including ERC-1271 signature support.
*
* Emits a {VoteCast} event.
*/
function castVoteBySig(
uint256 proposalId,
uint8 support,
address voter,
bytes memory signature
) external returns (uint256 balance);
/**
* @dev Cast a vote with a reason and additional encoded parameters using the voter's signature,
* including ERC-1271 signature support.
*
* Emits a {VoteCast} or {VoteCastWithParams} event depending on the length of params.
*/
function castVoteWithReasonAndParamsBySig(
uint256 proposalId,
uint8 support,
address voter,
string calldata reason,
bytes memory params,
bytes memory signature
) external returns (uint256 balance);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5805.sol)
pragma solidity ^0.8.20;
import {IVotes} from "../governance/utils/IVotes.sol";
import {IERC6372} from "./IERC6372.sol";
interface IERC5805 is IERC6372, IVotes {}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/types/Time.sol)
pragma solidity ^0.8.20;
import {Math} from "../math/Math.sol";
import {SafeCast} from "../math/SafeCast.sol";
/**
* @dev This library provides helpers for manipulating time-related objects.
*
* It uses the following types:
* - `uint48` for timepoints
* - `uint32` for durations
*
* While the library doesn't provide specific types for timepoints and duration, it does provide:
* - a `Delay` type to represent duration that can be programmed to change value automatically at a given point
* - additional helper functions
*/
library Time {
using Time for *;
/**
* @dev Get the block timestamp as a Timepoint.
*/
function timestamp() internal view returns (uint48) {
return SafeCast.toUint48(block.timestamp);
}
/**
* @dev Get the block number as a Timepoint.
*/
function blockNumber() internal view returns (uint48) {
return SafeCast.toUint48(block.number);
}
// ==================================================== Delay =====================================================
/**
* @dev A `Delay` is a uint32 duration that can be programmed to change value automatically at a given point in the
* future. The "effect" timepoint describes when the transitions happens from the "old" value to the "new" value.
* This allows updating the delay applied to some operation while keeping some guarantees.
*
* In particular, the {update} function guarantees that if the delay is reduced, the old delay still applies for
* some time. For example if the delay is currently 7 days to do an upgrade, the admin should not be able to set
* the delay to 0 and upgrade immediately. If the admin wants to reduce the delay, the old delay (7 days) should
* still apply for some time.
*
*
* The `Delay` type is 112 bits long, and packs the following:
*
* ```
* | [uint48]: effect date (timepoint)
* | | [uint32]: value before (duration)
* ↓ ↓ ↓ [uint32]: value after (duration)
* 0xAAAAAAAAAAAABBBBBBBBCCCCCCCC
* ```
*
* NOTE: The {get} and {withUpdate} functions operate using timestamps. Block number based delays are not currently
* supported.
*/
type Delay is uint112;
/**
* @dev Wrap a duration into a Delay to add the one-step "update in the future" feature
*/
function toDelay(uint32 duration) internal pure returns (Delay) {
return Delay.wrap(duration);
}
/**
* @dev Get the value at a given timepoint plus the pending value and effect timepoint if there is a scheduled
* change after this timepoint. If the effect timepoint is 0, then the pending value should not be considered.
*/
function _getFullAt(
Delay self,
uint48 timepoint
) private pure returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) {
(valueBefore, valueAfter, effect) = self.unpack();
return effect <= timepoint ? (valueAfter, 0, 0) : (valueBefore, valueAfter, effect);
}
/**
* @dev Get the current value plus the pending value and effect timepoint if there is a scheduled change. If the
* effect timepoint is 0, then the pending value should not be considered.
*/
function getFull(Delay self) internal view returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) {
return _getFullAt(self, timestamp());
}
/**
* @dev Get the current value.
*/
function get(Delay self) internal view returns (uint32) {
(uint32 delay, , ) = self.getFull();
return delay;
}
/**
* @dev Update a Delay object so that it takes a new duration after a timepoint that is automatically computed to
* enforce the old delay at the moment of the update. Returns the updated Delay object and the timestamp when the
* new delay becomes effective.
*/
function withUpdate(
Delay self,
uint32 newValue,
uint32 minSetback
) internal view returns (Delay updatedDelay, uint48 effect) {
uint32 value = self.get();
uint32 setback = uint32(Math.max(minSetback, value > newValue ? value - newValue : 0));
effect = timestamp() + setback;
return (pack(value, newValue, effect), effect);
}
/**
* @dev Split a delay into its components: valueBefore, valueAfter and effect (transition timepoint).
*/
function unpack(Delay self) internal pure returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) {
uint112 raw = Delay.unwrap(self);
valueAfter = uint32(raw);
valueBefore = uint32(raw >> 32);
effect = uint48(raw >> 64);
return (valueBefore, valueAfter, effect);
}
/**
* @dev pack the components into a Delay object.
*/
function pack(uint32 valueBefore, uint32 valueAfter, uint48 effect) internal pure returns (Delay) {
return Delay.wrap((uint112(effect) << 64) | (uint112(valueBefore) << 32) | uint112(valueAfter));
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/structs/Checkpoints.sol)
// This file was procedurally generated from scripts/generate/templates/Checkpoints.js.
pragma solidity ^0.8.20;
import {Math} from "../math/Math.sol";
/**
* @dev This library defines the `Trace*` struct, for checkpointing values as they change at different points in
* time, and later looking up past values by block number. See {Votes} as an example.
*
* To create a history of checkpoints define a variable type `Checkpoints.Trace*` in your contract, and store a new
* checkpoint for the current transaction block using the {push} function.
*/
library Checkpoints {
/**
* @dev A value was attempted to be inserted on a past checkpoint.
*/
error CheckpointUnorderedInsertion();
struct Trace224 {
Checkpoint224[] _checkpoints;
}
struct Checkpoint224 {
uint32 _key;
uint224 _value;
}
/**
* @dev Pushes a (`key`, `value`) pair into a Trace224 so that it is stored as the checkpoint.
*
* Returns previous value and new value.
*
* IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint32).max` key set will disable the
* library.
*/
function push(
Trace224 storage self,
uint32 key,
uint224 value
) internal returns (uint224 oldValue, uint224 newValue) {
return _insert(self._checkpoints, key, value);
}
/**
* @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
* there is none.
*/
function lowerLookup(Trace224 storage self, uint32 key) internal view returns (uint224) {
uint256 len = self._checkpoints.length;
uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
}
/**
* @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
* if there is none.
*/
function upperLookup(Trace224 storage self, uint32 key) internal view returns (uint224) {
uint256 len = self._checkpoints.length;
uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
* if there is none.
*
* NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
* keys).
*/
function upperLookupRecent(Trace224 storage self, uint32 key) internal view returns (uint224) {
uint256 len = self._checkpoints.length;
uint256 low = 0;
uint256 high = len;
if (len > 5) {
uint256 mid = len - Math.sqrt(len);
if (key < _unsafeAccess(self._checkpoints, mid)._key) {
high = mid;
} else {
low = mid + 1;
}
}
uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
*/
function latest(Trace224 storage self) internal view returns (uint224) {
uint256 pos = self._checkpoints.length;
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
* in the most recent checkpoint.
*/
function latestCheckpoint(Trace224 storage self) internal view returns (bool exists, uint32 _key, uint224 _value) {
uint256 pos = self._checkpoints.length;
if (pos == 0) {
return (false, 0, 0);
} else {
Checkpoint224 storage ckpt = _unsafeAccess(self._checkpoints, pos - 1);
return (true, ckpt._key, ckpt._value);
}
}
/**
* @dev Returns the number of checkpoint.
*/
function length(Trace224 storage self) internal view returns (uint256) {
return self._checkpoints.length;
}
/**
* @dev Returns checkpoint at given position.
*/
function at(Trace224 storage self, uint32 pos) internal view returns (Checkpoint224 memory) {
return self._checkpoints[pos];
}
/**
* @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
* or by updating the last one.
*/
function _insert(
Checkpoint224[] storage self,
uint32 key,
uint224 value
) private returns (uint224 oldValue, uint224 newValue) {
uint256 pos = self.length;
if (pos > 0) {
Checkpoint224 storage last = _unsafeAccess(self, pos - 1);
uint32 lastKey = last._key;
uint224 lastValue = last._value;
// Checkpoint keys must be non-decreasing.
if (lastKey > key) {
revert CheckpointUnorderedInsertion();
}
// Update or push new checkpoint
if (lastKey == key) {
last._value = value;
} else {
self.push(Checkpoint224({_key: key, _value: value}));
}
return (lastValue, value);
} else {
self.push(Checkpoint224({_key: key, _value: value}));
return (0, value);
}
}
/**
* @dev Return the index of the first (oldest) checkpoint with key strictly bigger than the search key, or `high`
* if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
* `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _upperBinaryLookup(
Checkpoint224[] storage self,
uint32 key,
uint256 low,
uint256 high
) private view returns (uint256) {
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._key > key) {
high = mid;
} else {
low = mid + 1;
}
}
return high;
}
/**
* @dev Return the index of the first (oldest) checkpoint with key greater or equal than the search key, or `high`
* if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
* `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _lowerBinaryLookup(
Checkpoint224[] storage self,
uint32 key,
uint256 low,
uint256 high
) private view returns (uint256) {
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._key < key) {
low = mid + 1;
} else {
high = mid;
}
}
return high;
}
/**
* @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
*/
function _unsafeAccess(
Checkpoint224[] storage self,
uint256 pos
) private pure returns (Checkpoint224 storage result) {
assembly {
mstore(0, self.slot)
result.slot := add(keccak256(0, 0x20), pos)
}
}
struct Trace208 {
Checkpoint208[] _checkpoints;
}
struct Checkpoint208 {
uint48 _key;
uint208 _value;
}
/**
* @dev Pushes a (`key`, `value`) pair into a Trace208 so that it is stored as the checkpoint.
*
* Returns previous value and new value.
*
* IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint48).max` key set will disable the
* library.
*/
function push(
Trace208 storage self,
uint48 key,
uint208 value
) internal returns (uint208 oldValue, uint208 newValue) {
return _insert(self._checkpoints, key, value);
}
/**
* @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
* there is none.
*/
function lowerLookup(Trace208 storage self, uint48 key) internal view returns (uint208) {
uint256 len = self._checkpoints.length;
uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
}
/**
* @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
* if there is none.
*/
function upperLookup(Trace208 storage self, uint48 key) internal view returns (uint208) {
uint256 len = self._checkpoints.length;
uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
* if there is none.
*
* NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
* keys).
*/
function upperLookupRecent(Trace208 storage self, uint48 key) internal view returns (uint208) {
uint256 len = self._checkpoints.length;
uint256 low = 0;
uint256 high = len;
if (len > 5) {
uint256 mid = len - Math.sqrt(len);
if (key < _unsafeAccess(self._checkpoints, mid)._key) {
high = mid;
} else {
low = mid + 1;
}
}
uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
*/
function latest(Trace208 storage self) internal view returns (uint208) {
uint256 pos = self._checkpoints.length;
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
* in the most recent checkpoint.
*/
function latestCheckpoint(Trace208 storage self) internal view returns (bool exists, uint48 _key, uint208 _value) {
uint256 pos = self._checkpoints.length;
if (pos == 0) {
return (false, 0, 0);
} else {
Checkpoint208 storage ckpt = _unsafeAccess(self._checkpoints, pos - 1);
return (true, ckpt._key, ckpt._value);
}
}
/**
* @dev Returns the number of checkpoint.
*/
function length(Trace208 storage self) internal view returns (uint256) {
return self._checkpoints.length;
}
/**
* @dev Returns checkpoint at given position.
*/
function at(Trace208 storage self, uint32 pos) internal view returns (Checkpoint208 memory) {
return self._checkpoints[pos];
}
/**
* @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
* or by updating the last one.
*/
function _insert(
Checkpoint208[] storage self,
uint48 key,
uint208 value
) private returns (uint208 oldValue, uint208 newValue) {
uint256 pos = self.length;
if (pos > 0) {
Checkpoint208 storage last = _unsafeAccess(self, pos - 1);
uint48 lastKey = last._key;
uint208 lastValue = last._value;
// Checkpoint keys must be non-decreasing.
if (lastKey > key) {
revert CheckpointUnorderedInsertion();
}
// Update or push new checkpoint
if (lastKey == key) {
last._value = value;
} else {
self.push(Checkpoint208({_key: key, _value: value}));
}
return (lastValue, value);
} else {
self.push(Checkpoint208({_key: key, _value: value}));
return (0, value);
}
}
/**
* @dev Return the index of the first (oldest) checkpoint with key strictly bigger than the search key, or `high`
* if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
* `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _upperBinaryLookup(
Checkpoint208[] storage self,
uint48 key,
uint256 low,
uint256 high
) private view returns (uint256) {
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._key > key) {
high = mid;
} else {
low = mid + 1;
}
}
return high;
}
/**
* @dev Return the index of the first (oldest) checkpoint with key greater or equal than the search key, or `high`
* if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
* `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _lowerBinaryLookup(
Checkpoint208[] storage self,
uint48 key,
uint256 low,
uint256 high
) private view returns (uint256) {
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._key < key) {
low = mid + 1;
} else {
high = mid;
}
}
return high;
}
/**
* @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
*/
function _unsafeAccess(
Checkpoint208[] storage self,
uint256 pos
) private pure returns (Checkpoint208 storage result) {
assembly {
mstore(0, self.slot)
result.slot := add(keccak256(0, 0x20), pos)
}
}
struct Trace160 {
Checkpoint160[] _checkpoints;
}
struct Checkpoint160 {
uint96 _key;
uint160 _value;
}
/**
* @dev Pushes a (`key`, `value`) pair into a Trace160 so that it is stored as the checkpoint.
*
* Returns previous value and new value.
*
* IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint96).max` key set will disable the
* library.
*/
function push(
Trace160 storage self,
uint96 key,
uint160 value
) internal returns (uint160 oldValue, uint160 newValue) {
return _insert(self._checkpoints, key, value);
}
/**
* @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
* there is none.
*/
function lowerLookup(Trace160 storage self, uint96 key) internal view returns (uint160) {
uint256 len = self._checkpoints.length;
uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
}
/**
* @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
* if there is none.
*/
function upperLookup(Trace160 storage self, uint96 key) internal view returns (uint160) {
uint256 len = self._checkpoints.length;
uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
* if there is none.
*
* NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
* keys).
*/
function upperLookupRecent(Trace160 storage self, uint96 key) internal view returns (uint160) {
uint256 len = self._checkpoints.length;
uint256 low = 0;
uint256 high = len;
if (len > 5) {
uint256 mid = len - Math.sqrt(len);
if (key < _unsafeAccess(self._checkpoints, mid)._key) {
high = mid;
} else {
low = mid + 1;
}
}
uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
*/
function latest(Trace160 storage self) internal view returns (uint160) {
uint256 pos = self._checkpoints.length;
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
* in the most recent checkpoint.
*/
function latestCheckpoint(Trace160 storage self) internal view returns (bool exists, uint96 _key, uint160 _value) {
uint256 pos = self._checkpoints.length;
if (pos == 0) {
return (false, 0, 0);
} else {
Checkpoint160 storage ckpt = _unsafeAccess(self._checkpoints, pos - 1);
return (true, ckpt._key, ckpt._value);
}
}
/**
* @dev Returns the number of checkpoint.
*/
function length(Trace160 storage self) internal view returns (uint256) {
return self._checkpoints.length;
}
/**
* @dev Returns checkpoint at given position.
*/
function at(Trace160 storage self, uint32 pos) internal view returns (Checkpoint160 memory) {
return self._checkpoints[pos];
}
/**
* @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
* or by updating the last one.
*/
function _insert(
Checkpoint160[] storage self,
uint96 key,
uint160 value
) private returns (uint160 oldValue, uint160 newValue) {
uint256 pos = self.length;
if (pos > 0) {
Checkpoint160 storage last = _unsafeAccess(self, pos - 1);
uint96 lastKey = last._key;
uint160 lastValue = last._value;
// Checkpoint keys must be non-decreasing.
if (lastKey > key) {
revert CheckpointUnorderedInsertion();
}
// Update or push new checkpoint
if (lastKey == key) {
last._value = value;
} else {
self.push(Checkpoint160({_key: key, _value: value}));
}
return (lastValue, value);
} else {
self.push(Checkpoint160({_key: key, _value: value}));
return (0, value);
}
}
/**
* @dev Return the index of the first (oldest) checkpoint with key strictly bigger than the search key, or `high`
* if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
* `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _upperBinaryLookup(
Checkpoint160[] storage self,
uint96 key,
uint256 low,
uint256 high
) private view returns (uint256) {
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._key > key) {
high = mid;
} else {
low = mid + 1;
}
}
return high;
}
/**
* @dev Return the index of the first (oldest) checkpoint with key greater or equal than the search key, or `high`
* if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
* `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _lowerBinaryLookup(
Checkpoint160[] storage self,
uint96 key,
uint256 low,
uint256 high
) private view returns (uint256) {
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._key < key) {
low = mid + 1;
} else {
high = mid;
}
}
return high;
}
/**
* @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
*/
function _unsafeAccess(
Checkpoint160[] storage self,
uint256 pos
) private pure returns (Checkpoint160 storage result) {
assembly {
mstore(0, self.slot)
result.slot := add(keccak256(0, 0x20), pos)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol)
pragma solidity ^0.8.20;
import {Strings} from "../Strings.sol";
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing a bytes32 `messageHash` with
* `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
* keccak256, although any bytes32 value can be safely used because the final digest will
* be re-hashed.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
}
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing an arbitrary `message` with
* `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
return
keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x00` (data with intended validator).
*
* The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
* `validator` address. Then hashing the result.
*
* See {ECDSA-recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(hex"19_00", validator, data));
}
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\x19\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* See {ECDSA-recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
let ptr := mload(0x40)
mstore(ptr, hex"19_01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ShortStrings.sol)
pragma solidity ^0.8.20;
import {StorageSlot} from "./StorageSlot.sol";
// | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
// | length | 0x BB |
type ShortString is bytes32;
/**
* @dev This library provides functions to convert short memory strings
* into a `ShortString` type that can be used as an immutable variable.
*
* Strings of arbitrary length can be optimized using this library if
* they are short enough (up to 31 bytes) by packing them with their
* length (1 byte) in a single EVM word (32 bytes). Additionally, a
* fallback mechanism can be used for every other case.
*
* Usage example:
*
* ```solidity
* contract Named {
* using ShortStrings for *;
*
* ShortString private immutable _name;
* string private _nameFallback;
*
* constructor(string memory contractName) {
* _name = contractName.toShortStringWithFallback(_nameFallback);
* }
*
* function name() external view returns (string memory) {
* return _name.toStringWithFallback(_nameFallback);
* }
* }
* ```
*/
library ShortStrings {
// Used as an identifier for strings longer than 31 bytes.
bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
error StringTooLong(string str);
error InvalidShortString();
/**
* @dev Encode a string of at most 31 chars into a `ShortString`.
*
* This will trigger a `StringTooLong` error is the input string is too long.
*/
function toShortString(string memory str) internal pure returns (ShortString) {
bytes memory bstr = bytes(str);
if (bstr.length > 31) {
revert StringTooLong(str);
}
return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
}
/**
* @dev Decode a `ShortString` back to a "normal" string.
*/
function toString(ShortString sstr) internal pure returns (string memory) {
uint256 len = byteLength(sstr);
// using `new string(len)` would work locally but is not memory safe.
string memory str = new string(32);
assembly ("memory-safe") {
mstore(str, len)
mstore(add(str, 0x20), sstr)
}
return str;
}
/**
* @dev Return the length of a `ShortString`.
*/
function byteLength(ShortString sstr) internal pure returns (uint256) {
uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
if (result > 31) {
revert InvalidShortString();
}
return result;
}
/**
* @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
*/
function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
if (bytes(value).length < 32) {
return toShortString(value);
} else {
StorageSlot.getStringSlot(store).value = value;
return ShortString.wrap(FALLBACK_SENTINEL);
}
}
/**
* @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
*/
function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return toString(value);
} else {
return store;
}
}
/**
* @dev Return the length of a string that was encoded to `ShortString` or written to storage using
* {setWithFallback}.
*
* WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
* actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
*/
function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return byteLength(value);
} else {
return bytes(store).length;
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)
pragma solidity ^0.8.20;
interface IERC5267 {
/**
* @dev MAY be emitted to signal that the domain could have changed.
*/
event EIP712DomainChanged();
/**
* @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
* signature.
*/
function eip712Domain()
external
view
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.20;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature derives the `address(0)`.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(
bytes32 hash,
bytes memory signature
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
assembly ("memory-safe") {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1271.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-1271 standard signature validation method for
* contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
*/
interface IERC1271 {
/**
* @dev Should return whether the signature provided is valid for the provided data
* @param hash Hash of the data to be signed
* @param signature Signature byte array associated with _data
*/
function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of common custom errors used in multiple contracts
*
* IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
* It is recommended to avoid relying on the error API for critical functionality.
*
* _Available since v5.1._
*/
library Errors {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error InsufficientBalance(uint256 balance, uint256 needed);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedCall();
/**
* @dev The deployment failed.
*/
error FailedDeployment();
/**
* @dev A necessary precompile is missing.
*/
error MissingPrecompile(address);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../utils/introspection/IERC165.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC6372.sol)
pragma solidity ^0.8.20;
interface IERC6372 {
/**
* @dev Clock used for flagging checkpoints. Can be overridden to implement timestamp based checkpoints (and voting).
*/
function clock() external view returns (uint48);
/**
* @dev Description of the clock
*/
// solhint-disable-next-line func-name-mixedcase
function CLOCK_MODE() external view returns (string memory);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2²⁵⁶ + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= prod1) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 exp;
unchecked {
exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
value >>= exp;
result += exp;
exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
value >>= exp;
result += exp;
exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
value >>= exp;
result += exp;
exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
value >>= exp;
result += exp;
exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
value >>= exp;
result += exp;
exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
value >>= exp;
result += exp;
exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
value >>= exp;
result += exp;
result += SafeCast.toUint(value > 1);
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 isGt;
unchecked {
isGt = SafeCast.toUint(value > (1 << 128) - 1);
value >>= isGt * 128;
result += isGt * 16;
isGt = SafeCast.toUint(value > (1 << 64) - 1);
value >>= isGt * 64;
result += isGt * 8;
isGt = SafeCast.toUint(value > (1 << 32) - 1);
value >>= isGt * 32;
result += isGt * 4;
isGt = SafeCast.toUint(value > (1 << 16) - 1);
value >>= isGt * 16;
result += isGt * 2;
result += SafeCast.toUint(value > (1 << 8) - 1);
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
assembly ("memory-safe") {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
assembly ("memory-safe") {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
* representation, according to EIP-55.
*/
function toChecksumHexString(address addr) internal pure returns (string memory) {
bytes memory buffer = bytes(toHexString(addr));
// hash the hex part of buffer (skip length + 2 bytes, length 40)
uint256 hashValue;
assembly ("memory-safe") {
hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
}
for (uint256 i = 41; i > 1; --i) {
// possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
// case shift by xoring with 0x20
buffer[i] ^= 0x20;
}
hashValue >>= 4;
}
return string(buffer);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.20;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC-1967 implementation slot:
* ```solidity
* contract ERC1967 {
* // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(newImplementation.code.length > 0);
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*
* TIP: Consider using this library along with {SlotDerivation}.
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct Int256Slot {
int256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Int256Slot` with member `value` located at `slot`.
*/
function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
/**
* @dev Returns a `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
}
}
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
// Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
// taking advantage of the most significant (or "sign" bit) in two's complement representation.
// This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
// the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
int256 mask = n >> 255;
// A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
return uint256((n + mask) ^ mask);
}
}
}{
"remappings": [
"@chainlink/=node_modules/@chainlink/",
"@eth-optimism/=node_modules/@eth-optimism/",
"@openzeppelin/=node_modules/@openzeppelin/",
"@prb/test/=node_modules/dev-fraxswap/node_modules/@prb/test/",
"@uniswap/=node_modules/@uniswap/",
"dev-fraxswap/=node_modules/dev-fraxswap/",
"ds-test/=node_modules/ds-test/",
"forge-std/=node_modules/forge-std/",
"frax-standard-solidity/=node_modules/frax-standard-solidity/",
"frax-std/=node_modules/dev-fraxswap/node_modules/frax-standard-solidity/src/",
"solidity-bytes-utils/=node_modules/solidity-bytes-utils/"
],
"optimizer": {
"enabled": true,
"runs": 1000
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "none",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "shanghai",
"viaIR": false,
"libraries": {}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"string","name":"_name","type":"string"},{"internalType":"contract IVotes","name":"_token","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"CheckpointUnorderedInsertion","type":"error"},{"inputs":[],"name":"FailedCall","type":"error"},{"inputs":[{"internalType":"address","name":"voter","type":"address"}],"name":"GovernorAlreadyCastVote","type":"error"},{"inputs":[{"internalType":"uint256","name":"proposalId","type":"uint256"}],"name":"GovernorAlreadyQueuedProposal","type":"error"},{"inputs":[],"name":"GovernorDisabledDeposit","type":"error"},{"inputs":[{"internalType":"address","name":"proposer","type":"address"},{"internalType":"uint256","name":"votes","type":"uint256"},{"internalType":"uint256","name":"threshold","type":"uint256"}],"name":"GovernorInsufficientProposerVotes","type":"error"},{"inputs":[{"internalType":"uint256","name":"targets","type":"uint256"},{"internalType":"uint256","name":"calldatas","type":"uint256"},{"internalType":"uint256","name":"values","type":"uint256"}],"name":"GovernorInvalidProposalLength","type":"error"},{"inputs":[{"internalType":"uint256","name":"quorumNumerator","type":"uint256"},{"internalType":"uint256","name":"quorumDenominator","type":"uint256"}],"name":"GovernorInvalidQuorumFraction","type":"error"},{"inputs":[{"internalType":"address","name":"voter","type":"address"}],"name":"GovernorInvalidSignature","type":"error"},{"inputs":[],"name":"GovernorInvalidVoteParams","type":"error"},{"inputs":[],"name":"GovernorInvalidVoteType","type":"error"},{"inputs":[{"internalType":"uint256","name":"votingPeriod","type":"uint256"}],"name":"GovernorInvalidVotingPeriod","type":"error"},{"inputs":[{"internalType":"uint256","name":"proposalId","type":"uint256"}],"name":"GovernorNonexistentProposal","type":"error"},{"inputs":[{"internalType":"uint256","name":"proposalId","type":"uint256"}],"name":"GovernorNotQueuedProposal","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"GovernorOnlyExecutor","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"GovernorOnlyProposer","type":"error"},{"inputs":[],"name":"GovernorQueueNotImplemented","type":"error"},{"inputs":[{"internalType":"address","name":"proposer","type":"address"}],"name":"GovernorRestrictedProposer","type":"error"},{"inputs":[{"internalType":"uint256","name":"proposalId","type":"uint256"},{"internalType":"enum IGovernor.ProposalState","name":"current","type":"uint8"},{"internalType":"bytes32","name":"expectedStates","type":"bytes32"}],"name":"GovernorUnexpectedProposalState","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"currentNonce","type":"uint256"}],"name":"InvalidAccountNonce","type":"error"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[{"internalType":"uint8","name":"bits","type":"uint8"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"SafeCastOverflowedUintDowncast","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"proposalId","type":"uint256"}],"name":"ProposalCanceled","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"proposalId","type":"uint256"},{"indexed":false,"internalType":"address","name":"proposer","type":"address"},{"indexed":false,"internalType":"address[]","name":"targets","type":"address[]"},{"indexed":false,"internalType":"uint256[]","name":"values","type":"uint256[]"},{"indexed":false,"internalType":"string[]","name":"signatures","type":"string[]"},{"indexed":false,"internalType":"bytes[]","name":"calldatas","type":"bytes[]"},{"indexed":false,"internalType":"uint256","name":"voteStart","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"voteEnd","type":"uint256"},{"indexed":false,"internalType":"string","name":"description","type":"string"}],"name":"ProposalCreated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"proposalId","type":"uint256"}],"name":"ProposalExecuted","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"proposalId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"etaSeconds","type":"uint256"}],"name":"ProposalQueued","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"oldQuorumNumerator","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newQuorumNumerator","type":"uint256"}],"name":"QuorumNumeratorUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"voter","type":"address"},{"indexed":false,"internalType":"uint256","name":"proposalId","type":"uint256"},{"indexed":false,"internalType":"uint8","name":"support","type":"uint8"},{"indexed":false,"internalType":"uint256","name":"weight","type":"uint256"},{"indexed":false,"internalType":"string","name":"reason","type":"string"}],"name":"VoteCast","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"voter","type":"address"},{"indexed":false,"internalType":"uint256","name":"proposalId","type":"uint256"},{"indexed":false,"internalType":"uint8","name":"support","type":"uint8"},{"indexed":false,"internalType":"uint256","name":"weight","type":"uint256"},{"indexed":false,"internalType":"string","name":"reason","type":"string"},{"indexed":false,"internalType":"bytes","name":"params","type":"bytes"}],"name":"VoteCastWithParams","type":"event"},{"inputs":[],"name":"BALLOT_TYPEHASH","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"CLOCK_MODE","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"COUNTING_MODE","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"EXTENDED_BALLOT_TYPEHASH","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"targets","type":"address[]"},{"internalType":"uint256[]","name":"values","type":"uint256[]"},{"internalType":"bytes[]","name":"calldatas","type":"bytes[]"},{"internalType":"bytes32","name":"descriptionHash","type":"bytes32"}],"name":"cancel","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"proposalId","type":"uint256"},{"internalType":"uint8","name":"support","type":"uint8"}],"name":"castVote","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"proposalId","type":"uint256"},{"internalType":"uint8","name":"support","type":"uint8"},{"internalType":"address","name":"voter","type":"address"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"castVoteBySig","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"proposalId","type":"uint256"},{"internalType":"uint8","name":"support","type":"uint8"},{"internalType":"string","name":"reason","type":"string"}],"name":"castVoteWithReason","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"proposalId","type":"uint256"},{"internalType":"uint8","name":"support","type":"uint8"},{"internalType":"string","name":"reason","type":"string"},{"internalType":"bytes","name":"params","type":"bytes"}],"name":"castVoteWithReasonAndParams","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"proposalId","type":"uint256"},{"internalType":"uint8","name":"support","type":"uint8"},{"internalType":"address","name":"voter","type":"address"},{"internalType":"string","name":"reason","type":"string"},{"internalType":"bytes","name":"params","type":"bytes"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"castVoteWithReasonAndParamsBySig","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"clock","outputs":[{"internalType":"uint48","name":"","type":"uint48"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"targets","type":"address[]"},{"internalType":"uint256[]","name":"values","type":"uint256[]"},{"internalType":"bytes[]","name":"calldatas","type":"bytes[]"},{"internalType":"bytes32","name":"descriptionHash","type":"bytes32"}],"name":"execute","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"timepoint","type":"uint256"}],"name":"getVotes","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"timepoint","type":"uint256"},{"internalType":"bytes","name":"params","type":"bytes"}],"name":"getVotesWithParams","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"proposalId","type":"uint256"},{"internalType":"address","name":"account","type":"address"}],"name":"hasVoted","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"targets","type":"address[]"},{"internalType":"uint256[]","name":"values","type":"uint256[]"},{"internalType":"bytes[]","name":"calldatas","type":"bytes[]"},{"internalType":"bytes32","name":"descriptionHash","type":"bytes32"}],"name":"hashProposal","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"},{"internalType":"uint256[]","name":"","type":"uint256[]"},{"internalType":"uint256[]","name":"","type":"uint256[]"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"onERC1155BatchReceived","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"onERC1155Received","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"onERC721Received","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"proposalId","type":"uint256"}],"name":"proposalDeadline","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"proposalId","type":"uint256"}],"name":"proposalEta","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"proposalId","type":"uint256"}],"name":"proposalNeedsQueuing","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"proposalId","type":"uint256"}],"name":"proposalProposer","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"proposalId","type":"uint256"}],"name":"proposalSnapshot","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"proposalThreshold","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"proposalId","type":"uint256"}],"name":"proposalVotes","outputs":[{"internalType":"uint256","name":"againstVotes","type":"uint256"},{"internalType":"uint256","name":"forVotes","type":"uint256"},{"internalType":"uint256","name":"abstainVotes","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"targets","type":"address[]"},{"internalType":"uint256[]","name":"values","type":"uint256[]"},{"internalType":"bytes[]","name":"calldatas","type":"bytes[]"},{"internalType":"string","name":"description","type":"string"}],"name":"propose","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"targets","type":"address[]"},{"internalType":"uint256[]","name":"values","type":"uint256[]"},{"internalType":"bytes[]","name":"calldatas","type":"bytes[]"},{"internalType":"bytes32","name":"descriptionHash","type":"bytes32"}],"name":"queue","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"timepoint","type":"uint256"}],"name":"quorum","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"quorumDenominator","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"timepoint","type":"uint256"}],"name":"quorumNumerator","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"quorumNumerator","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"target","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"relay","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"proposalId","type":"uint256"}],"name":"state","outputs":[{"internalType":"enum IGovernor.ProposalState","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"token","outputs":[{"internalType":"contract IERC5805","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"newQuorumNumerator","type":"uint256"}],"name":"updateQuorumNumerator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"version","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"votingDelay","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"votingPeriod","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"stateMutability":"payable","type":"receive"}]Contract Creation Code
610180604052348015610010575f80fd5b5060405161437738038061437783398101604081905261002f91610545565b60048183806100526040805180820190915260018152603160f81b602082015290565b61005c825f61012c565b6101205261006b81600161012c565b61014052815160208084019190912060e052815190820120610100524660a0526100f760e05161010051604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201529081019290925260608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b60805250503060c052600361010c8282610683565b50506001600160a01b0316610160526101248161015e565b5050506107db565b5f60208351101561014757610140836101f8565b9050610158565b816101528482610683565b5060ff90505b92915050565b6064808211156101905760405163243e544560e01b815260048101839052602481018290526044015b60405180910390fd5b5f610199610235565b90506101b86101a661024e565b6101af856102c8565b600891906102ff565b505060408051828152602081018590527f0553476bf02ef2726e8ce5ced78d63e26e602e4a2257b1f559418e24b4633997910160405180910390a1505050565b5f80829050601f81511115610222578260405163305a27a960e01b81526004016101879190610742565b805161022d82610774565b179392505050565b5f6102406008610319565b6001600160d01b0316905090565b5f6102596101605190565b6001600160a01b03166391ddadf46040518163ffffffff1660e01b8152600401602060405180830381865afa9250505080156102b2575060408051601f3d908101601f191682019092526102af91810190610797565b60015b6102c3576102be610361565b905090565b919050565b5f6001600160d01b038211156102fb576040516306dfcc6560e41b815260d0600482015260248101839052604401610187565b5090565b5f8061030c85858561036b565b915091505b935093915050565b80545f9080156103585761033f836103326001846107bc565b5f91825260209091200190565b54660100000000000090046001600160d01b031661035a565b5f5b9392505050565b5f6102be436104c7565b82545f908190801561046a575f610387876103326001856107bc565b805490915065ffffffffffff80821691660100000000000090046001600160d01b03169088168211156103cd57604051632520601d60e01b815260040160405180910390fd5b8765ffffffffffff168265ffffffffffff160361040957825465ffffffffffff1666010000000000006001600160d01b0389160217835561045c565b6040805180820190915265ffffffffffff808a1682526001600160d01b03808a1660208085019182528d54600181018f555f8f815291909120945191519092166601000000000000029216919091179101555b945085935061031192505050565b50506040805180820190915265ffffffffffff80851682526001600160d01b0380851660208085019182528854600181018a555f8a8152918220955192519093166601000000000000029190931617920191909155905081610311565b5f65ffffffffffff8211156102fb576040516306dfcc6560e41b81526030600482015260248101839052604401610187565b634e487b7160e01b5f52604160045260245ffd5b5f5b8381101561052757818101518382015260200161050f565b50505f910152565b80516001600160a01b03811681146102c3575f80fd5b5f8060408385031215610556575f80fd5b82516001600160401b038082111561056c575f80fd5b818501915085601f83011261057f575f80fd5b815181811115610591576105916104f9565b604051601f8201601f19908116603f011681019083821181831017156105b9576105b96104f9565b816040528281528860208487010111156105d1575f80fd5b6105e283602083016020880161050d565b80965050505050506105f66020840161052f565b90509250929050565b600181811c9082168061061357607f821691505b60208210810361063157634e487b7160e01b5f52602260045260245ffd5b50919050565b601f82111561067e57805f5260205f20601f840160051c8101602085101561065c5750805b601f840160051c820191505b8181101561067b575f8155600101610668565b50505b505050565b81516001600160401b0381111561069c5761069c6104f9565b6106b0816106aa84546105ff565b84610637565b602080601f8311600181146106e3575f84156106cc5750858301515b5f19600386901b1c1916600185901b17855561073a565b5f85815260208120601f198616915b82811015610711578886015182559484019460019091019084016106f2565b508582101561072e57878501515f19600388901b60f8161c191681555b505060018460011b0185555b505050505050565b602081525f825180602084015261076081604085016020870161050d565b601f01601f19169190910160400192915050565b80516020808301519190811015610631575f1960209190910360031b1b16919050565b5f602082840312156107a7575f80fd5b815165ffffffffffff8116811461035a575f80fd5b8181038181111561015857634e487b7160e01b5f52601160045260245ffd5b60805160a05160c05160e05161010051610120516101405161016051613b256108525f395f81816109b101528181610d4c0152818161123e015281816114510152611eb201525f611e7f01525f611e5301525f61236201525f61233a01525f61229501525f6122bf01525f6122e90152613b255ff3fe6080604052600436106102cf575f3560e01c80637b3c71d31161017b578063b58131b0116100d1578063dd4e2ba511610087578063f23a6e6111610062578063f23a6e6114610940578063f8ce560a14610984578063fc0c546a146109a3575f80fd5b8063dd4e2ba5146108a9578063deaaa7cc146108ee578063eb9019d414610921575f80fd5b8063c01f9e37116100b7578063c01f9e3714610858578063c28bc2fa14610877578063c59057e41461088a575f80fd5b8063b58131b014610802578063bc197c8114610814575f80fd5b806391ddadf411610131578063a7713a701161010c578063a7713a7014610799578063a9a95294146107ad578063ab58fb8e146107cc575f80fd5b806391ddadf41461073c57806397c3d334146107675780639a802a6d1461077a575f80fd5b80637ecebe00116101615780637ecebe00146106c257806384b0196e146106f65780638ff262e31461071d575f80fd5b80637b3c71d3146106845780637d5e81e2146106a3575f80fd5b80633932abb111610230578063544ffc9c116101e65780635b8d0e0d116101c15780635b8d0e0d146106275780635f398a141461064657806360c4247f14610665575f80fd5b8063544ffc9c1461057057806354fd4d50146105c35780635678138814610608575f80fd5b8063438596321161021657806343859632146104f5578063452115d61461053d5780634bf5d7e91461055c575f80fd5b80633932abb1146104b55780633e4f49e6146104c9575f80fd5b8063150b7a02116102855780632656227d1161026b5780632656227d146104355780632d63f693146104485780632fe3e26114610482575f80fd5b8063150b7a02146103ba578063160cbed714610416575f80fd5b806306f3f9e6116102b557806306f3f9e61461032e57806306fdde031461034d578063143489d01461036e575f80fd5b806301ffc9a7146102dc57806302a251a314610310575f80fd5b366102d857005b005b5f80fd5b3480156102e7575f80fd5b506102fb6102f6366004612c4a565b6109da565b60405190151581526020015b60405180910390f35b34801561031b575f80fd5b5061c4e05b604051908152602001610307565b348015610339575f80fd5b506102d6610348366004612c71565b610a76565b348015610358575f80fd5b50610361610a8a565b6040516103079190612cd5565b348015610379575f80fd5b506103a2610388366004612c71565b5f908152600460205260409020546001600160a01b031690565b6040516001600160a01b039091168152602001610307565b3480156103c5575f80fd5b506103fd6103d4366004612dc2565b7f150b7a0200000000000000000000000000000000000000000000000000000000949350505050565b6040516001600160e01b03199091168152602001610307565b348015610421575f80fd5b50610320610430366004612f8e565b610b1a565b610320610443366004612f8e565b610b71565b348015610453575f80fd5b50610320610462366004612c71565b5f90815260046020526040902054600160a01b900465ffffffffffff1690565b34801561048d575f80fd5b506103207f3e83946653575f9a39005e1545185629e92736b7528ab20ca3816f315424a81181565b3480156104c0575f80fd5b50611c20610320565b3480156104d4575f80fd5b506104e86104e3366004612c71565b610cb4565b604051610307919061304c565b348015610500575f80fd5b506102fb61050f36600461305a565b5f8281526007602090815260408083206001600160a01b038516845260030190915290205460ff1692915050565b348015610548575f80fd5b50610320610557366004612f8e565b610cbe565b348015610567575f80fd5b50610361610d48565b34801561057b575f80fd5b506105a861058a366004612c71565b5f908152600760205260409020805460018201546002909201549092565b60408051938452602084019290925290820152606001610307565b3480156105ce575f80fd5b5060408051808201909152600181527f31000000000000000000000000000000000000000000000000000000000000006020820152610361565b348015610613575f80fd5b50610320610622366004613094565b610e08565b348015610632575f80fd5b506103206106413660046130fa565b610e2f565b348015610651575f80fd5b506103206106603660046131ab565b610f8b565b348015610670575f80fd5b5061032061067f366004612c71565b610fde565b34801561068f575f80fd5b5061032061069e366004613229565b61106d565b3480156106ae575f80fd5b506103206106bd36600461327f565b6110b3565b3480156106cd575f80fd5b506103206106dc36600461332c565b6001600160a01b03165f9081526002602052604090205490565b348015610701575f80fd5b5061070a61110e565b604051610307979695949392919061337f565b348015610728575f80fd5b50610320610737366004613408565b61116c565b348015610747575f80fd5b5061075061123b565b60405165ffffffffffff9091168152602001610307565b348015610772575f80fd5b506064610320565b348015610785575f80fd5b50610320610794366004613454565b6112c2565b3480156107a4575f80fd5b506103206112d8565b3480156107b8575f80fd5b506102fb6107c7366004612c71565b6112f1565b3480156107d7575f80fd5b506103206107e6366004612c71565b5f9081526004602052604090206001015465ffffffffffff1690565b34801561080d575f80fd5b505f610320565b34801561081f575f80fd5b506103fd61082e3660046134a7565b7fbc197c810000000000000000000000000000000000000000000000000000000095945050505050565b348015610863575f80fd5b50610320610872366004612c71565b6112f8565b6102d6610885366004613530565b61133a565b348015610895575f80fd5b506103206108a4366004612f8e565b6113b6565b3480156108b4575f80fd5b506040805180820190915260208082527f737570706f72743d627261766f2671756f72756d3d666f722c6162737461696e90820152610361565b3480156108f9575f80fd5b506103207ff2aad550cf55f045cb27e9c559f9889fdfb6e6cdaa032301d6ea397784ae51d781565b34801561092c575f80fd5b5061032061093b36600461356e565b6113ef565b34801561094b575f80fd5b506103fd61095a366004613596565b7ff23a6e610000000000000000000000000000000000000000000000000000000095945050505050565b34801561098f575f80fd5b5061032061099e366004612c71565b61140e565b3480156109ae575f80fd5b507f00000000000000000000000000000000000000000000000000000000000000006103a2565b905090565b5f6001600160e01b031982167f65455a86000000000000000000000000000000000000000000000000000000001480610a3c57506001600160e01b031982167f4e2312e000000000000000000000000000000000000000000000000000000000145b80610a7057507f01ffc9a7000000000000000000000000000000000000000000000000000000006001600160e01b03198316145b92915050565b610a7e6114ce565b610a878161151e565b50565b606060038054610a99906135f6565b80601f0160208091040260200160405190810160405280929190818152602001828054610ac5906135f6565b8015610b105780601f10610ae757610100808354040283529160200191610b10565b820191905f5260205f20905b815481529060010190602001808311610af357829003601f168201915b5050505050905090565b5f80610b28868686866113b6565b9050610b3d81610b3860046115cc565b6115ee565b505f6040517f90884a4600000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f80610b7f868686866113b6565b9050610b9f81610b8f60056115cc565b610b9960046115cc565b176115ee565b505f81815260046020526040902080547fff00ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff16600160f01b17905530610be13090565b6001600160a01b031614610c6a575f5b8651811015610c6857306001600160a01b0316878281518110610c1657610c1661362e565b60200260200101516001600160a01b031603610c6057610c60858281518110610c4157610c4161362e565b602002602001015180519060200120600561162b90919063ffffffff16565b600101610bf1565b505b610c77818787878761169e565b6040518181527f712ae1383f79ac853f8d882153778e0260ef8f03b504e2866e0593e04d2b291f906020015b60405180910390a195945050505050565b5f610a70826116b2565b5f80610ccc868686866113b6565b9050610cdb81610b385f6115cc565b505f818152600460205260409020546001600160a01b03163314610d32576040517f233d98e30000000000000000000000000000000000000000000000000000000081523360048201526024015b60405180910390fd5b610d3e8686868661180f565b9695505050505050565b60607f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316634bf5d7e96040518163ffffffff1660e01b81526004015f60405180830381865afa925050508015610dc757506040513d5f823e601f3d908101601f19168201604052610dc49190810190613642565b60015b610e03575060408051808201909152601d81527f6d6f64653d626c6f636b6e756d6265722666726f6d3d64656661756c74000000602082015290565b919050565b5f80339050610e2784828560405180602001604052805f815250611825565b949350505050565b5f80610f1087610f0a7f3e83946653575f9a39005e1545185629e92736b7528ab20ca3816f315424a8118c8c8c610e828e6001600160a01b03165f90815260026020526040902080546001810190915590565b8d8d604051610e929291906136ab565b60405180910390208c80519060200120604051602001610eef9796959493929190968752602087019590955260ff9390931660408601526001600160a01b03919091166060850152608084015260a083015260c082015260e00190565b60405160208183030381529060405280519060200120611846565b8561188d565b905080610f3b576040516394ab6c0760e01b81526001600160a01b0388166004820152602401610d29565b610f7e89888a89898080601f0160208091040260200160405190810160405280939291908181526020018383808284375f920191909152508b92506118fd915050565b9998505050505050505050565b5f80339050610fd387828888888080601f0160208091040260200160405190810160405280939291908181526020018383808284375f920191909152508a92506118fd915050565b979650505050505050565b600880545f918290610ff16001846136ce565b815481106110015761100161362e565b5f918252602090912001805490915065ffffffffffff811690660100000000000090046001600160d01b0316858211611046576001600160d01b031695945050505050565b61105a611052876119f0565b600890611a26565b6001600160d01b03169695505050505050565b5f80339050610d3e86828787878080601f0160208091040260200160405190810160405280939291908181526020018383808284375f9201919091525061182592505050565b5f336110bf8184611ad8565b611100576040517fd9b395570000000000000000000000000000000000000000000000000000000081526001600160a01b0382166004820152602401610d29565b5f610fd38787878786611bf6565b5f6060805f805f606061111f611e4c565b611127611e78565b604080515f808252602082019092527f0f000000000000000000000000000000000000000000000000000000000000009b939a50919850469750309650945092509050565b5f806111f684610f0a7ff2aad550cf55f045cb27e9c559f9889fdfb6e6cdaa032301d6ea397784ae51d78989896111bf8b6001600160a01b03165f90815260026020526040902080546001810190915590565b60408051602081019690965285019390935260ff90911660608401526001600160a01b0316608083015260a082015260c001610eef565b905080611221576040516394ab6c0760e01b81526001600160a01b0385166004820152602401610d29565b610d3e86858760405180602001604052805f815250611825565b5f7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03166391ddadf46040518163ffffffff1660e01b8152600401602060405180830381865afa9250505080156112b6575060408051601f3d908101601f191682019092526112b3918101906136e8565b60015b610e03576109d5611ea5565b5f6112ce848484611eaf565b90505b9392505050565b5f6112e36008611f5b565b6001600160d01b0316905090565b5f80610a70565b5f8181526004602052604081205461132c90600160d01b810463ffffffff1690600160a01b900465ffffffffffff1661370d565b65ffffffffffff1692915050565b6113426114ce565b5f80856001600160a01b031685858560405161135f9291906136ab565b5f6040518083038185875af1925050503d805f8114611399576040519150601f19603f3d011682016040523d82523d5f602084013e61139e565b606091505b50915091506113ad8282611f95565b50505050505050565b5f848484846040516020016113ce94939291906137bc565b60408051601f19818403018152919052805160209091012095945050505050565b5f6112d1838361140960408051602081019091525f815290565b611eaf565b5f606461141a83610fde565b6040517f8e539e8c000000000000000000000000000000000000000000000000000000008152600481018590526001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001690638e539e8c90602401602060405180830381865afa158015611496573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906114ba9190613806565b6114c4919061381d565b610a709190613848565b303314611509576040517f47096e47000000000000000000000000000000000000000000000000000000008152336004820152602401610d29565b565b806115166005611fb1565b0361150b5750565b606480821115611564576040517f243e54450000000000000000000000000000000000000000000000000000000081526004810183905260248101829052604401610d29565b5f61156d6112d8565b905061158c61157a61123b565b6115838561203f565b60089190612072565b505060408051828152602081018590527f0553476bf02ef2726e8ce5ced78d63e26e602e4a2257b1f559418e24b4633997910160405180910390a1505050565b5f8160078111156115df576115df613018565b600160ff919091161b92915050565b5f806115f984610cb4565b90505f83611606836115cc565b16036112d1578381846040516331b75e4d60e01b8152600401610d2993929190613867565b81546fffffffffffffffffffffffffffffffff600160801b82048116918116600183019091160361166057611660604161208c565b6fffffffffffffffffffffffffffffffff8082165f90815260018086016020526040909120939093558354919092018216600160801b029116179055565b6116ab858585858561209d565b5050505050565b5f818152600460205260408120805460ff600160f01b8204811691600160f81b90041681156116e657506007949350505050565b80156116f757506002949350505050565b5f85815260046020526040812054600160a01b900465ffffffffffff169050805f03611752576040517f6ad0607500000000000000000000000000000000000000000000000000000000815260048101879052602401610d29565b5f61175b61123b565b65ffffffffffff16905080821061177857505f9695505050505050565b5f611782886112f8565b905081811061179957506001979650505050505050565b6117a288612172565b15806117c157505f888152600760205260409020805460019091015411155b156117d457506003979650505050505050565b5f8881526004602052604090206001015465ffffffffffff165f0361180157506004979650505050505050565b506005979650505050505050565b5f61181c858585856121c2565b95945050505050565b5f61181c8585858561184160408051602081019091525f815290565b6118fd565b5f610a70611852612289565b836040517f19010000000000000000000000000000000000000000000000000000000000008152600281019290925260228201526042902090565b5f836001600160a01b03163b5f036118eb575f806118ab85856123b2565b5090925090505f8160038111156118c4576118c4613018565b1480156118e25750856001600160a01b0316826001600160a01b0316145b925050506112d1565b6118f68484846123fb565b90506112d1565b5f61190c86610b3860016115cc565b505f86815260046020526040812054611936908790600160a01b900465ffffffffffff1685611eaf565b90505f61194688888885886124e6565b905083515f0361199c57866001600160a01b03167fb8e138887d0aa13bab447e82de9d5c1777041ecd21ca36ba824ff1e6c07ddda48988848960405161198f9493929190613889565b60405180910390a2610fd3565b866001600160a01b03167fe2babfbac5889a709b63bb7f598b324e08bc5a4fb9ec647fb3cbc9ec07eb871289888489896040516119dd9594939291906138b0565b60405180910390a2979650505050505050565b5f65ffffffffffff821115611a22576040516306dfcc6560e41b81526030600482015260248101839052604401610d29565b5090565b81545f9081816005811115611a82575f611a3f84612614565b611a4990856136ce565b5f8881526020902090915081015465ffffffffffff9081169087161015611a7257809150611a80565b611a7d8160016138f5565b92505b505b5f611a8f8787858561276c565b90508015611acc57611ab387611aa66001846136ce565b5f91825260209091200190565b54660100000000000090046001600160d01b0316610fd3565b5f979650505050505050565b80515f906034811015611aef576001915050610a70565b828101601319015173ffffffffffffffffffffffffffffffffffffffff1981167f2370726f706f7365723d3078000000000000000000000000000000000000000014611b4057600192505050610a70565b5f80611b4d6028856136ce565b90505b83811015611bd5575f80611b9b888481518110611b6f57611b6f61362e565b01602001517fff00000000000000000000000000000000000000000000000000000000000000166127cb565b9150915081611bb35760019650505050505050610a70565b8060ff166004856001600160a01b0316901b1793505050806001019050611b50565b50856001600160a01b0316816001600160a01b031614935050505092915050565b5f611c0a86868686805190602001206113b6565b905084518651141580611c1f57508351865114155b80611c2957508551155b15611c77578551845186516040517f447b05d0000000000000000000000000000000000000000000000000000000008152600481019390935260248301919091526044820152606401610d29565b5f81815260046020526040902054600160a01b900465ffffffffffff1615611cc05780611ca382610cb4565b6040516331b75e4d60e01b8152610d299291905f90600401613867565b5f611c20611ccc61123b565b65ffffffffffff16611cde91906138f5565b90505f61c4e05f848152600460205260409020805473ffffffffffffffffffffffffffffffffffffffff19166001600160a01b038716178155909150611d23836119f0565b815465ffffffffffff91909116600160a01b027fffffffffffff000000000000ffffffffffffffffffffffffffffffffffffffff909116178155611d668261285b565b815463ffffffff91909116600160d01b027fffff00000000ffffffffffffffffffffffffffffffffffffffffffffffffffff90911617815588517f7d84a6263ae0d98d3329bd7b46bb4e8d6f98cd35a7adb45c274c8b7fd5ebd5e090859087908c908c9067ffffffffffffffff811115611de257611de2612cfd565b604051908082528060200260200182016040528015611e1557816020015b6060815260200190600190039081611e005790505b508c89611e228a826138f5565b8e604051611e3899989796959493929190613908565b60405180910390a150505095945050505050565b60606109d57f00000000000000000000000000000000000000000000000000000000000000005f61288b565b60606109d57f0000000000000000000000000000000000000000000000000000000000000000600161288b565b5f6109d5436119f0565b5f7f00000000000000000000000000000000000000000000000000000000000000006040517f3a46b1a80000000000000000000000000000000000000000000000000000000081526001600160a01b038681166004830152602482018690529190911690633a46b1a890604401602060405180830381865afa158015611f37573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906112ce9190613806565b80545f908015611f8d57611f7483611aa66001846136ce565b54660100000000000090046001600160d01b03166112d1565b5f9392505050565b606082611faa57611fa582612934565b610a70565b5080610a70565b80545f906fffffffffffffffffffffffffffffffff80821691600160801b9004168103611fe257611fe2603161208c565b6fffffffffffffffffffffffffffffffff8181165f908152600185810160205260408220805492905585547fffffffffffffffffffffffffffffffff00000000000000000000000000000000169301909116919091179092555090565b5f6001600160d01b03821115611a22576040516306dfcc6560e41b815260d0600482015260248101839052604401610d29565b5f8061207f858585612976565b915091505b935093915050565b634e487b715f52806020526024601cfd5b5f5b845181101561216a575f808683815181106120bc576120bc61362e565b60200260200101516001600160a01b03168684815181106120df576120df61362e565b60200260200101518685815181106120f9576120f961362e565b602002602001015160405161210e91906139de565b5f6040518083038185875af1925050503d805f8114612148576040519150601f19603f3d011682016040523d82523d5f602084013e61214d565b606091505b509150915061215c8282611f95565b50505080600101905061209f565b505050505050565b5f8181526007602052604081206002810154600182015461219391906138f5565b5f848152600460205260409020546121b990600160a01b900465ffffffffffff1661140e565b11159392505050565b5f806121d0868686866113b6565b905061221e816121e060076115cc565b6121ea60066115cc565b6121f460026115cc565b60016122016007826139f9565b61220c906002613af2565b61221691906136ce565b1818186115ee565b505f818152600460205260409081902080547effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff16600160f81b179055517f789cf55be980739dad1d0699b93b58e806b51c9d96619bfa8fe0a28abaa7b30c90610ca39083815260200190565b5f306001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000161480156122e157507f000000000000000000000000000000000000000000000000000000000000000046145b1561230b57507f000000000000000000000000000000000000000000000000000000000000000090565b6109d5604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527f0000000000000000000000000000000000000000000000000000000000000000918101919091527f000000000000000000000000000000000000000000000000000000000000000060608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b5f805f83516041036123e9576020840151604085015160608601515f1a6123db88828585612aeb565b9550955095505050506123f4565b505081515f91506002905b9250925092565b5f805f856001600160a01b0316858560405160240161241b929190613b00565b60408051601f198184030181529181526020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff16630b135d3f60e11b1790525161246591906139de565b5f60405180830381855afa9150503d805f811461249d576040519150601f19603f3d011682016040523d82523d5f602084013e6124a2565b606091505b50915091508180156124b657506020815110155b8015610d3e57508051630b135d3f60e11b906124db9083016020908101908401613806565b149695505050505050565b5f8581526007602090815260408083206001600160a01b03881684526003810190925282205460ff1615612551576040517f71c6af490000000000000000000000000000000000000000000000000000000081526001600160a01b0387166004820152602401610d29565b6001600160a01b0386165f9081526003820160205260409020805460ff1916600117905560ff851661259a5783815f015f82825461258f91906138f5565b909155506126099050565b5f1960ff8616016125b85783816001015f82825461258f91906138f5565b60011960ff8616016125d75783816002015f82825461258f91906138f5565b6040517f06b337c200000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b509195945050505050565b5f60018211612621575090565b816001600160801b821061263a5760809190911c9060401b5b6801000000000000000082106126555760409190911c9060201b5b640100000000821061266c5760209190911c9060101b5b6201000082106126815760109190911c9060081b5b61010082106126955760089190911c9060041b5b601082106126a85760049190911c9060021b5b600482106126b45760011b5b600302600190811c908185816126cc576126cc613834565b048201901c905060018185816126e4576126e4613834565b048201901c905060018185816126fc576126fc613834565b048201901c9050600181858161271457612714613834565b048201901c9050600181858161272c5761272c613834565b048201901c9050600181858161274457612744613834565b048201901c905061276381858161275d5761275d613834565b04821190565b90039392505050565b5f5b818310156127c3575f6127818484612bb3565b5f8781526020902090915065ffffffffffff86169082015465ffffffffffff1611156127af578092506127bd565b6127ba8160016138f5565b93505b5061276e565b509392505050565b5f8060f883901c602f811180156127e55750603a8160ff16105b156127fa57600194602f199091019350915050565b8060ff166040108015612810575060478160ff16105b15612825576001946036199091019350915050565b8060ff16606010801561283b575060678160ff16105b15612850576001946056199091019350915050565b505f93849350915050565b5f63ffffffff821115611a22576040516306dfcc6560e41b81526020600482015260248101839052604401610d29565b606060ff83146128a55761289e83612bcd565b9050610a70565b8180546128b1906135f6565b80601f01602080910402602001604051908101604052809291908181526020018280546128dd906135f6565b80156129285780601f106128ff57610100808354040283529160200191612928565b820191905f5260205f20905b81548152906001019060200180831161290b57829003601f168201915b50505050509050610a70565b8051156129445780518082602001fd5b6040517fd6bda27500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b82545f9081908015612a8e575f61299287611aa66001856136ce565b805490915065ffffffffffff80821691660100000000000090046001600160d01b03169088168211156129f1576040517f2520601d00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b8765ffffffffffff168265ffffffffffff1603612a2d57825465ffffffffffff1666010000000000006001600160d01b03891602178355612a80565b6040805180820190915265ffffffffffff808a1682526001600160d01b03808a1660208085019182528d54600181018f555f8f815291909120945191519092166601000000000000029216919091179101555b945085935061208492505050565b50506040805180820190915265ffffffffffff80851682526001600160d01b0380851660208085019182528854600181018a555f8a8152918220955192519093166601000000000000029190931617920191909155905081612084565b5f80807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0841115612b2457505f91506003905082612ba9565b604080515f808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa158015612b75573d5f803e3d5ffd5b5050604051601f1901519150506001600160a01b038116612ba057505f925060019150829050612ba9565b92505f91508190505b9450945094915050565b5f612bc16002848418613848565b6112d1908484166138f5565b60605f612bd983612c0a565b6040805160208082528183019092529192505f91906020820181803683375050509182525060208101929092525090565b5f60ff8216601f811115610a70576040517fb3512b0c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f60208284031215612c5a575f80fd5b81356001600160e01b0319811681146112d1575f80fd5b5f60208284031215612c81575f80fd5b5035919050565b5f5b83811015612ca2578181015183820152602001612c8a565b50505f910152565b5f8151808452612cc1816020860160208601612c88565b601f01601f19169290920160200192915050565b602081525f6112d16020830184612caa565b80356001600160a01b0381168114610e03575f80fd5b634e487b7160e01b5f52604160045260245ffd5b604051601f8201601f1916810167ffffffffffffffff81118282101715612d3a57612d3a612cfd565b604052919050565b5f67ffffffffffffffff821115612d5b57612d5b612cfd565b50601f01601f191660200190565b5f612d7b612d7684612d42565b612d11565b9050828152838383011115612d8e575f80fd5b828260208301375f602084830101529392505050565b5f82601f830112612db3575f80fd5b6112d183833560208501612d69565b5f805f8060808587031215612dd5575f80fd5b612dde85612ce7565b9350612dec60208601612ce7565b925060408501359150606085013567ffffffffffffffff811115612e0e575f80fd5b612e1a87828801612da4565b91505092959194509250565b5f67ffffffffffffffff821115612e3f57612e3f612cfd565b5060051b60200190565b5f82601f830112612e58575f80fd5b81356020612e68612d7683612e26565b8083825260208201915060208460051b870101935086841115612e89575f80fd5b602086015b84811015612eac57612e9f81612ce7565b8352918301918301612e8e565b509695505050505050565b5f82601f830112612ec6575f80fd5b81356020612ed6612d7683612e26565b8083825260208201915060208460051b870101935086841115612ef7575f80fd5b602086015b84811015612eac5780358352918301918301612efc565b5f82601f830112612f22575f80fd5b81356020612f32612d7683612e26565b82815260059290921b84018101918181019086841115612f50575f80fd5b8286015b84811015612eac57803567ffffffffffffffff811115612f72575f80fd5b612f808986838b0101612da4565b845250918301918301612f54565b5f805f8060808587031215612fa1575f80fd5b843567ffffffffffffffff80821115612fb8575f80fd5b612fc488838901612e49565b95506020870135915080821115612fd9575f80fd5b612fe588838901612eb7565b94506040870135915080821115612ffa575f80fd5b5061300787828801612f13565b949793965093946060013593505050565b634e487b7160e01b5f52602160045260245ffd5b6008811061304857634e487b7160e01b5f52602160045260245ffd5b9052565b60208101610a70828461302c565b5f806040838503121561306b575f80fd5b8235915061307b60208401612ce7565b90509250929050565b803560ff81168114610e03575f80fd5b5f80604083850312156130a5575f80fd5b8235915061307b60208401613084565b5f8083601f8401126130c5575f80fd5b50813567ffffffffffffffff8111156130dc575f80fd5b6020830191508360208285010111156130f3575f80fd5b9250929050565b5f805f805f805f60c0888a031215613110575f80fd5b8735965061312060208901613084565b955061312e60408901612ce7565b9450606088013567ffffffffffffffff8082111561314a575f80fd5b6131568b838c016130b5565b909650945060808a013591508082111561316e575f80fd5b61317a8b838c01612da4565b935060a08a013591508082111561318f575f80fd5b5061319c8a828b01612da4565b91505092959891949750929550565b5f805f805f608086880312156131bf575f80fd5b853594506131cf60208701613084565b9350604086013567ffffffffffffffff808211156131eb575f80fd5b6131f789838a016130b5565b9095509350606088013591508082111561320f575f80fd5b5061321c88828901612da4565b9150509295509295909350565b5f805f806060858703121561323c575f80fd5b8435935061324c60208601613084565b9250604085013567ffffffffffffffff811115613267575f80fd5b613273878288016130b5565b95989497509550505050565b5f805f8060808587031215613292575f80fd5b843567ffffffffffffffff808211156132a9575f80fd5b6132b588838901612e49565b955060208701359150808211156132ca575f80fd5b6132d688838901612eb7565b945060408701359150808211156132eb575f80fd5b6132f788838901612f13565b9350606087013591508082111561330c575f80fd5b508501601f8101871361331d575f80fd5b612e1a87823560208401612d69565b5f6020828403121561333c575f80fd5b6112d182612ce7565b5f815180845260208085019450602084015f5b8381101561337457815187529582019590820190600101613358565b509495945050505050565b7fff000000000000000000000000000000000000000000000000000000000000008816815260e060208201525f6133b960e0830189612caa565b82810360408401526133cb8189612caa565b90508660608401526001600160a01b03861660808401528460a084015282810360c08401526133fa8185613345565b9a9950505050505050505050565b5f805f806080858703121561341b575f80fd5b8435935061342b60208601613084565b925061343960408601612ce7565b9150606085013567ffffffffffffffff811115612e0e575f80fd5b5f805f60608486031215613466575f80fd5b61346f84612ce7565b925060208401359150604084013567ffffffffffffffff811115613491575f80fd5b61349d86828701612da4565b9150509250925092565b5f805f805f60a086880312156134bb575f80fd5b6134c486612ce7565b94506134d260208701612ce7565b9350604086013567ffffffffffffffff808211156134ee575f80fd5b6134fa89838a01612eb7565b9450606088013591508082111561350f575f80fd5b61351b89838a01612eb7565b9350608088013591508082111561320f575f80fd5b5f805f8060608587031215613543575f80fd5b61354c85612ce7565b935060208501359250604085013567ffffffffffffffff811115613267575f80fd5b5f806040838503121561357f575f80fd5b61358883612ce7565b946020939093013593505050565b5f805f805f60a086880312156135aa575f80fd5b6135b386612ce7565b94506135c160208701612ce7565b93506040860135925060608601359150608086013567ffffffffffffffff8111156135ea575f80fd5b61321c88828901612da4565b600181811c9082168061360a57607f821691505b60208210810361362857634e487b7160e01b5f52602260045260245ffd5b50919050565b634e487b7160e01b5f52603260045260245ffd5b5f60208284031215613652575f80fd5b815167ffffffffffffffff811115613668575f80fd5b8201601f81018413613678575f80fd5b8051613686612d7682612d42565b81815285602083850101111561369a575f80fd5b61181c826020830160208601612c88565b818382375f9101908152919050565b634e487b7160e01b5f52601160045260245ffd5b81810381811115610a7057610a706136ba565b5092915050565b5f602082840312156136f8575f80fd5b815165ffffffffffff811681146112d1575f80fd5b65ffffffffffff8181168382160190808211156136e1576136e16136ba565b5f815180845260208085019450602084015f5b838110156133745781516001600160a01b03168752958201959082019060010161373f565b5f8282518085526020808601955060208260051b840101602086015f5b848110156137af57601f1986840301895261379d838351612caa565b98840198925090830190600101613781565b5090979650505050505050565b608081525f6137ce608083018761372c565b82810360208401526137e08187613345565b905082810360408401526137f48186613764565b91505082606083015295945050505050565b5f60208284031215613816575f80fd5b5051919050565b8082028115828204841417610a7057610a706136ba565b634e487b7160e01b5f52601260045260245ffd5b5f8261386257634e487b7160e01b5f52601260045260245ffd5b500490565b8381526060810161387b602083018561302c565b826040830152949350505050565b84815260ff84166020820152826040820152608060608201525f610d3e6080830184612caa565b85815260ff8516602082015283604082015260a060608201525f6138d760a0830185612caa565b82810360808401526138e98185612caa565b98975050505050505050565b80820180821115610a7057610a706136ba565b5f6101208b835260206001600160a01b038c16818501528160408501526139318285018c61372c565b91508382036060850152613945828b613345565b915083820360808501528189518084528284019150828160051b850101838c015f5b8381101561399557601f19878403018552613983838351612caa565b94860194925090850190600101613967565b505086810360a08801526139a9818c613764565b9450505050508560c08401528460e08401528281036101008401526139ce8185612caa565b9c9b505050505050505050505050565b5f82516139ef818460208701612c88565b9190910192915050565b60ff8181168382160190811115610a7057610a706136ba565b600181815b80851115613a4c57815f1904821115613a3257613a326136ba565b80851615613a3f57918102915b93841c9390800290613a17565b509250929050565b5f82613a6257506001610a70565b81613a6e57505f610a70565b8160018114613a845760028114613a8e57613aaa565b6001915050610a70565b60ff841115613a9f57613a9f6136ba565b50506001821b610a70565b5060208310610133831016604e8410600b8410161715613acd575081810a610a70565b613ad78383613a12565b805f1904821115613aea57613aea6136ba565b029392505050565b5f6112d160ff841683613a54565b828152604060208201525f6112ce6040830184612caa56fea164736f6c6343000819000a0000000000000000000000000000000000000000000000000000000000000040000000000000000000000000cc3023635df54fc0e43f47bc4beb90c3d1fbda9f00000000000000000000000000000000000000000000000000000000000000064951544553540000000000000000000000000000000000000000000000000000
Deployed Bytecode
0x6080604052600436106102cf575f3560e01c80637b3c71d31161017b578063b58131b0116100d1578063dd4e2ba511610087578063f23a6e6111610062578063f23a6e6114610940578063f8ce560a14610984578063fc0c546a146109a3575f80fd5b8063dd4e2ba5146108a9578063deaaa7cc146108ee578063eb9019d414610921575f80fd5b8063c01f9e37116100b7578063c01f9e3714610858578063c28bc2fa14610877578063c59057e41461088a575f80fd5b8063b58131b014610802578063bc197c8114610814575f80fd5b806391ddadf411610131578063a7713a701161010c578063a7713a7014610799578063a9a95294146107ad578063ab58fb8e146107cc575f80fd5b806391ddadf41461073c57806397c3d334146107675780639a802a6d1461077a575f80fd5b80637ecebe00116101615780637ecebe00146106c257806384b0196e146106f65780638ff262e31461071d575f80fd5b80637b3c71d3146106845780637d5e81e2146106a3575f80fd5b80633932abb111610230578063544ffc9c116101e65780635b8d0e0d116101c15780635b8d0e0d146106275780635f398a141461064657806360c4247f14610665575f80fd5b8063544ffc9c1461057057806354fd4d50146105c35780635678138814610608575f80fd5b8063438596321161021657806343859632146104f5578063452115d61461053d5780634bf5d7e91461055c575f80fd5b80633932abb1146104b55780633e4f49e6146104c9575f80fd5b8063150b7a02116102855780632656227d1161026b5780632656227d146104355780632d63f693146104485780632fe3e26114610482575f80fd5b8063150b7a02146103ba578063160cbed714610416575f80fd5b806306f3f9e6116102b557806306f3f9e61461032e57806306fdde031461034d578063143489d01461036e575f80fd5b806301ffc9a7146102dc57806302a251a314610310575f80fd5b366102d857005b005b5f80fd5b3480156102e7575f80fd5b506102fb6102f6366004612c4a565b6109da565b60405190151581526020015b60405180910390f35b34801561031b575f80fd5b5061c4e05b604051908152602001610307565b348015610339575f80fd5b506102d6610348366004612c71565b610a76565b348015610358575f80fd5b50610361610a8a565b6040516103079190612cd5565b348015610379575f80fd5b506103a2610388366004612c71565b5f908152600460205260409020546001600160a01b031690565b6040516001600160a01b039091168152602001610307565b3480156103c5575f80fd5b506103fd6103d4366004612dc2565b7f150b7a0200000000000000000000000000000000000000000000000000000000949350505050565b6040516001600160e01b03199091168152602001610307565b348015610421575f80fd5b50610320610430366004612f8e565b610b1a565b610320610443366004612f8e565b610b71565b348015610453575f80fd5b50610320610462366004612c71565b5f90815260046020526040902054600160a01b900465ffffffffffff1690565b34801561048d575f80fd5b506103207f3e83946653575f9a39005e1545185629e92736b7528ab20ca3816f315424a81181565b3480156104c0575f80fd5b50611c20610320565b3480156104d4575f80fd5b506104e86104e3366004612c71565b610cb4565b604051610307919061304c565b348015610500575f80fd5b506102fb61050f36600461305a565b5f8281526007602090815260408083206001600160a01b038516845260030190915290205460ff1692915050565b348015610548575f80fd5b50610320610557366004612f8e565b610cbe565b348015610567575f80fd5b50610361610d48565b34801561057b575f80fd5b506105a861058a366004612c71565b5f908152600760205260409020805460018201546002909201549092565b60408051938452602084019290925290820152606001610307565b3480156105ce575f80fd5b5060408051808201909152600181527f31000000000000000000000000000000000000000000000000000000000000006020820152610361565b348015610613575f80fd5b50610320610622366004613094565b610e08565b348015610632575f80fd5b506103206106413660046130fa565b610e2f565b348015610651575f80fd5b506103206106603660046131ab565b610f8b565b348015610670575f80fd5b5061032061067f366004612c71565b610fde565b34801561068f575f80fd5b5061032061069e366004613229565b61106d565b3480156106ae575f80fd5b506103206106bd36600461327f565b6110b3565b3480156106cd575f80fd5b506103206106dc36600461332c565b6001600160a01b03165f9081526002602052604090205490565b348015610701575f80fd5b5061070a61110e565b604051610307979695949392919061337f565b348015610728575f80fd5b50610320610737366004613408565b61116c565b348015610747575f80fd5b5061075061123b565b60405165ffffffffffff9091168152602001610307565b348015610772575f80fd5b506064610320565b348015610785575f80fd5b50610320610794366004613454565b6112c2565b3480156107a4575f80fd5b506103206112d8565b3480156107b8575f80fd5b506102fb6107c7366004612c71565b6112f1565b3480156107d7575f80fd5b506103206107e6366004612c71565b5f9081526004602052604090206001015465ffffffffffff1690565b34801561080d575f80fd5b505f610320565b34801561081f575f80fd5b506103fd61082e3660046134a7565b7fbc197c810000000000000000000000000000000000000000000000000000000095945050505050565b348015610863575f80fd5b50610320610872366004612c71565b6112f8565b6102d6610885366004613530565b61133a565b348015610895575f80fd5b506103206108a4366004612f8e565b6113b6565b3480156108b4575f80fd5b506040805180820190915260208082527f737570706f72743d627261766f2671756f72756d3d666f722c6162737461696e90820152610361565b3480156108f9575f80fd5b506103207ff2aad550cf55f045cb27e9c559f9889fdfb6e6cdaa032301d6ea397784ae51d781565b34801561092c575f80fd5b5061032061093b36600461356e565b6113ef565b34801561094b575f80fd5b506103fd61095a366004613596565b7ff23a6e610000000000000000000000000000000000000000000000000000000095945050505050565b34801561098f575f80fd5b5061032061099e366004612c71565b61140e565b3480156109ae575f80fd5b507f000000000000000000000000cc3023635df54fc0e43f47bc4beb90c3d1fbda9f6103a2565b905090565b5f6001600160e01b031982167f65455a86000000000000000000000000000000000000000000000000000000001480610a3c57506001600160e01b031982167f4e2312e000000000000000000000000000000000000000000000000000000000145b80610a7057507f01ffc9a7000000000000000000000000000000000000000000000000000000006001600160e01b03198316145b92915050565b610a7e6114ce565b610a878161151e565b50565b606060038054610a99906135f6565b80601f0160208091040260200160405190810160405280929190818152602001828054610ac5906135f6565b8015610b105780601f10610ae757610100808354040283529160200191610b10565b820191905f5260205f20905b815481529060010190602001808311610af357829003601f168201915b5050505050905090565b5f80610b28868686866113b6565b9050610b3d81610b3860046115cc565b6115ee565b505f6040517f90884a4600000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f80610b7f868686866113b6565b9050610b9f81610b8f60056115cc565b610b9960046115cc565b176115ee565b505f81815260046020526040902080547fff00ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff16600160f01b17905530610be13090565b6001600160a01b031614610c6a575f5b8651811015610c6857306001600160a01b0316878281518110610c1657610c1661362e565b60200260200101516001600160a01b031603610c6057610c60858281518110610c4157610c4161362e565b602002602001015180519060200120600561162b90919063ffffffff16565b600101610bf1565b505b610c77818787878761169e565b6040518181527f712ae1383f79ac853f8d882153778e0260ef8f03b504e2866e0593e04d2b291f906020015b60405180910390a195945050505050565b5f610a70826116b2565b5f80610ccc868686866113b6565b9050610cdb81610b385f6115cc565b505f818152600460205260409020546001600160a01b03163314610d32576040517f233d98e30000000000000000000000000000000000000000000000000000000081523360048201526024015b60405180910390fd5b610d3e8686868661180f565b9695505050505050565b60607f000000000000000000000000cc3023635df54fc0e43f47bc4beb90c3d1fbda9f6001600160a01b0316634bf5d7e96040518163ffffffff1660e01b81526004015f60405180830381865afa925050508015610dc757506040513d5f823e601f3d908101601f19168201604052610dc49190810190613642565b60015b610e03575060408051808201909152601d81527f6d6f64653d626c6f636b6e756d6265722666726f6d3d64656661756c74000000602082015290565b919050565b5f80339050610e2784828560405180602001604052805f815250611825565b949350505050565b5f80610f1087610f0a7f3e83946653575f9a39005e1545185629e92736b7528ab20ca3816f315424a8118c8c8c610e828e6001600160a01b03165f90815260026020526040902080546001810190915590565b8d8d604051610e929291906136ab565b60405180910390208c80519060200120604051602001610eef9796959493929190968752602087019590955260ff9390931660408601526001600160a01b03919091166060850152608084015260a083015260c082015260e00190565b60405160208183030381529060405280519060200120611846565b8561188d565b905080610f3b576040516394ab6c0760e01b81526001600160a01b0388166004820152602401610d29565b610f7e89888a89898080601f0160208091040260200160405190810160405280939291908181526020018383808284375f920191909152508b92506118fd915050565b9998505050505050505050565b5f80339050610fd387828888888080601f0160208091040260200160405190810160405280939291908181526020018383808284375f920191909152508a92506118fd915050565b979650505050505050565b600880545f918290610ff16001846136ce565b815481106110015761100161362e565b5f918252602090912001805490915065ffffffffffff811690660100000000000090046001600160d01b0316858211611046576001600160d01b031695945050505050565b61105a611052876119f0565b600890611a26565b6001600160d01b03169695505050505050565b5f80339050610d3e86828787878080601f0160208091040260200160405190810160405280939291908181526020018383808284375f9201919091525061182592505050565b5f336110bf8184611ad8565b611100576040517fd9b395570000000000000000000000000000000000000000000000000000000081526001600160a01b0382166004820152602401610d29565b5f610fd38787878786611bf6565b5f6060805f805f606061111f611e4c565b611127611e78565b604080515f808252602082019092527f0f000000000000000000000000000000000000000000000000000000000000009b939a50919850469750309650945092509050565b5f806111f684610f0a7ff2aad550cf55f045cb27e9c559f9889fdfb6e6cdaa032301d6ea397784ae51d78989896111bf8b6001600160a01b03165f90815260026020526040902080546001810190915590565b60408051602081019690965285019390935260ff90911660608401526001600160a01b0316608083015260a082015260c001610eef565b905080611221576040516394ab6c0760e01b81526001600160a01b0385166004820152602401610d29565b610d3e86858760405180602001604052805f815250611825565b5f7f000000000000000000000000cc3023635df54fc0e43f47bc4beb90c3d1fbda9f6001600160a01b03166391ddadf46040518163ffffffff1660e01b8152600401602060405180830381865afa9250505080156112b6575060408051601f3d908101601f191682019092526112b3918101906136e8565b60015b610e03576109d5611ea5565b5f6112ce848484611eaf565b90505b9392505050565b5f6112e36008611f5b565b6001600160d01b0316905090565b5f80610a70565b5f8181526004602052604081205461132c90600160d01b810463ffffffff1690600160a01b900465ffffffffffff1661370d565b65ffffffffffff1692915050565b6113426114ce565b5f80856001600160a01b031685858560405161135f9291906136ab565b5f6040518083038185875af1925050503d805f8114611399576040519150601f19603f3d011682016040523d82523d5f602084013e61139e565b606091505b50915091506113ad8282611f95565b50505050505050565b5f848484846040516020016113ce94939291906137bc565b60408051601f19818403018152919052805160209091012095945050505050565b5f6112d1838361140960408051602081019091525f815290565b611eaf565b5f606461141a83610fde565b6040517f8e539e8c000000000000000000000000000000000000000000000000000000008152600481018590526001600160a01b037f000000000000000000000000cc3023635df54fc0e43f47bc4beb90c3d1fbda9f1690638e539e8c90602401602060405180830381865afa158015611496573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906114ba9190613806565b6114c4919061381d565b610a709190613848565b303314611509576040517f47096e47000000000000000000000000000000000000000000000000000000008152336004820152602401610d29565b565b806115166005611fb1565b0361150b5750565b606480821115611564576040517f243e54450000000000000000000000000000000000000000000000000000000081526004810183905260248101829052604401610d29565b5f61156d6112d8565b905061158c61157a61123b565b6115838561203f565b60089190612072565b505060408051828152602081018590527f0553476bf02ef2726e8ce5ced78d63e26e602e4a2257b1f559418e24b4633997910160405180910390a1505050565b5f8160078111156115df576115df613018565b600160ff919091161b92915050565b5f806115f984610cb4565b90505f83611606836115cc565b16036112d1578381846040516331b75e4d60e01b8152600401610d2993929190613867565b81546fffffffffffffffffffffffffffffffff600160801b82048116918116600183019091160361166057611660604161208c565b6fffffffffffffffffffffffffffffffff8082165f90815260018086016020526040909120939093558354919092018216600160801b029116179055565b6116ab858585858561209d565b5050505050565b5f818152600460205260408120805460ff600160f01b8204811691600160f81b90041681156116e657506007949350505050565b80156116f757506002949350505050565b5f85815260046020526040812054600160a01b900465ffffffffffff169050805f03611752576040517f6ad0607500000000000000000000000000000000000000000000000000000000815260048101879052602401610d29565b5f61175b61123b565b65ffffffffffff16905080821061177857505f9695505050505050565b5f611782886112f8565b905081811061179957506001979650505050505050565b6117a288612172565b15806117c157505f888152600760205260409020805460019091015411155b156117d457506003979650505050505050565b5f8881526004602052604090206001015465ffffffffffff165f0361180157506004979650505050505050565b506005979650505050505050565b5f61181c858585856121c2565b95945050505050565b5f61181c8585858561184160408051602081019091525f815290565b6118fd565b5f610a70611852612289565b836040517f19010000000000000000000000000000000000000000000000000000000000008152600281019290925260228201526042902090565b5f836001600160a01b03163b5f036118eb575f806118ab85856123b2565b5090925090505f8160038111156118c4576118c4613018565b1480156118e25750856001600160a01b0316826001600160a01b0316145b925050506112d1565b6118f68484846123fb565b90506112d1565b5f61190c86610b3860016115cc565b505f86815260046020526040812054611936908790600160a01b900465ffffffffffff1685611eaf565b90505f61194688888885886124e6565b905083515f0361199c57866001600160a01b03167fb8e138887d0aa13bab447e82de9d5c1777041ecd21ca36ba824ff1e6c07ddda48988848960405161198f9493929190613889565b60405180910390a2610fd3565b866001600160a01b03167fe2babfbac5889a709b63bb7f598b324e08bc5a4fb9ec647fb3cbc9ec07eb871289888489896040516119dd9594939291906138b0565b60405180910390a2979650505050505050565b5f65ffffffffffff821115611a22576040516306dfcc6560e41b81526030600482015260248101839052604401610d29565b5090565b81545f9081816005811115611a82575f611a3f84612614565b611a4990856136ce565b5f8881526020902090915081015465ffffffffffff9081169087161015611a7257809150611a80565b611a7d8160016138f5565b92505b505b5f611a8f8787858561276c565b90508015611acc57611ab387611aa66001846136ce565b5f91825260209091200190565b54660100000000000090046001600160d01b0316610fd3565b5f979650505050505050565b80515f906034811015611aef576001915050610a70565b828101601319015173ffffffffffffffffffffffffffffffffffffffff1981167f2370726f706f7365723d3078000000000000000000000000000000000000000014611b4057600192505050610a70565b5f80611b4d6028856136ce565b90505b83811015611bd5575f80611b9b888481518110611b6f57611b6f61362e565b01602001517fff00000000000000000000000000000000000000000000000000000000000000166127cb565b9150915081611bb35760019650505050505050610a70565b8060ff166004856001600160a01b0316901b1793505050806001019050611b50565b50856001600160a01b0316816001600160a01b031614935050505092915050565b5f611c0a86868686805190602001206113b6565b905084518651141580611c1f57508351865114155b80611c2957508551155b15611c77578551845186516040517f447b05d0000000000000000000000000000000000000000000000000000000008152600481019390935260248301919091526044820152606401610d29565b5f81815260046020526040902054600160a01b900465ffffffffffff1615611cc05780611ca382610cb4565b6040516331b75e4d60e01b8152610d299291905f90600401613867565b5f611c20611ccc61123b565b65ffffffffffff16611cde91906138f5565b90505f61c4e05f848152600460205260409020805473ffffffffffffffffffffffffffffffffffffffff19166001600160a01b038716178155909150611d23836119f0565b815465ffffffffffff91909116600160a01b027fffffffffffff000000000000ffffffffffffffffffffffffffffffffffffffff909116178155611d668261285b565b815463ffffffff91909116600160d01b027fffff00000000ffffffffffffffffffffffffffffffffffffffffffffffffffff90911617815588517f7d84a6263ae0d98d3329bd7b46bb4e8d6f98cd35a7adb45c274c8b7fd5ebd5e090859087908c908c9067ffffffffffffffff811115611de257611de2612cfd565b604051908082528060200260200182016040528015611e1557816020015b6060815260200190600190039081611e005790505b508c89611e228a826138f5565b8e604051611e3899989796959493929190613908565b60405180910390a150505095945050505050565b60606109d57f49515445535400000000000000000000000000000000000000000000000000065f61288b565b60606109d57f3100000000000000000000000000000000000000000000000000000000000001600161288b565b5f6109d5436119f0565b5f7f000000000000000000000000cc3023635df54fc0e43f47bc4beb90c3d1fbda9f6040517f3a46b1a80000000000000000000000000000000000000000000000000000000081526001600160a01b038681166004830152602482018690529190911690633a46b1a890604401602060405180830381865afa158015611f37573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906112ce9190613806565b80545f908015611f8d57611f7483611aa66001846136ce565b54660100000000000090046001600160d01b03166112d1565b5f9392505050565b606082611faa57611fa582612934565b610a70565b5080610a70565b80545f906fffffffffffffffffffffffffffffffff80821691600160801b9004168103611fe257611fe2603161208c565b6fffffffffffffffffffffffffffffffff8181165f908152600185810160205260408220805492905585547fffffffffffffffffffffffffffffffff00000000000000000000000000000000169301909116919091179092555090565b5f6001600160d01b03821115611a22576040516306dfcc6560e41b815260d0600482015260248101839052604401610d29565b5f8061207f858585612976565b915091505b935093915050565b634e487b715f52806020526024601cfd5b5f5b845181101561216a575f808683815181106120bc576120bc61362e565b60200260200101516001600160a01b03168684815181106120df576120df61362e565b60200260200101518685815181106120f9576120f961362e565b602002602001015160405161210e91906139de565b5f6040518083038185875af1925050503d805f8114612148576040519150601f19603f3d011682016040523d82523d5f602084013e61214d565b606091505b509150915061215c8282611f95565b50505080600101905061209f565b505050505050565b5f8181526007602052604081206002810154600182015461219391906138f5565b5f848152600460205260409020546121b990600160a01b900465ffffffffffff1661140e565b11159392505050565b5f806121d0868686866113b6565b905061221e816121e060076115cc565b6121ea60066115cc565b6121f460026115cc565b60016122016007826139f9565b61220c906002613af2565b61221691906136ce565b1818186115ee565b505f818152600460205260409081902080547effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff16600160f81b179055517f789cf55be980739dad1d0699b93b58e806b51c9d96619bfa8fe0a28abaa7b30c90610ca39083815260200190565b5f306001600160a01b037f000000000000000000000000c71ff810b6a1ebd5f6dd22d64bd0852b98c51ae2161480156122e157507f00000000000000000000000000000000000000000000000000000000000000fc46145b1561230b57507fdf00ee66903cb7b9fb9844a8be302a04c878c59a0caa644f34aece48284b2b3290565b6109d5604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527f8eb8809218ff1338864fb0f16a3e5b2ca13ff2e0d2120c0498fc55dd43bbe9d8918101919091527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc660608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b5f805f83516041036123e9576020840151604085015160608601515f1a6123db88828585612aeb565b9550955095505050506123f4565b505081515f91506002905b9250925092565b5f805f856001600160a01b0316858560405160240161241b929190613b00565b60408051601f198184030181529181526020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff16630b135d3f60e11b1790525161246591906139de565b5f60405180830381855afa9150503d805f811461249d576040519150601f19603f3d011682016040523d82523d5f602084013e6124a2565b606091505b50915091508180156124b657506020815110155b8015610d3e57508051630b135d3f60e11b906124db9083016020908101908401613806565b149695505050505050565b5f8581526007602090815260408083206001600160a01b03881684526003810190925282205460ff1615612551576040517f71c6af490000000000000000000000000000000000000000000000000000000081526001600160a01b0387166004820152602401610d29565b6001600160a01b0386165f9081526003820160205260409020805460ff1916600117905560ff851661259a5783815f015f82825461258f91906138f5565b909155506126099050565b5f1960ff8616016125b85783816001015f82825461258f91906138f5565b60011960ff8616016125d75783816002015f82825461258f91906138f5565b6040517f06b337c200000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b509195945050505050565b5f60018211612621575090565b816001600160801b821061263a5760809190911c9060401b5b6801000000000000000082106126555760409190911c9060201b5b640100000000821061266c5760209190911c9060101b5b6201000082106126815760109190911c9060081b5b61010082106126955760089190911c9060041b5b601082106126a85760049190911c9060021b5b600482106126b45760011b5b600302600190811c908185816126cc576126cc613834565b048201901c905060018185816126e4576126e4613834565b048201901c905060018185816126fc576126fc613834565b048201901c9050600181858161271457612714613834565b048201901c9050600181858161272c5761272c613834565b048201901c9050600181858161274457612744613834565b048201901c905061276381858161275d5761275d613834565b04821190565b90039392505050565b5f5b818310156127c3575f6127818484612bb3565b5f8781526020902090915065ffffffffffff86169082015465ffffffffffff1611156127af578092506127bd565b6127ba8160016138f5565b93505b5061276e565b509392505050565b5f8060f883901c602f811180156127e55750603a8160ff16105b156127fa57600194602f199091019350915050565b8060ff166040108015612810575060478160ff16105b15612825576001946036199091019350915050565b8060ff16606010801561283b575060678160ff16105b15612850576001946056199091019350915050565b505f93849350915050565b5f63ffffffff821115611a22576040516306dfcc6560e41b81526020600482015260248101839052604401610d29565b606060ff83146128a55761289e83612bcd565b9050610a70565b8180546128b1906135f6565b80601f01602080910402602001604051908101604052809291908181526020018280546128dd906135f6565b80156129285780601f106128ff57610100808354040283529160200191612928565b820191905f5260205f20905b81548152906001019060200180831161290b57829003601f168201915b50505050509050610a70565b8051156129445780518082602001fd5b6040517fd6bda27500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b82545f9081908015612a8e575f61299287611aa66001856136ce565b805490915065ffffffffffff80821691660100000000000090046001600160d01b03169088168211156129f1576040517f2520601d00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b8765ffffffffffff168265ffffffffffff1603612a2d57825465ffffffffffff1666010000000000006001600160d01b03891602178355612a80565b6040805180820190915265ffffffffffff808a1682526001600160d01b03808a1660208085019182528d54600181018f555f8f815291909120945191519092166601000000000000029216919091179101555b945085935061208492505050565b50506040805180820190915265ffffffffffff80851682526001600160d01b0380851660208085019182528854600181018a555f8a8152918220955192519093166601000000000000029190931617920191909155905081612084565b5f80807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0841115612b2457505f91506003905082612ba9565b604080515f808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa158015612b75573d5f803e3d5ffd5b5050604051601f1901519150506001600160a01b038116612ba057505f925060019150829050612ba9565b92505f91508190505b9450945094915050565b5f612bc16002848418613848565b6112d1908484166138f5565b60605f612bd983612c0a565b6040805160208082528183019092529192505f91906020820181803683375050509182525060208101929092525090565b5f60ff8216601f811115610a70576040517fb3512b0c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f60208284031215612c5a575f80fd5b81356001600160e01b0319811681146112d1575f80fd5b5f60208284031215612c81575f80fd5b5035919050565b5f5b83811015612ca2578181015183820152602001612c8a565b50505f910152565b5f8151808452612cc1816020860160208601612c88565b601f01601f19169290920160200192915050565b602081525f6112d16020830184612caa565b80356001600160a01b0381168114610e03575f80fd5b634e487b7160e01b5f52604160045260245ffd5b604051601f8201601f1916810167ffffffffffffffff81118282101715612d3a57612d3a612cfd565b604052919050565b5f67ffffffffffffffff821115612d5b57612d5b612cfd565b50601f01601f191660200190565b5f612d7b612d7684612d42565b612d11565b9050828152838383011115612d8e575f80fd5b828260208301375f602084830101529392505050565b5f82601f830112612db3575f80fd5b6112d183833560208501612d69565b5f805f8060808587031215612dd5575f80fd5b612dde85612ce7565b9350612dec60208601612ce7565b925060408501359150606085013567ffffffffffffffff811115612e0e575f80fd5b612e1a87828801612da4565b91505092959194509250565b5f67ffffffffffffffff821115612e3f57612e3f612cfd565b5060051b60200190565b5f82601f830112612e58575f80fd5b81356020612e68612d7683612e26565b8083825260208201915060208460051b870101935086841115612e89575f80fd5b602086015b84811015612eac57612e9f81612ce7565b8352918301918301612e8e565b509695505050505050565b5f82601f830112612ec6575f80fd5b81356020612ed6612d7683612e26565b8083825260208201915060208460051b870101935086841115612ef7575f80fd5b602086015b84811015612eac5780358352918301918301612efc565b5f82601f830112612f22575f80fd5b81356020612f32612d7683612e26565b82815260059290921b84018101918181019086841115612f50575f80fd5b8286015b84811015612eac57803567ffffffffffffffff811115612f72575f80fd5b612f808986838b0101612da4565b845250918301918301612f54565b5f805f8060808587031215612fa1575f80fd5b843567ffffffffffffffff80821115612fb8575f80fd5b612fc488838901612e49565b95506020870135915080821115612fd9575f80fd5b612fe588838901612eb7565b94506040870135915080821115612ffa575f80fd5b5061300787828801612f13565b949793965093946060013593505050565b634e487b7160e01b5f52602160045260245ffd5b6008811061304857634e487b7160e01b5f52602160045260245ffd5b9052565b60208101610a70828461302c565b5f806040838503121561306b575f80fd5b8235915061307b60208401612ce7565b90509250929050565b803560ff81168114610e03575f80fd5b5f80604083850312156130a5575f80fd5b8235915061307b60208401613084565b5f8083601f8401126130c5575f80fd5b50813567ffffffffffffffff8111156130dc575f80fd5b6020830191508360208285010111156130f3575f80fd5b9250929050565b5f805f805f805f60c0888a031215613110575f80fd5b8735965061312060208901613084565b955061312e60408901612ce7565b9450606088013567ffffffffffffffff8082111561314a575f80fd5b6131568b838c016130b5565b909650945060808a013591508082111561316e575f80fd5b61317a8b838c01612da4565b935060a08a013591508082111561318f575f80fd5b5061319c8a828b01612da4565b91505092959891949750929550565b5f805f805f608086880312156131bf575f80fd5b853594506131cf60208701613084565b9350604086013567ffffffffffffffff808211156131eb575f80fd5b6131f789838a016130b5565b9095509350606088013591508082111561320f575f80fd5b5061321c88828901612da4565b9150509295509295909350565b5f805f806060858703121561323c575f80fd5b8435935061324c60208601613084565b9250604085013567ffffffffffffffff811115613267575f80fd5b613273878288016130b5565b95989497509550505050565b5f805f8060808587031215613292575f80fd5b843567ffffffffffffffff808211156132a9575f80fd5b6132b588838901612e49565b955060208701359150808211156132ca575f80fd5b6132d688838901612eb7565b945060408701359150808211156132eb575f80fd5b6132f788838901612f13565b9350606087013591508082111561330c575f80fd5b508501601f8101871361331d575f80fd5b612e1a87823560208401612d69565b5f6020828403121561333c575f80fd5b6112d182612ce7565b5f815180845260208085019450602084015f5b8381101561337457815187529582019590820190600101613358565b509495945050505050565b7fff000000000000000000000000000000000000000000000000000000000000008816815260e060208201525f6133b960e0830189612caa565b82810360408401526133cb8189612caa565b90508660608401526001600160a01b03861660808401528460a084015282810360c08401526133fa8185613345565b9a9950505050505050505050565b5f805f806080858703121561341b575f80fd5b8435935061342b60208601613084565b925061343960408601612ce7565b9150606085013567ffffffffffffffff811115612e0e575f80fd5b5f805f60608486031215613466575f80fd5b61346f84612ce7565b925060208401359150604084013567ffffffffffffffff811115613491575f80fd5b61349d86828701612da4565b9150509250925092565b5f805f805f60a086880312156134bb575f80fd5b6134c486612ce7565b94506134d260208701612ce7565b9350604086013567ffffffffffffffff808211156134ee575f80fd5b6134fa89838a01612eb7565b9450606088013591508082111561350f575f80fd5b61351b89838a01612eb7565b9350608088013591508082111561320f575f80fd5b5f805f8060608587031215613543575f80fd5b61354c85612ce7565b935060208501359250604085013567ffffffffffffffff811115613267575f80fd5b5f806040838503121561357f575f80fd5b61358883612ce7565b946020939093013593505050565b5f805f805f60a086880312156135aa575f80fd5b6135b386612ce7565b94506135c160208701612ce7565b93506040860135925060608601359150608086013567ffffffffffffffff8111156135ea575f80fd5b61321c88828901612da4565b600181811c9082168061360a57607f821691505b60208210810361362857634e487b7160e01b5f52602260045260245ffd5b50919050565b634e487b7160e01b5f52603260045260245ffd5b5f60208284031215613652575f80fd5b815167ffffffffffffffff811115613668575f80fd5b8201601f81018413613678575f80fd5b8051613686612d7682612d42565b81815285602083850101111561369a575f80fd5b61181c826020830160208601612c88565b818382375f9101908152919050565b634e487b7160e01b5f52601160045260245ffd5b81810381811115610a7057610a706136ba565b5092915050565b5f602082840312156136f8575f80fd5b815165ffffffffffff811681146112d1575f80fd5b65ffffffffffff8181168382160190808211156136e1576136e16136ba565b5f815180845260208085019450602084015f5b838110156133745781516001600160a01b03168752958201959082019060010161373f565b5f8282518085526020808601955060208260051b840101602086015f5b848110156137af57601f1986840301895261379d838351612caa565b98840198925090830190600101613781565b5090979650505050505050565b608081525f6137ce608083018761372c565b82810360208401526137e08187613345565b905082810360408401526137f48186613764565b91505082606083015295945050505050565b5f60208284031215613816575f80fd5b5051919050565b8082028115828204841417610a7057610a706136ba565b634e487b7160e01b5f52601260045260245ffd5b5f8261386257634e487b7160e01b5f52601260045260245ffd5b500490565b8381526060810161387b602083018561302c565b826040830152949350505050565b84815260ff84166020820152826040820152608060608201525f610d3e6080830184612caa565b85815260ff8516602082015283604082015260a060608201525f6138d760a0830185612caa565b82810360808401526138e98185612caa565b98975050505050505050565b80820180821115610a7057610a706136ba565b5f6101208b835260206001600160a01b038c16818501528160408501526139318285018c61372c565b91508382036060850152613945828b613345565b915083820360808501528189518084528284019150828160051b850101838c015f5b8381101561399557601f19878403018552613983838351612caa565b94860194925090850190600101613967565b505086810360a08801526139a9818c613764565b9450505050508560c08401528460e08401528281036101008401526139ce8185612caa565b9c9b505050505050505050505050565b5f82516139ef818460208701612c88565b9190910192915050565b60ff8181168382160190811115610a7057610a706136ba565b600181815b80851115613a4c57815f1904821115613a3257613a326136ba565b80851615613a3f57918102915b93841c9390800290613a17565b509250929050565b5f82613a6257506001610a70565b81613a6e57505f610a70565b8160018114613a845760028114613a8e57613aaa565b6001915050610a70565b60ff841115613a9f57613a9f6136ba565b50506001821b610a70565b5060208310610133831016604e8410600b8410161715613acd575081810a610a70565b613ad78383613a12565b805f1904821115613aea57613aea6136ba565b029392505050565b5f6112d160ff841683613a54565b828152604060208201525f6112ce6040830184612caa56fea164736f6c6343000819000a
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
0000000000000000000000000000000000000000000000000000000000000040000000000000000000000000cc3023635df54fc0e43f47bc4beb90c3d1fbda9f00000000000000000000000000000000000000000000000000000000000000064951544553540000000000000000000000000000000000000000000000000000
-----Decoded View---------------
Arg [0] : _name (string): IQTEST
Arg [1] : _token (address): 0xCc3023635dF54FC0e43F47bc4BeB90c3d1fbDa9f
-----Encoded View---------------
4 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000000000000000000000000000000000040
Arg [1] : 000000000000000000000000cc3023635df54fc0e43f47bc4beb90c3d1fbda9f
Arg [2] : 0000000000000000000000000000000000000000000000000000000000000006
Arg [3] : 4951544553540000000000000000000000000000000000000000000000000000
Loading...
Loading
Loading...
Loading
Loading...
Loading
Net Worth in USD
$0.00
Net Worth in FRAX
0
Token Allocations
FRAX
100.00%
Multichain Portfolio | 35 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|---|---|---|---|---|
| FRAXTAL | 100.00% | $0.876482 | 0.000000029743 | <$0.000001 |
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.